|
@@ -1,5406 +1,5406 @@
|
|
|
-/*
|
|
|
- * FreeRTOS Kernel V10.4.4
|
|
|
- * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
|
- *
|
|
|
+/*
|
|
|
+ * FreeRTOS Kernel V10.4.4
|
|
|
+ * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
|
+ *
|
|
|
* SPDX-License-Identifier: MIT
|
|
|
*
|
|
|
- * Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
|
- * this software and associated documentation files (the "Software"), to deal in
|
|
|
- * the Software without restriction, including without limitation the rights to
|
|
|
- * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
|
- * the Software, and to permit persons to whom the Software is furnished to do so,
|
|
|
- * subject to the following conditions:
|
|
|
- *
|
|
|
- * The above copyright notice and this permission notice shall be included in all
|
|
|
- * copies or substantial portions of the Software.
|
|
|
- *
|
|
|
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
|
- * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
|
- * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
|
- * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
- *
|
|
|
- * https://www.FreeRTOS.org
|
|
|
- * https://github.com/FreeRTOS
|
|
|
- *
|
|
|
- */
|
|
|
-
|
|
|
-/* Standard includes. */
|
|
|
-#include <stdlib.h>
|
|
|
-#include <string.h>
|
|
|
-
|
|
|
-/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
|
- * all the API functions to use the MPU wrappers. That should only be done when
|
|
|
- * task.h is included from an application file. */
|
|
|
-#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
-
|
|
|
-/* FreeRTOS includes. */
|
|
|
-#include "FreeRTOS.h"
|
|
|
-#include "task.h"
|
|
|
-#include "timers.h"
|
|
|
-#include "stack_macros.h"
|
|
|
-
|
|
|
-/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
|
|
|
- * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
|
|
|
- * for the header files above, but not in this file, in order to generate the
|
|
|
- * correct privileged Vs unprivileged linkage and placement. */
|
|
|
-#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
|
|
|
-
|
|
|
-/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
|
|
|
- * functions but without including stdio.h here. */
|
|
|
-#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
|
|
|
-
|
|
|
-/* At the bottom of this file are two optional functions that can be used
|
|
|
- * to generate human readable text from the raw data generated by the
|
|
|
- * uxTaskGetSystemState() function. Note the formatting functions are provided
|
|
|
- * for convenience only, and are NOT considered part of the kernel. */
|
|
|
- #include <stdio.h>
|
|
|
-#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
|
|
|
-
|
|
|
-#if ( configUSE_PREEMPTION == 0 )
|
|
|
-
|
|
|
-/* If the cooperative scheduler is being used then a yield should not be
|
|
|
- * performed just because a higher priority task has been woken. */
|
|
|
- #define taskYIELD_IF_USING_PREEMPTION()
|
|
|
-#else
|
|
|
- #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Values that can be assigned to the ucNotifyState member of the TCB. */
|
|
|
-#define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
|
|
|
-#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
|
|
|
-#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
|
|
|
-
|
|
|
-/*
|
|
|
- * The value used to fill the stack of a task when the task is created. This
|
|
|
- * is used purely for checking the high water mark for tasks.
|
|
|
- */
|
|
|
-#define tskSTACK_FILL_BYTE ( 0xa5U )
|
|
|
-
|
|
|
-/* Bits used to record how a task's stack and TCB were allocated. */
|
|
|
-#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
|
|
|
-#define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
|
|
|
-#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
|
|
|
-
|
|
|
-/* If any of the following are set then task stacks are filled with a known
|
|
|
- * value so the high water mark can be determined. If none of the following are
|
|
|
- * set then don't fill the stack so there is no unnecessary dependency on memset. */
|
|
|
-#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
- #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
|
|
|
-#else
|
|
|
- #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Macros used by vListTask to indicate which state a task is in.
|
|
|
- */
|
|
|
-#define tskRUNNING_CHAR ( 'X' )
|
|
|
-#define tskBLOCKED_CHAR ( 'B' )
|
|
|
-#define tskREADY_CHAR ( 'R' )
|
|
|
-#define tskDELETED_CHAR ( 'D' )
|
|
|
-#define tskSUSPENDED_CHAR ( 'S' )
|
|
|
-
|
|
|
-/*
|
|
|
- * Some kernel aware debuggers require the data the debugger needs access to to
|
|
|
- * be global, rather than file scope.
|
|
|
- */
|
|
|
-#ifdef portREMOVE_STATIC_QUALIFIER
|
|
|
- #define static
|
|
|
-#endif
|
|
|
-
|
|
|
-/* The name allocated to the Idle task. This can be overridden by defining
|
|
|
- * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
|
|
|
-#ifndef configIDLE_TASK_NAME
|
|
|
- #define configIDLE_TASK_NAME "IDLE"
|
|
|
-#endif
|
|
|
-
|
|
|
-#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
-
|
|
|
-/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
|
|
|
- * performed in a generic way that is not optimised to any particular
|
|
|
- * microcontroller architecture. */
|
|
|
-
|
|
|
-/* uxTopReadyPriority holds the priority of the highest priority ready
|
|
|
- * state task. */
|
|
|
- #define taskRECORD_READY_PRIORITY( uxPriority ) \
|
|
|
- { \
|
|
|
- if( ( uxPriority ) > uxTopReadyPriority ) \
|
|
|
- { \
|
|
|
- uxTopReadyPriority = ( uxPriority ); \
|
|
|
- } \
|
|
|
- } /* taskRECORD_READY_PRIORITY */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
- #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
|
- { \
|
|
|
- UBaseType_t uxTopPriority = uxTopReadyPriority; \
|
|
|
- \
|
|
|
- /* Find the highest priority queue that contains ready tasks. */ \
|
|
|
- while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
|
|
|
- { \
|
|
|
- configASSERT( uxTopPriority ); \
|
|
|
- --uxTopPriority; \
|
|
|
- } \
|
|
|
- \
|
|
|
- /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
|
|
|
- * the same priority get an equal share of the processor time. */ \
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
|
|
- uxTopReadyPriority = uxTopPriority; \
|
|
|
- } /* taskSELECT_HIGHEST_PRIORITY_TASK */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
|
|
|
- * they are only required when a port optimised method of task selection is
|
|
|
- * being used. */
|
|
|
- #define taskRESET_READY_PRIORITY( uxPriority )
|
|
|
- #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
-
|
|
|
-#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
-
|
|
|
-/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
|
|
|
- * performed in a way that is tailored to the particular microcontroller
|
|
|
- * architecture being used. */
|
|
|
-
|
|
|
-/* A port optimised version is provided. Call the port defined macros. */
|
|
|
- #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
- #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
|
- { \
|
|
|
- UBaseType_t uxTopPriority; \
|
|
|
- \
|
|
|
- /* Find the highest priority list that contains ready tasks. */ \
|
|
|
- portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
|
|
|
- configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
|
|
- } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* A port optimised version is provided, call it only if the TCB being reset
|
|
|
- * is being referenced from a ready list. If it is referenced from a delayed
|
|
|
- * or suspended list then it won't be in a ready list. */
|
|
|
- #define taskRESET_READY_PRIORITY( uxPriority ) \
|
|
|
- { \
|
|
|
- if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
|
|
|
- { \
|
|
|
- portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
|
|
|
- } \
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
|
|
|
- * count overflows. */
|
|
|
-#define taskSWITCH_DELAYED_LISTS() \
|
|
|
- { \
|
|
|
- List_t * pxTemp; \
|
|
|
- \
|
|
|
- /* The delayed tasks list should be empty when the lists are switched. */ \
|
|
|
- configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
|
|
|
- \
|
|
|
- pxTemp = pxDelayedTaskList; \
|
|
|
- pxDelayedTaskList = pxOverflowDelayedTaskList; \
|
|
|
- pxOverflowDelayedTaskList = pxTemp; \
|
|
|
- xNumOfOverflows++; \
|
|
|
- prvResetNextTaskUnblockTime(); \
|
|
|
- }
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/*
|
|
|
- * Place the task represented by pxTCB into the appropriate ready list for
|
|
|
- * the task. It is inserted at the end of the list.
|
|
|
- */
|
|
|
-#define prvAddTaskToReadyList( pxTCB ) \
|
|
|
- traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
|
|
|
- taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
|
|
|
- listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
|
|
|
- tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/*
|
|
|
- * Several functions take a TaskHandle_t parameter that can optionally be NULL,
|
|
|
- * where NULL is used to indicate that the handle of the currently executing
|
|
|
- * task should be used in place of the parameter. This macro simply checks to
|
|
|
- * see if the parameter is NULL and returns a pointer to the appropriate TCB.
|
|
|
- */
|
|
|
-#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
|
|
|
-
|
|
|
-/* The item value of the event list item is normally used to hold the priority
|
|
|
- * of the task to which it belongs (coded to allow it to be held in reverse
|
|
|
- * priority order). However, it is occasionally borrowed for other purposes. It
|
|
|
- * is important its value is not updated due to a task priority change while it is
|
|
|
- * being used for another purpose. The following bit definition is used to inform
|
|
|
- * the scheduler that the value should not be changed - in which case it is the
|
|
|
- * responsibility of whichever module is using the value to ensure it gets set back
|
|
|
- * to its original value when it is released. */
|
|
|
-#if ( configUSE_16_BIT_TICKS == 1 )
|
|
|
- #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
|
|
|
-#else
|
|
|
- #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Task control block. A task control block (TCB) is allocated for each task,
|
|
|
- * and stores task state information, including a pointer to the task's context
|
|
|
- * (the task's run time environment, including register values)
|
|
|
- */
|
|
|
-typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
|
|
|
-{
|
|
|
- volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
|
|
|
-
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
|
|
|
- #endif
|
|
|
-
|
|
|
- ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
|
|
|
- ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
|
|
|
- UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
|
|
|
- StackType_t * pxStack; /*< Points to the start of the stack. */
|
|
|
- char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
-
|
|
|
- #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
|
|
|
- StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
- UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
- UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
|
|
|
- UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
|
|
|
- UBaseType_t uxMutexesHeld;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
- TaskHookFunction_t pxTaskTag;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
|
|
|
- void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- /* Allocate a Newlib reent structure that is specific to this task.
|
|
|
- * Note Newlib support has been included by popular demand, but is not
|
|
|
- * used by the FreeRTOS maintainers themselves. FreeRTOS is not
|
|
|
- * responsible for resulting newlib operation. User must be familiar with
|
|
|
- * newlib and must provide system-wide implementations of the necessary
|
|
|
- * stubs. Be warned that (at the time of writing) the current newlib design
|
|
|
- * implements a system-wide malloc() that must be provided with locks.
|
|
|
- *
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- struct _reent xNewLib_reent;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
|
|
|
- volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
|
|
|
- #endif
|
|
|
-
|
|
|
- /* See the comments in FreeRTOS.h with the definition of
|
|
|
- * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
- uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- uint8_t ucDelayAborted;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- int iTaskErrno;
|
|
|
- #endif
|
|
|
-} tskTCB;
|
|
|
-
|
|
|
-/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
|
|
|
- * below to enable the use of older kernel aware debuggers. */
|
|
|
-typedef tskTCB TCB_t;
|
|
|
-
|
|
|
-/*lint -save -e956 A manual analysis and inspection has been used to determine
|
|
|
- * which static variables must be declared volatile. */
|
|
|
-PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
|
|
|
-
|
|
|
-/* Lists for ready and blocked tasks. --------------------
|
|
|
- * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
|
|
|
- * doing so breaks some kernel aware debuggers and debuggers that rely on removing
|
|
|
- * the static qualifier. */
|
|
|
-PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
|
|
|
-PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
|
|
|
-PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
|
|
|
-PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
|
|
|
-PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
|
|
|
-PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
|
|
|
- PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Global POSIX errno. Its value is changed upon context switching to match
|
|
|
- * the errno of the currently running task. */
|
|
|
-#if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- int FreeRTOS_errno = 0;
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Other file private variables. --------------------------------*/
|
|
|
-PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
|
|
|
-PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
|
|
|
-PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
|
|
|
-PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
|
|
|
-PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
|
|
|
-PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
|
|
|
-PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
|
|
|
-PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
|
|
|
-PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
|
|
|
-PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
|
|
|
-
|
|
|
-/* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
|
|
|
- * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
|
|
|
- * to determine the number of priority lists to read back from the remote target. */
|
|
|
-const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
|
|
|
-
|
|
|
-/* Context switches are held pending while the scheduler is suspended. Also,
|
|
|
- * interrupts must not manipulate the xStateListItem of a TCB, or any of the
|
|
|
- * lists the xStateListItem can be referenced from, if the scheduler is suspended.
|
|
|
- * If an interrupt needs to unblock a task while the scheduler is suspended then it
|
|
|
- * moves the task's event list item into the xPendingReadyList, ready for the
|
|
|
- * kernel to move the task from the pending ready list into the real ready list
|
|
|
- * when the scheduler is unsuspended. The pending ready list itself can only be
|
|
|
- * accessed from a critical section. */
|
|
|
-PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
|
|
|
-
|
|
|
-#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
-
|
|
|
-/* Do not move these variables to function scope as doing so prevents the
|
|
|
- * code working with debuggers that need to remove the static qualifier. */
|
|
|
- PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
|
|
|
- PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*lint -restore */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* File private functions. --------------------------------*/
|
|
|
-
|
|
|
-/**
|
|
|
- * Utility task that simply returns pdTRUE if the task referenced by xTask is
|
|
|
- * currently in the Suspended state, or pdFALSE if the task referenced by xTask
|
|
|
- * is in any other state.
|
|
|
- */
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-
|
|
|
-/*
|
|
|
- * Utility to ready all the lists used by the scheduler. This is called
|
|
|
- * automatically upon the creation of the first task.
|
|
|
- */
|
|
|
-static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * The idle task, which as all tasks is implemented as a never ending loop.
|
|
|
- * The idle task is automatically created and added to the ready lists upon
|
|
|
- * creation of the first user task.
|
|
|
- *
|
|
|
- * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
|
|
|
- * language extensions. The equivalent prototype for this function is:
|
|
|
- *
|
|
|
- * void prvIdleTask( void *pvParameters );
|
|
|
- *
|
|
|
- */
|
|
|
-static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * Utility to free all memory allocated by the scheduler to hold a TCB,
|
|
|
- * including the stack pointed to by the TCB.
|
|
|
- *
|
|
|
- * This does not free memory allocated by the task itself (i.e. memory
|
|
|
- * allocated by calls to pvPortMalloc from within the tasks application code).
|
|
|
- */
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Used only by the idle task. This checks to see if anything has been placed
|
|
|
- * in the list of tasks waiting to be deleted. If so the task is cleaned up
|
|
|
- * and its TCB deleted.
|
|
|
- */
|
|
|
-static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * The currently executing task is entering the Blocked state. Add the task to
|
|
|
- * either the current or the overflow delayed task list.
|
|
|
- */
|
|
|
-static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
|
|
|
- const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * Fills an TaskStatus_t structure with information on each task that is
|
|
|
- * referenced from the pxList list (which may be a ready list, a delayed list,
|
|
|
- * a suspended list, etc.).
|
|
|
- *
|
|
|
- * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
|
|
|
- * NORMAL APPLICATION CODE.
|
|
|
- */
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
|
|
|
- List_t * pxList,
|
|
|
- eTaskState eState ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Searches pxList for a task with name pcNameToQuery - returning a handle to
|
|
|
- * the task if it is found, or NULL if the task is not found.
|
|
|
- */
|
|
|
-#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
-
|
|
|
- static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
|
|
|
- const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * When a task is created, the stack of the task is filled with a known value.
|
|
|
- * This function determines the 'high water mark' of the task stack by
|
|
|
- * determining how much of the stack remains at the original preset value.
|
|
|
- */
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
-
|
|
|
- static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Return the amount of time, in ticks, that will pass before the kernel will
|
|
|
- * next move a task from the Blocked state to the Running state.
|
|
|
- *
|
|
|
- * This conditional compilation should use inequality to 0, not equality to 1.
|
|
|
- * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
|
|
|
- * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
|
|
|
- * set to a value other than 1.
|
|
|
- */
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Set xNextTaskUnblockTime to the time at which the next Blocked state task
|
|
|
- * will exit the Blocked state.
|
|
|
- */
|
|
|
-static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
-
|
|
|
-/*
|
|
|
- * Helper function used to pad task names with spaces when printing out
|
|
|
- * human readable tables of task information.
|
|
|
- */
|
|
|
- static char * prvWriteNameToBuffer( char * pcBuffer,
|
|
|
- const char * pcTaskName ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Called after a Task_t structure has been allocated either statically or
|
|
|
- * dynamically to fill in the structure's members.
|
|
|
- */
|
|
|
-static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
|
|
|
- const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- const uint32_t ulStackDepth,
|
|
|
- void * const pvParameters,
|
|
|
- UBaseType_t uxPriority,
|
|
|
- TaskHandle_t * const pxCreatedTask,
|
|
|
- TCB_t * pxNewTCB,
|
|
|
- const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * Called after a new task has been created and initialised to place the task
|
|
|
- * under the control of the scheduler.
|
|
|
- */
|
|
|
-static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * freertos_tasks_c_additions_init() should only be called if the user definable
|
|
|
- * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
|
|
|
- * called by the function.
|
|
|
- */
|
|
|
-#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
-
|
|
|
- static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
-
|
|
|
- TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
|
|
|
- const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- const uint32_t ulStackDepth,
|
|
|
- void * const pvParameters,
|
|
|
- UBaseType_t uxPriority,
|
|
|
- StackType_t * const puxStackBuffer,
|
|
|
- StaticTask_t * const pxTaskBuffer )
|
|
|
- {
|
|
|
- TCB_t * pxNewTCB;
|
|
|
- TaskHandle_t xReturn;
|
|
|
-
|
|
|
- configASSERT( puxStackBuffer != NULL );
|
|
|
- configASSERT( pxTaskBuffer != NULL );
|
|
|
-
|
|
|
- #if ( configASSERT_DEFINED == 1 )
|
|
|
- {
|
|
|
- /* Sanity check that the size of the structure used to declare a
|
|
|
- * variable of type StaticTask_t equals the size of the real task
|
|
|
- * structure. */
|
|
|
- volatile size_t xSize = sizeof( StaticTask_t );
|
|
|
- configASSERT( xSize == sizeof( TCB_t ) );
|
|
|
- ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
|
|
|
- }
|
|
|
- #endif /* configASSERT_DEFINED */
|
|
|
-
|
|
|
- if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
|
|
|
- {
|
|
|
- /* The memory used for the task's TCB and stack are passed into this
|
|
|
- * function - use them. */
|
|
|
- pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
|
|
|
- pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
|
|
|
-
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
- {
|
|
|
- /* Tasks can be created statically or dynamically, so note this
|
|
|
- * task was created statically in case the task is later deleted. */
|
|
|
- pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
|
|
|
- }
|
|
|
- #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
-
|
|
|
- prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
|
|
|
- prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = NULL;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* SUPPORT_STATIC_ALLOCATION */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
|
|
|
- TaskHandle_t * pxCreatedTask )
|
|
|
- {
|
|
|
- TCB_t * pxNewTCB;
|
|
|
- BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
-
|
|
|
- configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
|
|
|
- configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
|
|
|
-
|
|
|
- if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
|
|
|
- {
|
|
|
- /* Allocate space for the TCB. Where the memory comes from depends
|
|
|
- * on the implementation of the port malloc function and whether or
|
|
|
- * not static allocation is being used. */
|
|
|
- pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
|
|
|
-
|
|
|
- /* Store the stack location in the TCB. */
|
|
|
- pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
|
|
|
-
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
|
|
|
- {
|
|
|
- /* Tasks can be created statically or dynamically, so note this
|
|
|
- * task was created statically in case the task is later deleted. */
|
|
|
- pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
|
|
|
- }
|
|
|
- #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
-
|
|
|
- prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
|
|
|
- pxTaskDefinition->pcName,
|
|
|
- ( uint32_t ) pxTaskDefinition->usStackDepth,
|
|
|
- pxTaskDefinition->pvParameters,
|
|
|
- pxTaskDefinition->uxPriority,
|
|
|
- pxCreatedTask, pxNewTCB,
|
|
|
- pxTaskDefinition->xRegions );
|
|
|
-
|
|
|
- prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
|
|
|
- TaskHandle_t * pxCreatedTask )
|
|
|
- {
|
|
|
- TCB_t * pxNewTCB;
|
|
|
- BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
-
|
|
|
- configASSERT( pxTaskDefinition->puxStackBuffer );
|
|
|
-
|
|
|
- if( pxTaskDefinition->puxStackBuffer != NULL )
|
|
|
- {
|
|
|
- /* Allocate space for the TCB. Where the memory comes from depends
|
|
|
- * on the implementation of the port malloc function and whether or
|
|
|
- * not static allocation is being used. */
|
|
|
- pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
|
|
-
|
|
|
- if( pxNewTCB != NULL )
|
|
|
- {
|
|
|
- /* Store the stack location in the TCB. */
|
|
|
- pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
|
|
|
-
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
|
|
|
- {
|
|
|
- /* Tasks can be created statically or dynamically, so note
|
|
|
- * this task had a statically allocated stack in case it is
|
|
|
- * later deleted. The TCB was allocated dynamically. */
|
|
|
- pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
|
|
|
- }
|
|
|
- #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
-
|
|
|
- prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
|
|
|
- pxTaskDefinition->pcName,
|
|
|
- ( uint32_t ) pxTaskDefinition->usStackDepth,
|
|
|
- pxTaskDefinition->pvParameters,
|
|
|
- pxTaskDefinition->uxPriority,
|
|
|
- pxCreatedTask, pxNewTCB,
|
|
|
- pxTaskDefinition->xRegions );
|
|
|
-
|
|
|
- prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portUSING_MPU_WRAPPERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
|
|
|
- const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- const configSTACK_DEPTH_TYPE usStackDepth,
|
|
|
- void * const pvParameters,
|
|
|
- UBaseType_t uxPriority,
|
|
|
- TaskHandle_t * const pxCreatedTask )
|
|
|
- {
|
|
|
- TCB_t * pxNewTCB;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- /* If the stack grows down then allocate the stack then the TCB so the stack
|
|
|
- * does not grow into the TCB. Likewise if the stack grows up then allocate
|
|
|
- * the TCB then the stack. */
|
|
|
- #if ( portSTACK_GROWTH > 0 )
|
|
|
- {
|
|
|
- /* Allocate space for the TCB. Where the memory comes from depends on
|
|
|
- * the implementation of the port malloc function and whether or not static
|
|
|
- * allocation is being used. */
|
|
|
- pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
|
|
-
|
|
|
- if( pxNewTCB != NULL )
|
|
|
- {
|
|
|
- /* Allocate space for the stack used by the task being created.
|
|
|
- * The base of the stack memory stored in the TCB so the task can
|
|
|
- * be deleted later if required. */
|
|
|
- pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
-
|
|
|
- if( pxNewTCB->pxStack == NULL )
|
|
|
- {
|
|
|
- /* Could not allocate the stack. Delete the allocated TCB. */
|
|
|
- vPortFree( pxNewTCB );
|
|
|
- pxNewTCB = NULL;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* portSTACK_GROWTH */
|
|
|
- {
|
|
|
- StackType_t * pxStack;
|
|
|
-
|
|
|
- /* Allocate space for the stack used by the task being created. */
|
|
|
- pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
|
|
|
-
|
|
|
- if( pxStack != NULL )
|
|
|
- {
|
|
|
- /* Allocate space for the TCB. */
|
|
|
- pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
|
|
|
-
|
|
|
- if( pxNewTCB != NULL )
|
|
|
- {
|
|
|
- /* Store the stack location in the TCB. */
|
|
|
- pxNewTCB->pxStack = pxStack;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The stack cannot be used as the TCB was not created. Free
|
|
|
- * it again. */
|
|
|
- vPortFreeStack( pxStack );
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxNewTCB = NULL;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* portSTACK_GROWTH */
|
|
|
-
|
|
|
- if( pxNewTCB != NULL )
|
|
|
- {
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
|
|
|
- {
|
|
|
- /* Tasks can be created statically or dynamically, so note this
|
|
|
- * task was created dynamically in case it is later deleted. */
|
|
|
- pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
|
|
|
- }
|
|
|
- #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
-
|
|
|
- prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
|
|
|
- prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
|
|
|
- const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- const uint32_t ulStackDepth,
|
|
|
- void * const pvParameters,
|
|
|
- UBaseType_t uxPriority,
|
|
|
- TaskHandle_t * const pxCreatedTask,
|
|
|
- TCB_t * pxNewTCB,
|
|
|
- const MemoryRegion_t * const xRegions )
|
|
|
-{
|
|
|
- StackType_t * pxTopOfStack;
|
|
|
- UBaseType_t x;
|
|
|
-
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- /* Should the task be created in privileged mode? */
|
|
|
- BaseType_t xRunPrivileged;
|
|
|
-
|
|
|
- if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
|
|
|
- {
|
|
|
- xRunPrivileged = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xRunPrivileged = pdFALSE;
|
|
|
- }
|
|
|
- uxPriority &= ~portPRIVILEGE_BIT;
|
|
|
- #endif /* portUSING_MPU_WRAPPERS == 1 */
|
|
|
-
|
|
|
- /* Avoid dependency on memset() if it is not required. */
|
|
|
- #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
|
|
|
- {
|
|
|
- /* Fill the stack with a known value to assist debugging. */
|
|
|
- ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
|
|
|
- }
|
|
|
- #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
|
|
|
-
|
|
|
- /* Calculate the top of stack address. This depends on whether the stack
|
|
|
- * grows from high memory to low (as per the 80x86) or vice versa.
|
|
|
- * portSTACK_GROWTH is used to make the result positive or negative as required
|
|
|
- * by the port. */
|
|
|
- #if ( portSTACK_GROWTH < 0 )
|
|
|
- {
|
|
|
- pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
|
|
|
- pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
|
|
|
-
|
|
|
- /* Check the alignment of the calculated top of stack is correct. */
|
|
|
- configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
-
|
|
|
- #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
|
|
|
- {
|
|
|
- /* Also record the stack's high address, which may assist
|
|
|
- * debugging. */
|
|
|
- pxNewTCB->pxEndOfStack = pxTopOfStack;
|
|
|
- }
|
|
|
- #endif /* configRECORD_STACK_HIGH_ADDRESS */
|
|
|
- }
|
|
|
- #else /* portSTACK_GROWTH */
|
|
|
- {
|
|
|
- pxTopOfStack = pxNewTCB->pxStack;
|
|
|
-
|
|
|
- /* Check the alignment of the stack buffer is correct. */
|
|
|
- configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
-
|
|
|
- /* The other extreme of the stack space is required if stack checking is
|
|
|
- * performed. */
|
|
|
- pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
|
|
|
- }
|
|
|
- #endif /* portSTACK_GROWTH */
|
|
|
-
|
|
|
- /* Store the task name in the TCB. */
|
|
|
- if( pcName != NULL )
|
|
|
- {
|
|
|
- for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
|
- {
|
|
|
- pxNewTCB->pcTaskName[ x ] = pcName[ x ];
|
|
|
-
|
|
|
- /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
|
|
|
- * configMAX_TASK_NAME_LEN characters just in case the memory after the
|
|
|
- * string is not accessible (extremely unlikely). */
|
|
|
- if( pcName[ x ] == ( char ) 0x00 )
|
|
|
- {
|
|
|
- break;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Ensure the name string is terminated in the case that the string length
|
|
|
- * was greater or equal to configMAX_TASK_NAME_LEN. */
|
|
|
- pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The task has not been given a name, so just ensure there is a NULL
|
|
|
- * terminator when it is read out. */
|
|
|
- pxNewTCB->pcTaskName[ 0 ] = 0x00;
|
|
|
- }
|
|
|
-
|
|
|
- /* This is used as an array index so must ensure it's not too large. */
|
|
|
- configASSERT( uxPriority < configMAX_PRIORITIES );
|
|
|
- if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
|
- {
|
|
|
- uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- pxNewTCB->uxPriority = uxPriority;
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->uxBasePriority = uxPriority;
|
|
|
- pxNewTCB->uxMutexesHeld = 0;
|
|
|
- }
|
|
|
- #endif /* configUSE_MUTEXES */
|
|
|
-
|
|
|
- vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
|
|
|
- vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
|
|
|
-
|
|
|
- /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
|
|
|
- * back to the containing TCB from a generic item in a list. */
|
|
|
- listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
|
|
|
-
|
|
|
- /* Event lists are always in priority order. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
|
|
|
-
|
|
|
- #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
|
|
|
- }
|
|
|
- #endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
-
|
|
|
- #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->pxTaskTag = NULL;
|
|
|
- }
|
|
|
- #endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->ulRunTimeCounter = 0UL;
|
|
|
- }
|
|
|
- #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
-
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- {
|
|
|
- vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- /* Avoid compiler warning about unreferenced parameter. */
|
|
|
- ( void ) xRegions;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
- {
|
|
|
- memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- {
|
|
|
- memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
|
|
|
- memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- /* Initialise this task's Newlib reent structure.
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->ucDelayAborted = pdFALSE;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Initialize the TCB stack to look as if the task was already running,
|
|
|
- * but had been interrupted by the scheduler. The return address is set
|
|
|
- * to the start of the task function. Once the stack has been initialised
|
|
|
- * the top of stack variable is updated. */
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- {
|
|
|
- /* If the port has capability to detect stack overflow,
|
|
|
- * pass the stack end address to the stack initialization
|
|
|
- * function as well. */
|
|
|
- #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
|
|
|
- {
|
|
|
- #if ( portSTACK_GROWTH < 0 )
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
- }
|
|
|
- #else /* portSTACK_GROWTH */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
- }
|
|
|
- #endif /* portSTACK_GROWTH */
|
|
|
- }
|
|
|
- #else /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
- }
|
|
|
- #endif /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- }
|
|
|
- #else /* portUSING_MPU_WRAPPERS */
|
|
|
- {
|
|
|
- /* If the port has capability to detect stack overflow,
|
|
|
- * pass the stack end address to the stack initialization
|
|
|
- * function as well. */
|
|
|
- #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
|
|
|
- {
|
|
|
- #if ( portSTACK_GROWTH < 0 )
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
|
|
|
- }
|
|
|
- #else /* portSTACK_GROWTH */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
|
|
|
- }
|
|
|
- #endif /* portSTACK_GROWTH */
|
|
|
- }
|
|
|
- #else /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
|
|
|
- }
|
|
|
- #endif /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- }
|
|
|
- #endif /* portUSING_MPU_WRAPPERS */
|
|
|
-
|
|
|
- if( pxCreatedTask != NULL )
|
|
|
- {
|
|
|
- /* Pass the handle out in an anonymous way. The handle can be used to
|
|
|
- * change the created task's priority, delete the created task, etc.*/
|
|
|
- *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
|
|
|
-{
|
|
|
- /* Ensure interrupts don't access the task lists while the lists are being
|
|
|
- * updated. */
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- uxCurrentNumberOfTasks++;
|
|
|
-
|
|
|
- if( pxCurrentTCB == NULL )
|
|
|
- {
|
|
|
- /* There are no other tasks, or all the other tasks are in
|
|
|
- * the suspended state - make this the current task. */
|
|
|
- pxCurrentTCB = pxNewTCB;
|
|
|
-
|
|
|
- if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
|
|
|
- {
|
|
|
- /* This is the first task to be created so do the preliminary
|
|
|
- * initialisation required. We will not recover if this call
|
|
|
- * fails, but we will report the failure. */
|
|
|
- prvInitialiseTaskLists();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* If the scheduler is not already running, make this task the
|
|
|
- * current task if it is the highest priority task to be created
|
|
|
- * so far. */
|
|
|
- if( xSchedulerRunning == pdFALSE )
|
|
|
- {
|
|
|
- if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
|
|
|
- {
|
|
|
- pxCurrentTCB = pxNewTCB;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- uxTaskNumber++;
|
|
|
-
|
|
|
- #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
- {
|
|
|
- /* Add a counter into the TCB for tracing only. */
|
|
|
- pxNewTCB->uxTCBNumber = uxTaskNumber;
|
|
|
- }
|
|
|
- #endif /* configUSE_TRACE_FACILITY */
|
|
|
- traceTASK_CREATE( pxNewTCB );
|
|
|
-
|
|
|
- prvAddTaskToReadyList( pxNewTCB );
|
|
|
-
|
|
|
- portSETUP_TCB( pxNewTCB );
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- /* If the created task is of a higher priority than the current task
|
|
|
- * then it should run now. */
|
|
|
- if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
|
|
|
- {
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- void vTaskDelete( TaskHandle_t xTaskToDelete )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the calling task that is
|
|
|
- * being deleted. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToDelete );
|
|
|
-
|
|
|
- /* Remove task from the ready/delayed list. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Increment the uxTaskNumber also so kernel aware debuggers can
|
|
|
- * detect that the task lists need re-generating. This is done before
|
|
|
- * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
|
|
|
- * not return. */
|
|
|
- uxTaskNumber++;
|
|
|
-
|
|
|
- if( pxTCB == pxCurrentTCB )
|
|
|
- {
|
|
|
- /* A task is deleting itself. This cannot complete within the
|
|
|
- * task itself, as a context switch to another task is required.
|
|
|
- * Place the task in the termination list. The idle task will
|
|
|
- * check the termination list and free up any memory allocated by
|
|
|
- * the scheduler for the TCB and stack of the deleted task. */
|
|
|
- vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* Increment the ucTasksDeleted variable so the idle task knows
|
|
|
- * there is a task that has been deleted and that it should therefore
|
|
|
- * check the xTasksWaitingTermination list. */
|
|
|
- ++uxDeletedTasksWaitingCleanUp;
|
|
|
-
|
|
|
- /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
|
|
|
- * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
|
|
|
- traceTASK_DELETE( pxTCB );
|
|
|
-
|
|
|
- /* The pre-delete hook is primarily for the Windows simulator,
|
|
|
- * in which Windows specific clean up operations are performed,
|
|
|
- * after which it is not possible to yield away from this task -
|
|
|
- * hence xYieldPending is used to latch that a context switch is
|
|
|
- * required. */
|
|
|
- portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- --uxCurrentNumberOfTasks;
|
|
|
- traceTASK_DELETE( pxTCB );
|
|
|
- prvDeleteTCB( pxTCB );
|
|
|
-
|
|
|
- /* Reset the next expected unblock time in case it referred to
|
|
|
- * the task that has just been deleted. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- /* Force a reschedule if it is the currently running task that has just
|
|
|
- * been deleted. */
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- if( pxTCB == pxCurrentTCB )
|
|
|
- {
|
|
|
- configASSERT( uxSchedulerSuspended == 0 );
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskDelete */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskDelayUntil == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
|
|
|
- const TickType_t xTimeIncrement )
|
|
|
- {
|
|
|
- TickType_t xTimeToWake;
|
|
|
- BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
|
|
|
-
|
|
|
- configASSERT( pxPreviousWakeTime );
|
|
|
- configASSERT( ( xTimeIncrement > 0U ) );
|
|
|
- configASSERT( uxSchedulerSuspended == 0 );
|
|
|
-
|
|
|
- vTaskSuspendAll();
|
|
|
- {
|
|
|
- /* Minor optimisation. The tick count cannot change in this
|
|
|
- * block. */
|
|
|
- const TickType_t xConstTickCount = xTickCount;
|
|
|
-
|
|
|
- /* Generate the tick time at which the task wants to wake. */
|
|
|
- xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
|
|
|
-
|
|
|
- if( xConstTickCount < *pxPreviousWakeTime )
|
|
|
- {
|
|
|
- /* The tick count has overflowed since this function was
|
|
|
- * lasted called. In this case the only time we should ever
|
|
|
- * actually delay is if the wake time has also overflowed,
|
|
|
- * and the wake time is greater than the tick time. When this
|
|
|
- * is the case it is as if neither time had overflowed. */
|
|
|
- if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
|
|
|
- {
|
|
|
- xShouldDelay = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The tick time has not overflowed. In this case we will
|
|
|
- * delay if either the wake time has overflowed, and/or the
|
|
|
- * tick time is less than the wake time. */
|
|
|
- if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
|
|
|
- {
|
|
|
- xShouldDelay = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Update the wake time ready for the next call. */
|
|
|
- *pxPreviousWakeTime = xTimeToWake;
|
|
|
-
|
|
|
- if( xShouldDelay != pdFALSE )
|
|
|
- {
|
|
|
- traceTASK_DELAY_UNTIL( xTimeToWake );
|
|
|
-
|
|
|
- /* prvAddCurrentTaskToDelayedList() needs the block time, not
|
|
|
- * the time to wake, so subtract the current tick count. */
|
|
|
- prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- xAlreadyYielded = xTaskResumeAll();
|
|
|
-
|
|
|
- /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
|
- * have put ourselves to sleep. */
|
|
|
- if( xAlreadyYielded == pdFALSE )
|
|
|
- {
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return xShouldDelay;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskDelayUntil */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelay == 1 )
|
|
|
-
|
|
|
- void vTaskDelay( const TickType_t xTicksToDelay )
|
|
|
- {
|
|
|
- BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
-
|
|
|
- /* A delay time of zero just forces a reschedule. */
|
|
|
- if( xTicksToDelay > ( TickType_t ) 0U )
|
|
|
- {
|
|
|
- configASSERT( uxSchedulerSuspended == 0 );
|
|
|
- vTaskSuspendAll();
|
|
|
- {
|
|
|
- traceTASK_DELAY();
|
|
|
-
|
|
|
- /* A task that is removed from the event list while the
|
|
|
- * scheduler is suspended will not get placed in the ready
|
|
|
- * list or removed from the blocked list until the scheduler
|
|
|
- * is resumed.
|
|
|
- *
|
|
|
- * This task cannot be in an event list as it is the currently
|
|
|
- * executing task. */
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
|
|
|
- }
|
|
|
- xAlreadyYielded = xTaskResumeAll();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
|
- * have put ourselves to sleep. */
|
|
|
- if( xAlreadyYielded == pdFALSE )
|
|
|
- {
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskDelay */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
|
|
|
-
|
|
|
- eTaskState eTaskGetState( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- eTaskState eReturn;
|
|
|
- List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
|
|
|
- const TCB_t * const pxTCB = xTask;
|
|
|
-
|
|
|
- configASSERT( pxTCB );
|
|
|
-
|
|
|
- if( pxTCB == pxCurrentTCB )
|
|
|
- {
|
|
|
- /* The task calling this function is querying its own state. */
|
|
|
- eReturn = eRunning;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
|
|
|
- pxDelayedList = pxDelayedTaskList;
|
|
|
- pxOverflowedDelayedList = pxOverflowDelayedTaskList;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
|
|
|
- {
|
|
|
- /* The task being queried is referenced from one of the Blocked
|
|
|
- * lists. */
|
|
|
- eReturn = eBlocked;
|
|
|
- }
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- else if( pxStateList == &xSuspendedTaskList )
|
|
|
- {
|
|
|
- /* The task being queried is referenced from the suspended
|
|
|
- * list. Is it genuinely suspended or is it blocked
|
|
|
- * indefinitely? */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
|
|
|
- {
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- {
|
|
|
- BaseType_t x;
|
|
|
-
|
|
|
- /* The task does not appear on the event list item of
|
|
|
- * and of the RTOS objects, but could still be in the
|
|
|
- * blocked state if it is waiting on its notification
|
|
|
- * rather than waiting on an object. If not, is
|
|
|
- * suspended. */
|
|
|
- eReturn = eSuspended;
|
|
|
-
|
|
|
- for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
|
|
|
- {
|
|
|
- if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- eReturn = eBlocked;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
- {
|
|
|
- eReturn = eSuspended;
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- eReturn = eBlocked;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
|
|
|
- {
|
|
|
- /* The task being queried is referenced from the deleted
|
|
|
- * tasks list, or it is not referenced from any lists at
|
|
|
- * all. */
|
|
|
- eReturn = eDeleted;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
|
|
|
- {
|
|
|
- /* If the task is not in any other state, it must be in the
|
|
|
- * Ready (including pending ready) state. */
|
|
|
- eReturn = eReady;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return eReturn;
|
|
|
- } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
-
|
|
|
-#endif /* INCLUDE_eTaskGetState */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t const * pxTCB;
|
|
|
- UBaseType_t uxReturn;
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the priority of the task
|
|
|
- * that called uxTaskPriorityGet() that is being queried. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
- uxReturn = pxTCB->uxPriority;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskPriorityGet */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t const * pxTCB;
|
|
|
- UBaseType_t uxReturn, uxSavedInterruptState;
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the priority of the calling
|
|
|
- * task that is being queried. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
- uxReturn = pxTCB->uxPriority;
|
|
|
- }
|
|
|
- portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskPriorityGet */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskPrioritySet == 1 )
|
|
|
-
|
|
|
- void vTaskPrioritySet( TaskHandle_t xTask,
|
|
|
- UBaseType_t uxNewPriority )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
|
|
|
- BaseType_t xYieldRequired = pdFALSE;
|
|
|
-
|
|
|
- configASSERT( uxNewPriority < configMAX_PRIORITIES );
|
|
|
-
|
|
|
- /* Ensure the new priority is valid. */
|
|
|
- if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
|
- {
|
|
|
- uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the priority of the calling
|
|
|
- * task that is being changed. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- uxCurrentBasePriority = pxTCB->uxBasePriority;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- uxCurrentBasePriority = pxTCB->uxPriority;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- if( uxCurrentBasePriority != uxNewPriority )
|
|
|
- {
|
|
|
- /* The priority change may have readied a task of higher
|
|
|
- * priority than the calling task. */
|
|
|
- if( uxNewPriority > uxCurrentBasePriority )
|
|
|
- {
|
|
|
- if( pxTCB != pxCurrentTCB )
|
|
|
- {
|
|
|
- /* The priority of a task other than the currently
|
|
|
- * running task is being raised. Is the priority being
|
|
|
- * raised above that of the running task? */
|
|
|
- if( uxNewPriority >= pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- xYieldRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The priority of the running task is being raised,
|
|
|
- * but the running task must already be the highest
|
|
|
- * priority task able to run so no yield is required. */
|
|
|
- }
|
|
|
- }
|
|
|
- else if( pxTCB == pxCurrentTCB )
|
|
|
- {
|
|
|
- /* Setting the priority of the running task down means
|
|
|
- * there may now be another task of higher priority that
|
|
|
- * is ready to execute. */
|
|
|
- xYieldRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Setting the priority of any other task down does not
|
|
|
- * require a yield as the running task must be above the
|
|
|
- * new priority of the task being modified. */
|
|
|
- }
|
|
|
-
|
|
|
- /* Remember the ready list the task might be referenced from
|
|
|
- * before its uxPriority member is changed so the
|
|
|
- * taskRESET_READY_PRIORITY() macro can function correctly. */
|
|
|
- uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- /* Only change the priority being used if the task is not
|
|
|
- * currently using an inherited priority. */
|
|
|
- if( pxTCB->uxBasePriority == pxTCB->uxPriority )
|
|
|
- {
|
|
|
- pxTCB->uxPriority = uxNewPriority;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* The base priority gets set whatever. */
|
|
|
- pxTCB->uxBasePriority = uxNewPriority;
|
|
|
- }
|
|
|
- #else /* if ( configUSE_MUTEXES == 1 ) */
|
|
|
- {
|
|
|
- pxTCB->uxPriority = uxNewPriority;
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_MUTEXES == 1 ) */
|
|
|
-
|
|
|
- /* Only reset the event list item value if the value is not
|
|
|
- * being used for anything else. */
|
|
|
- if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
- {
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* If the task is in the blocked or suspended list we need do
|
|
|
- * nothing more than change its priority variable. However, if
|
|
|
- * the task is in a ready list it needs to be removed and placed
|
|
|
- * in the list appropriate to its new priority. */
|
|
|
- if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- /* The task is currently in its ready list - remove before
|
|
|
- * adding it to its new ready list. As we are in a critical
|
|
|
- * section we can do this even if the scheduler is suspended. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* It is known that the task is in its ready list so
|
|
|
- * there is no need to check again and the port level
|
|
|
- * reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- if( xYieldRequired != pdFALSE )
|
|
|
- {
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Remove compiler warning about unused variables when the port
|
|
|
- * optimised task selection is not being used. */
|
|
|
- ( void ) uxPriorityUsedOnEntry;
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskPrioritySet */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- void vTaskSuspend( TaskHandle_t xTaskToSuspend )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the running task that is
|
|
|
- * being suspended. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
|
|
|
-
|
|
|
- traceTASK_SUSPEND( pxTCB );
|
|
|
-
|
|
|
- /* Remove task from the ready/delayed list and place in the
|
|
|
- * suspended list. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- {
|
|
|
- BaseType_t x;
|
|
|
-
|
|
|
- for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
|
|
|
- {
|
|
|
- if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- /* The task was blocked to wait for a notification, but is
|
|
|
- * now suspended, so no notification was received. */
|
|
|
- pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- /* Reset the next expected unblock time in case it referred to the
|
|
|
- * task that is now in the Suspended state. */
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- if( pxTCB == pxCurrentTCB )
|
|
|
- {
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- /* The current task has just been suspended. */
|
|
|
- configASSERT( uxSchedulerSuspended == 0 );
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The scheduler is not running, but the task that was pointed
|
|
|
- * to by pxCurrentTCB has just been suspended and pxCurrentTCB
|
|
|
- * must be adjusted to point to a different task. */
|
|
|
- if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
|
|
|
- {
|
|
|
- /* No other tasks are ready, so set pxCurrentTCB back to
|
|
|
- * NULL so when the next task is created pxCurrentTCB will
|
|
|
- * be set to point to it no matter what its relative priority
|
|
|
- * is. */
|
|
|
- pxCurrentTCB = NULL;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- vTaskSwitchContext();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
|
|
|
- {
|
|
|
- BaseType_t xReturn = pdFALSE;
|
|
|
- const TCB_t * const pxTCB = xTask;
|
|
|
-
|
|
|
- /* Accesses xPendingReadyList so must be called from a critical
|
|
|
- * section. */
|
|
|
-
|
|
|
- /* It does not make sense to check if the calling task is suspended. */
|
|
|
- configASSERT( xTask );
|
|
|
-
|
|
|
- /* Is the task being resumed actually in the suspended list? */
|
|
|
- if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- /* Has the task already been resumed from within an ISR? */
|
|
|
- if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
|
|
|
- {
|
|
|
- /* Is it in the suspended list because it is in the Suspended
|
|
|
- * state, or because is is blocked with no timeout? */
|
|
|
- if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
|
|
|
- {
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- void vTaskResume( TaskHandle_t xTaskToResume )
|
|
|
- {
|
|
|
- TCB_t * const pxTCB = xTaskToResume;
|
|
|
-
|
|
|
- /* It does not make sense to resume the calling task. */
|
|
|
- configASSERT( xTaskToResume );
|
|
|
-
|
|
|
- /* The parameter cannot be NULL as it is impossible to resume the
|
|
|
- * currently executing task. */
|
|
|
- if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
|
|
|
- {
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
|
|
|
- {
|
|
|
- traceTASK_RESUME( pxTCB );
|
|
|
-
|
|
|
- /* The ready list can be accessed even if the scheduler is
|
|
|
- * suspended because this is inside a critical section. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* A higher priority task may have just been resumed. */
|
|
|
- if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* This yield may not cause the task just resumed to run,
|
|
|
- * but will leave the lists in the correct state for the
|
|
|
- * next yield. */
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
|
|
|
- {
|
|
|
- BaseType_t xYieldRequired = pdFALSE;
|
|
|
- TCB_t * const pxTCB = xTaskToResume;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- configASSERT( xTaskToResume );
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- {
|
|
|
- if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
|
|
|
- {
|
|
|
- traceTASK_RESUME_FROM_ISR( pxTCB );
|
|
|
-
|
|
|
- /* Check the ready lists can be accessed. */
|
|
|
- if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- /* Ready lists can be accessed so move the task from the
|
|
|
- * suspended list to the ready list directly. */
|
|
|
- if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- xYieldRequired = pdTRUE;
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not
|
|
|
- * using the return value to initiate a context switch
|
|
|
- * from the ISR using portYIELD_FROM_ISR. */
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed or ready lists cannot be accessed so the task
|
|
|
- * is held in the pending ready list until the scheduler is
|
|
|
- * unsuspended. */
|
|
|
- vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
-
|
|
|
- return xYieldRequired;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskStartScheduler( void )
|
|
|
-{
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- /* Add the idle task at the lowest priority. */
|
|
|
- #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
- {
|
|
|
- StaticTask_t * pxIdleTaskTCBBuffer = NULL;
|
|
|
- StackType_t * pxIdleTaskStackBuffer = NULL;
|
|
|
- uint32_t ulIdleTaskStackSize;
|
|
|
-
|
|
|
- /* The Idle task is created using user provided RAM - obtain the
|
|
|
- * address of the RAM then create the idle task. */
|
|
|
- vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
|
|
|
- xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
|
|
|
- configIDLE_TASK_NAME,
|
|
|
- ulIdleTaskStackSize,
|
|
|
- ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
|
|
|
- portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
- pxIdleTaskStackBuffer,
|
|
|
- pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
-
|
|
|
- if( xIdleTaskHandle != NULL )
|
|
|
- {
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
|
|
|
- {
|
|
|
- /* The Idle task is being created using dynamically allocated RAM. */
|
|
|
- xReturn = xTaskCreate( prvIdleTask,
|
|
|
- configIDLE_TASK_NAME,
|
|
|
- configMINIMAL_STACK_SIZE,
|
|
|
- ( void * ) NULL,
|
|
|
- portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
- &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
- }
|
|
|
- #endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
|
-
|
|
|
- #if ( configUSE_TIMERS == 1 )
|
|
|
- {
|
|
|
- if( xReturn == pdPASS )
|
|
|
- {
|
|
|
- xReturn = xTimerCreateTimerTask();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_TIMERS */
|
|
|
-
|
|
|
- if( xReturn == pdPASS )
|
|
|
- {
|
|
|
- /* freertos_tasks_c_additions_init() should only be called if the user
|
|
|
- * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
|
|
|
- * the only macro called by the function. */
|
|
|
- #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
- {
|
|
|
- freertos_tasks_c_additions_init();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Interrupts are turned off here, to ensure a tick does not occur
|
|
|
- * before or during the call to xPortStartScheduler(). The stacks of
|
|
|
- * the created tasks contain a status word with interrupts switched on
|
|
|
- * so interrupts will automatically get re-enabled when the first task
|
|
|
- * starts to run. */
|
|
|
- portDISABLE_INTERRUPTS();
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- /* Switch Newlib's _impure_ptr variable to point to the _reent
|
|
|
- * structure specific to the task that will run first.
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
|
|
- }
|
|
|
- #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
-
|
|
|
- xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
- xSchedulerRunning = pdTRUE;
|
|
|
- xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
|
|
|
-
|
|
|
- /* If configGENERATE_RUN_TIME_STATS is defined then the following
|
|
|
- * macro must be defined to configure the timer/counter used to generate
|
|
|
- * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
|
|
|
- * is set to 0 and the following line fails to build then ensure you do not
|
|
|
- * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
|
|
|
- * FreeRTOSConfig.h file. */
|
|
|
- portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
|
|
|
-
|
|
|
- traceTASK_SWITCHED_IN();
|
|
|
-
|
|
|
- /* Setting up the timer tick is hardware specific and thus in the
|
|
|
- * portable interface. */
|
|
|
- if( xPortStartScheduler() != pdFALSE )
|
|
|
- {
|
|
|
- /* Should not reach here as if the scheduler is running the
|
|
|
- * function will not return. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Should only reach here if a task calls xTaskEndScheduler(). */
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* This line will only be reached if the kernel could not be started,
|
|
|
- * because there was not enough FreeRTOS heap to create the idle task
|
|
|
- * or the timer task. */
|
|
|
- configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
|
|
|
- }
|
|
|
-
|
|
|
- /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
|
|
|
- * meaning xIdleTaskHandle is not used anywhere else. */
|
|
|
- ( void ) xIdleTaskHandle;
|
|
|
-
|
|
|
- /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
|
|
|
- * from getting optimized out as it is no longer used by the kernel. */
|
|
|
- ( void ) uxTopUsedPriority;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskEndScheduler( void )
|
|
|
-{
|
|
|
- /* Stop the scheduler interrupts and call the portable scheduler end
|
|
|
- * routine so the original ISRs can be restored if necessary. The port
|
|
|
- * layer must ensure interrupts enable bit is left in the correct state. */
|
|
|
- portDISABLE_INTERRUPTS();
|
|
|
- xSchedulerRunning = pdFALSE;
|
|
|
- vPortEndScheduler();
|
|
|
-}
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskSuspendAll( void )
|
|
|
-{
|
|
|
- /* A critical section is not required as the variable is of type
|
|
|
- * BaseType_t. Please read Richard Barry's reply in the following link to a
|
|
|
- * post in the FreeRTOS support forum before reporting this as a bug! -
|
|
|
- * https://goo.gl/wu4acr */
|
|
|
-
|
|
|
- /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
|
|
|
- * do not otherwise exhibit real time behaviour. */
|
|
|
- portSOFTWARE_BARRIER();
|
|
|
-
|
|
|
- /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
|
|
|
- * is used to allow calls to vTaskSuspendAll() to nest. */
|
|
|
- ++uxSchedulerSuspended;
|
|
|
-
|
|
|
- /* Enforces ordering for ports and optimised compilers that may otherwise place
|
|
|
- * the above increment elsewhere. */
|
|
|
- portMEMORY_BARRIER();
|
|
|
-}
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- static TickType_t prvGetExpectedIdleTime( void )
|
|
|
- {
|
|
|
- TickType_t xReturn;
|
|
|
- UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
|
|
|
-
|
|
|
- /* uxHigherPriorityReadyTasks takes care of the case where
|
|
|
- * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
|
|
|
- * task that are in the Ready state, even though the idle task is
|
|
|
- * running. */
|
|
|
- #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
- {
|
|
|
- if( uxTopReadyPriority > tskIDLE_PRIORITY )
|
|
|
- {
|
|
|
- uxHigherPriorityReadyTasks = pdTRUE;
|
|
|
- }
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
|
|
|
-
|
|
|
- /* When port optimised task selection is used the uxTopReadyPriority
|
|
|
- * variable is used as a bit map. If bits other than the least
|
|
|
- * significant bit are set then there are tasks that have a priority
|
|
|
- * above the idle priority that are in the Ready state. This takes
|
|
|
- * care of the case where the co-operative scheduler is in use. */
|
|
|
- if( uxTopReadyPriority > uxLeastSignificantBit )
|
|
|
- {
|
|
|
- uxHigherPriorityReadyTasks = pdTRUE;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
|
|
|
-
|
|
|
- if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
|
|
|
- {
|
|
|
- xReturn = 0;
|
|
|
- }
|
|
|
- else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
|
|
|
- {
|
|
|
- /* There are other idle priority tasks in the ready state. If
|
|
|
- * time slicing is used then the very next tick interrupt must be
|
|
|
- * processed. */
|
|
|
- xReturn = 0;
|
|
|
- }
|
|
|
- else if( uxHigherPriorityReadyTasks != pdFALSE )
|
|
|
- {
|
|
|
- /* There are tasks in the Ready state that have a priority above the
|
|
|
- * idle priority. This path can only be reached if
|
|
|
- * configUSE_PREEMPTION is 0. */
|
|
|
- xReturn = 0;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = xNextTaskUnblockTime - xTickCount;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TICKLESS_IDLE */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskResumeAll( void )
|
|
|
-{
|
|
|
- TCB_t * pxTCB = NULL;
|
|
|
- BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
-
|
|
|
- /* If uxSchedulerSuspended is zero then this function does not match a
|
|
|
- * previous call to vTaskSuspendAll(). */
|
|
|
- configASSERT( uxSchedulerSuspended );
|
|
|
-
|
|
|
- /* It is possible that an ISR caused a task to be removed from an event
|
|
|
- * list while the scheduler was suspended. If this was the case then the
|
|
|
- * removed task will have been added to the xPendingReadyList. Once the
|
|
|
- * scheduler has been resumed it is safe to move all the pending ready
|
|
|
- * tasks from this list into their appropriate ready list. */
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- --uxSchedulerSuspended;
|
|
|
-
|
|
|
- if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- /* Move any readied tasks from the pending list into the
|
|
|
- * appropriate ready list. */
|
|
|
- while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
|
|
|
- {
|
|
|
- pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
|
|
|
- portMEMORY_BARRIER();
|
|
|
- listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* If the moved task has a priority higher than or equal to
|
|
|
- * the current task then a yield must be performed. */
|
|
|
- if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if( pxTCB != NULL )
|
|
|
- {
|
|
|
- /* A task was unblocked while the scheduler was suspended,
|
|
|
- * which may have prevented the next unblock time from being
|
|
|
- * re-calculated, in which case re-calculate it now. Mainly
|
|
|
- * important for low power tickless implementations, where
|
|
|
- * this can prevent an unnecessary exit from low power
|
|
|
- * state. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
-
|
|
|
- /* If any ticks occurred while the scheduler was suspended then
|
|
|
- * they should be processed now. This ensures the tick count does
|
|
|
- * not slip, and that any delayed tasks are resumed at the correct
|
|
|
- * time. */
|
|
|
- {
|
|
|
- TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
|
|
|
-
|
|
|
- if( xPendedCounts > ( TickType_t ) 0U )
|
|
|
- {
|
|
|
- do
|
|
|
- {
|
|
|
- if( xTaskIncrementTick() != pdFALSE )
|
|
|
- {
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- --xPendedCounts;
|
|
|
- } while( xPendedCounts > ( TickType_t ) 0U );
|
|
|
-
|
|
|
- xPendedTicks = 0;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if( xYieldPending != pdFALSE )
|
|
|
- {
|
|
|
- #if ( configUSE_PREEMPTION != 0 )
|
|
|
- {
|
|
|
- xAlreadyYielded = pdTRUE;
|
|
|
- }
|
|
|
- #endif
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return xAlreadyYielded;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-TickType_t xTaskGetTickCount( void )
|
|
|
-{
|
|
|
- TickType_t xTicks;
|
|
|
-
|
|
|
- /* Critical section required if running on a 16 bit processor. */
|
|
|
- portTICK_TYPE_ENTER_CRITICAL();
|
|
|
- {
|
|
|
- xTicks = xTickCount;
|
|
|
- }
|
|
|
- portTICK_TYPE_EXIT_CRITICAL();
|
|
|
-
|
|
|
- return xTicks;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-TickType_t xTaskGetTickCountFromISR( void )
|
|
|
-{
|
|
|
- TickType_t xReturn;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
|
- * system call (or maximum API call) interrupt priority. Interrupts that are
|
|
|
- * above the maximum system call priority are kept permanently enabled, even
|
|
|
- * when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
|
- * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
|
- * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has been
|
|
|
- * assigned a priority above the configured maximum system call priority.
|
|
|
- * Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
|
- * that have been assigned a priority at or (logically) below the maximum
|
|
|
- * system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
|
- * safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
|
- * More information (albeit Cortex-M specific) is provided on the following
|
|
|
- * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- {
|
|
|
- xReturn = xTickCount;
|
|
|
- }
|
|
|
- portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-UBaseType_t uxTaskGetNumberOfTasks( void )
|
|
|
-{
|
|
|
- /* A critical section is not required because the variables are of type
|
|
|
- * BaseType_t. */
|
|
|
- return uxCurrentNumberOfTasks;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
-{
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* If null is passed in here then the name of the calling task is being
|
|
|
- * queried. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
|
- configASSERT( pxTCB );
|
|
|
- return &( pxTCB->pcTaskName[ 0 ] );
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
-
|
|
|
- static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
|
|
|
- const char pcNameToQuery[] )
|
|
|
- {
|
|
|
- TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
|
|
|
- UBaseType_t x;
|
|
|
- char cNextChar;
|
|
|
- BaseType_t xBreakLoop;
|
|
|
-
|
|
|
- /* This function is called with the scheduler suspended. */
|
|
|
-
|
|
|
- if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
-
|
|
|
- do
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
-
|
|
|
- /* Check each character in the name looking for a match or
|
|
|
- * mismatch. */
|
|
|
- xBreakLoop = pdFALSE;
|
|
|
-
|
|
|
- for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
|
- {
|
|
|
- cNextChar = pxNextTCB->pcTaskName[ x ];
|
|
|
-
|
|
|
- if( cNextChar != pcNameToQuery[ x ] )
|
|
|
- {
|
|
|
- /* Characters didn't match. */
|
|
|
- xBreakLoop = pdTRUE;
|
|
|
- }
|
|
|
- else if( cNextChar == ( char ) 0x00 )
|
|
|
- {
|
|
|
- /* Both strings terminated, a match must have been
|
|
|
- * found. */
|
|
|
- pxReturn = pxNextTCB;
|
|
|
- xBreakLoop = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- if( xBreakLoop != pdFALSE )
|
|
|
- {
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if( pxReturn != NULL )
|
|
|
- {
|
|
|
- /* The handle has been found. */
|
|
|
- break;
|
|
|
- }
|
|
|
- } while( pxNextTCB != pxFirstTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return pxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskGetHandle */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
-
|
|
|
- TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- {
|
|
|
- UBaseType_t uxQueue = configMAX_PRIORITIES;
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
|
|
|
- configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
|
|
|
-
|
|
|
- vTaskSuspendAll();
|
|
|
- {
|
|
|
- /* Search the ready lists. */
|
|
|
- do
|
|
|
- {
|
|
|
- uxQueue--;
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
|
|
|
-
|
|
|
- if( pxTCB != NULL )
|
|
|
- {
|
|
|
- /* Found the handle. */
|
|
|
- break;
|
|
|
- }
|
|
|
- } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
-
|
|
|
- /* Search the delayed lists. */
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
|
|
|
- }
|
|
|
-
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
|
|
|
- }
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- /* Search the suspended list. */
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
|
|
|
- }
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- /* Search the deleted list. */
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
|
|
|
- }
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- ( void ) xTaskResumeAll();
|
|
|
-
|
|
|
- return pxTCB;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskGetHandle */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
|
|
|
- const UBaseType_t uxArraySize,
|
|
|
- uint32_t * const pulTotalRunTime )
|
|
|
- {
|
|
|
- UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
|
|
|
-
|
|
|
- vTaskSuspendAll();
|
|
|
- {
|
|
|
- /* Is there a space in the array for each task in the system? */
|
|
|
- if( uxArraySize >= uxCurrentNumberOfTasks )
|
|
|
- {
|
|
|
- /* Fill in an TaskStatus_t structure with information on each
|
|
|
- * task in the Ready state. */
|
|
|
- do
|
|
|
- {
|
|
|
- uxQueue--;
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
|
|
|
- } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
-
|
|
|
- /* Fill in an TaskStatus_t structure with information on each
|
|
|
- * task in the Blocked state. */
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- /* Fill in an TaskStatus_t structure with information on
|
|
|
- * each task that has been deleted but not yet cleaned up. */
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- /* Fill in an TaskStatus_t structure with information on
|
|
|
- * each task in the Suspended state. */
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- if( pulTotalRunTime != NULL )
|
|
|
- {
|
|
|
- #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
|
- portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
|
|
|
- #else
|
|
|
- *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
|
|
|
- {
|
|
|
- if( pulTotalRunTime != NULL )
|
|
|
- {
|
|
|
- *pulTotalRunTime = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) xTaskResumeAll();
|
|
|
-
|
|
|
- return uxTask;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
|
-
|
|
|
- TaskHandle_t xTaskGetIdleTaskHandle( void )
|
|
|
- {
|
|
|
- /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
|
|
|
- * started, then xIdleTaskHandle will be NULL. */
|
|
|
- configASSERT( ( xIdleTaskHandle != NULL ) );
|
|
|
- return xIdleTaskHandle;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* This conditional compilation should use inequality to 0, not equality to 1.
|
|
|
- * This is to ensure vTaskStepTick() is available when user defined low power mode
|
|
|
- * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
|
|
|
- * 1. */
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- void vTaskStepTick( const TickType_t xTicksToJump )
|
|
|
- {
|
|
|
- /* Correct the tick count value after a period during which the tick
|
|
|
- * was suppressed. Note this does *not* call the tick hook function for
|
|
|
- * each stepped tick. */
|
|
|
- configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
|
|
|
- xTickCount += xTicksToJump;
|
|
|
- traceINCREASE_TICK_COUNT( xTicksToJump );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TICKLESS_IDLE */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
|
|
|
-{
|
|
|
- BaseType_t xYieldOccurred;
|
|
|
-
|
|
|
- /* Must not be called with the scheduler suspended as the implementation
|
|
|
- * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
|
|
|
- configASSERT( uxSchedulerSuspended == 0 );
|
|
|
-
|
|
|
- /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
|
|
|
- * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
|
|
|
- vTaskSuspendAll();
|
|
|
- xPendedTicks += xTicksToCatchUp;
|
|
|
- xYieldOccurred = xTaskResumeAll();
|
|
|
-
|
|
|
- return xYieldOccurred;
|
|
|
-}
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB = xTask;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( pxTCB );
|
|
|
-
|
|
|
- vTaskSuspendAll();
|
|
|
- {
|
|
|
- /* A task can only be prematurely removed from the Blocked state if
|
|
|
- * it is actually in the Blocked state. */
|
|
|
- if( eTaskGetState( xTask ) == eBlocked )
|
|
|
- {
|
|
|
- xReturn = pdPASS;
|
|
|
-
|
|
|
- /* Remove the reference to the task from the blocked list. An
|
|
|
- * interrupt won't touch the xStateListItem because the
|
|
|
- * scheduler is suspended. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? If so remove it from
|
|
|
- * the event list too. Interrupts can touch the event list item,
|
|
|
- * even though the scheduler is suspended, so a critical section
|
|
|
- * is used. */
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
-
|
|
|
- /* This lets the task know it was forcibly removed from the
|
|
|
- * blocked state so it should not re-evaluate its block time and
|
|
|
- * then block again. */
|
|
|
- pxTCB->ucDelayAborted = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- /* Place the unblocked task into the appropriate ready list. */
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* A task being unblocked cannot cause an immediate context
|
|
|
- * switch if preemption is turned off. */
|
|
|
- #if ( configUSE_PREEMPTION == 1 )
|
|
|
- {
|
|
|
- /* Preemption is on, but a context switch should only be
|
|
|
- * performed if the unblocked task has a priority that is
|
|
|
- * higher than the currently executing task. */
|
|
|
- if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* Pend the yield to be performed when the scheduler
|
|
|
- * is unsuspended. */
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) xTaskResumeAll();
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskAbortDelay */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskIncrementTick( void )
|
|
|
-{
|
|
|
- TCB_t * pxTCB;
|
|
|
- TickType_t xItemValue;
|
|
|
- BaseType_t xSwitchRequired = pdFALSE;
|
|
|
-
|
|
|
- /* Called by the portable layer each time a tick interrupt occurs.
|
|
|
- * Increments the tick then checks to see if the new tick value will cause any
|
|
|
- * tasks to be unblocked. */
|
|
|
- traceTASK_INCREMENT_TICK( xTickCount );
|
|
|
-
|
|
|
- if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- /* Minor optimisation. The tick count cannot change in this
|
|
|
- * block. */
|
|
|
- const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
|
|
|
-
|
|
|
- /* Increment the RTOS tick, switching the delayed and overflowed
|
|
|
- * delayed lists if it wraps to 0. */
|
|
|
- xTickCount = xConstTickCount;
|
|
|
-
|
|
|
- if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
|
|
|
- {
|
|
|
- taskSWITCH_DELAYED_LISTS();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* See if this tick has made a timeout expire. Tasks are stored in
|
|
|
- * the queue in the order of their wake time - meaning once one task
|
|
|
- * has been found whose block time has not expired there is no need to
|
|
|
- * look any further down the list. */
|
|
|
- if( xConstTickCount >= xNextTaskUnblockTime )
|
|
|
- {
|
|
|
- for( ; ; )
|
|
|
- {
|
|
|
- if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
|
- {
|
|
|
- /* The delayed list is empty. Set xNextTaskUnblockTime
|
|
|
- * to the maximum possible value so it is extremely
|
|
|
- * unlikely that the
|
|
|
- * if( xTickCount >= xNextTaskUnblockTime ) test will pass
|
|
|
- * next time through. */
|
|
|
- xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- break;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed list is not empty, get the value of the
|
|
|
- * item at the head of the delayed list. This is the time
|
|
|
- * at which the task at the head of the delayed list must
|
|
|
- * be removed from the Blocked state. */
|
|
|
- pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- if( xConstTickCount < xItemValue )
|
|
|
- {
|
|
|
- /* It is not time to unblock this item yet, but the
|
|
|
- * item value is the time at which the task at the head
|
|
|
- * of the blocked list must be removed from the Blocked
|
|
|
- * state - so record the item value in
|
|
|
- * xNextTaskUnblockTime. */
|
|
|
- xNextTaskUnblockTime = xItemValue;
|
|
|
- break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* It is time to remove the item from the Blocked state. */
|
|
|
- listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? If so remove
|
|
|
- * it from the event list. */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Place the unblocked task into the appropriate ready
|
|
|
- * list. */
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* A task being unblocked cannot cause an immediate
|
|
|
- * context switch if preemption is turned off. */
|
|
|
- #if ( configUSE_PREEMPTION == 1 )
|
|
|
- {
|
|
|
- /* Preemption is on, but a context switch should
|
|
|
- * only be performed if the unblocked task has a
|
|
|
- * priority that is equal to or higher than the
|
|
|
- * currently executing task. */
|
|
|
- if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- xSwitchRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Tasks of equal priority to the currently running task will share
|
|
|
- * processing time (time slice) if preemption is on, and the application
|
|
|
- * writer has not explicitly turned time slicing off. */
|
|
|
- #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
|
|
|
- {
|
|
|
- if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
|
|
|
- {
|
|
|
- xSwitchRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
|
|
|
-
|
|
|
- #if ( configUSE_TICK_HOOK == 1 )
|
|
|
- {
|
|
|
- /* Guard against the tick hook being called when the pended tick
|
|
|
- * count is being unwound (when the scheduler is being unlocked). */
|
|
|
- if( xPendedTicks == ( TickType_t ) 0 )
|
|
|
- {
|
|
|
- vApplicationTickHook();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_TICK_HOOK */
|
|
|
-
|
|
|
- #if ( configUSE_PREEMPTION == 1 )
|
|
|
- {
|
|
|
- if( xYieldPending != pdFALSE )
|
|
|
- {
|
|
|
- xSwitchRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- ++xPendedTicks;
|
|
|
-
|
|
|
- /* The tick hook gets called at regular intervals, even if the
|
|
|
- * scheduler is locked. */
|
|
|
- #if ( configUSE_TICK_HOOK == 1 )
|
|
|
- {
|
|
|
- vApplicationTickHook();
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- return xSwitchRequired;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
|
|
|
- TaskHookFunction_t pxHookFunction )
|
|
|
- {
|
|
|
- TCB_t * xTCB;
|
|
|
-
|
|
|
- /* If xTask is NULL then it is the task hook of the calling task that is
|
|
|
- * getting set. */
|
|
|
- if( xTask == NULL )
|
|
|
- {
|
|
|
- xTCB = ( TCB_t * ) pxCurrentTCB;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xTCB = xTask;
|
|
|
- }
|
|
|
-
|
|
|
- /* Save the hook function in the TCB. A critical section is required as
|
|
|
- * the value can be accessed from an interrupt. */
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- xTCB->pxTaskTag = pxHookFunction;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- TaskHookFunction_t xReturn;
|
|
|
-
|
|
|
- /* If xTask is NULL then set the calling task's hook. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- /* Save the hook function in the TCB. A critical section is required as
|
|
|
- * the value can be accessed from an interrupt. */
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- xReturn = pxTCB->pxTaskTag;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- TaskHookFunction_t xReturn;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- /* If xTask is NULL then set the calling task's hook. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- /* Save the hook function in the TCB. A critical section is required as
|
|
|
- * the value can be accessed from an interrupt. */
|
|
|
- uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- {
|
|
|
- xReturn = pxTCB->pxTaskTag;
|
|
|
- }
|
|
|
- portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
|
|
|
- void * pvParameter )
|
|
|
- {
|
|
|
- TCB_t * xTCB;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- /* If xTask is NULL then we are calling our own task hook. */
|
|
|
- if( xTask == NULL )
|
|
|
- {
|
|
|
- xTCB = pxCurrentTCB;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xTCB = xTask;
|
|
|
- }
|
|
|
-
|
|
|
- if( xTCB->pxTaskTag != NULL )
|
|
|
- {
|
|
|
- xReturn = xTCB->pxTaskTag( pvParameter );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskSwitchContext( void )
|
|
|
-{
|
|
|
- if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- /* The scheduler is currently suspended - do not allow a context
|
|
|
- * switch. */
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xYieldPending = pdFALSE;
|
|
|
- traceTASK_SWITCHED_OUT();
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
|
- portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
|
|
|
- #else
|
|
|
- ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Add the amount of time the task has been running to the
|
|
|
- * accumulated time so far. The time the task started running was
|
|
|
- * stored in ulTaskSwitchedInTime. Note that there is no overflow
|
|
|
- * protection here so count values are only valid until the timer
|
|
|
- * overflows. The guard against negative values is to protect
|
|
|
- * against suspect run time stat counter implementations - which
|
|
|
- * are provided by the application, not the kernel. */
|
|
|
- if( ulTotalRunTime > ulTaskSwitchedInTime )
|
|
|
- {
|
|
|
- pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- ulTaskSwitchedInTime = ulTotalRunTime;
|
|
|
- }
|
|
|
- #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
-
|
|
|
- /* Check for stack overflow, if configured. */
|
|
|
- taskCHECK_FOR_STACK_OVERFLOW();
|
|
|
-
|
|
|
- /* Before the currently running task is switched out, save its errno. */
|
|
|
- #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- {
|
|
|
- pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Select a new task to run using either the generic C or port
|
|
|
- * optimised asm code. */
|
|
|
- taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- traceTASK_SWITCHED_IN();
|
|
|
-
|
|
|
- /* After the new task is switched in, update the global errno. */
|
|
|
- #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- {
|
|
|
- FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- /* Switch Newlib's _impure_ptr variable to point to the _reent
|
|
|
- * structure specific to this task.
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
|
|
- }
|
|
|
- #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskPlaceOnEventList( List_t * const pxEventList,
|
|
|
- const TickType_t xTicksToWait )
|
|
|
-{
|
|
|
- configASSERT( pxEventList );
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
|
|
|
- * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
|
|
|
-
|
|
|
- /* Place the event list item of the TCB in the appropriate event list.
|
|
|
- * This is placed in the list in priority order so the highest priority task
|
|
|
- * is the first to be woken by the event.
|
|
|
- *
|
|
|
- * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
|
|
|
- * Normally, the xItemValue of a TCB's ListItem_t members is:
|
|
|
- * xItemValue = ( configMAX_PRIORITIES - uxPriority )
|
|
|
- * Therefore, the event list is sorted in descending priority order.
|
|
|
- *
|
|
|
- * The queue that contains the event list is locked, preventing
|
|
|
- * simultaneous access from interrupts. */
|
|
|
- vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
-
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
|
|
|
- const TickType_t xItemValue,
|
|
|
- const TickType_t xTicksToWait )
|
|
|
-{
|
|
|
- configASSERT( pxEventList );
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
|
- * the event groups implementation. */
|
|
|
- configASSERT( uxSchedulerSuspended != 0 );
|
|
|
-
|
|
|
- /* Store the item value in the event list item. It is safe to access the
|
|
|
- * event list item here as interrupts won't access the event list item of a
|
|
|
- * task that is not in the Blocked state. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
-
|
|
|
- /* Place the event list item of the TCB at the end of the appropriate event
|
|
|
- * list. It is safe to access the event list here because it is part of an
|
|
|
- * event group implementation - and interrupts don't access event groups
|
|
|
- * directly (instead they access them indirectly by pending function calls to
|
|
|
- * the task level). */
|
|
|
- listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
-
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TIMERS == 1 )
|
|
|
-
|
|
|
- void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
|
|
|
- TickType_t xTicksToWait,
|
|
|
- const BaseType_t xWaitIndefinitely )
|
|
|
- {
|
|
|
- configASSERT( pxEventList );
|
|
|
-
|
|
|
- /* This function should not be called by application code hence the
|
|
|
- * 'Restricted' in its name. It is not part of the public API. It is
|
|
|
- * designed for use by kernel code, and has special calling requirements -
|
|
|
- * it should be called with the scheduler suspended. */
|
|
|
-
|
|
|
-
|
|
|
- /* Place the event list item of the TCB in the appropriate event list.
|
|
|
- * In this case it is assume that this is the only task that is going to
|
|
|
- * be waiting on this event list, so the faster vListInsertEnd() function
|
|
|
- * can be used in place of vListInsert. */
|
|
|
- listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
-
|
|
|
- /* If the task should block indefinitely then set the block time to a
|
|
|
- * value that will be recognised as an indefinite delay inside the
|
|
|
- * prvAddCurrentTaskToDelayedList() function. */
|
|
|
- if( xWaitIndefinitely != pdFALSE )
|
|
|
- {
|
|
|
- xTicksToWait = portMAX_DELAY;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TIMERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
|
|
|
-{
|
|
|
- TCB_t * pxUnblockedTCB;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
|
|
|
- * called from a critical section within an ISR. */
|
|
|
-
|
|
|
- /* The event list is sorted in priority order, so the first in the list can
|
|
|
- * be removed as it is known to be the highest priority. Remove the TCB from
|
|
|
- * the delayed list, and add it to the ready list.
|
|
|
- *
|
|
|
- * If an event is for a queue that is locked then this function will never
|
|
|
- * get called - the lock count on the queue will get modified instead. This
|
|
|
- * means exclusive access to the event list is guaranteed here.
|
|
|
- *
|
|
|
- * This function assumes that a check has already been made to ensure that
|
|
|
- * pxEventList is not empty. */
|
|
|
- pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- configASSERT( pxUnblockedTCB );
|
|
|
- listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
|
|
|
-
|
|
|
- if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
-
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- /* If a task is blocked on a kernel object then xNextTaskUnblockTime
|
|
|
- * might be set to the blocked task's time out time. If the task is
|
|
|
- * unblocked for a reason other than a timeout xNextTaskUnblockTime is
|
|
|
- * normally left unchanged, because it is automatically reset to a new
|
|
|
- * value when the tick count equals xNextTaskUnblockTime. However if
|
|
|
- * tickless idling is used it might be more important to enter sleep mode
|
|
|
- * at the earliest possible time - so reset xNextTaskUnblockTime here to
|
|
|
- * ensure it is updated at the earliest possible time. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed and ready lists cannot be accessed, so hold this task
|
|
|
- * pending until the scheduler is resumed. */
|
|
|
- listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
|
|
|
- }
|
|
|
-
|
|
|
- if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* Return true if the task removed from the event list has a higher
|
|
|
- * priority than the calling task. This allows the calling task to know if
|
|
|
- * it should force a context switch now. */
|
|
|
- xReturn = pdTRUE;
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not using the
|
|
|
- * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
|
|
|
- const TickType_t xItemValue )
|
|
|
-{
|
|
|
- TCB_t * pxUnblockedTCB;
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
|
- * the event flags implementation. */
|
|
|
- configASSERT( uxSchedulerSuspended != pdFALSE );
|
|
|
-
|
|
|
- /* Store the new item value in the event list. */
|
|
|
- listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
-
|
|
|
- /* Remove the event list form the event flag. Interrupts do not access
|
|
|
- * event flags. */
|
|
|
- pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- configASSERT( pxUnblockedTCB );
|
|
|
- listREMOVE_ITEM( pxEventListItem );
|
|
|
-
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- /* If a task is blocked on a kernel object then xNextTaskUnblockTime
|
|
|
- * might be set to the blocked task's time out time. If the task is
|
|
|
- * unblocked for a reason other than a timeout xNextTaskUnblockTime is
|
|
|
- * normally left unchanged, because it is automatically reset to a new
|
|
|
- * value when the tick count equals xNextTaskUnblockTime. However if
|
|
|
- * tickless idling is used it might be more important to enter sleep mode
|
|
|
- * at the earliest possible time - so reset xNextTaskUnblockTime here to
|
|
|
- * ensure it is updated at the earliest possible time. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Remove the task from the delayed list and add it to the ready list. The
|
|
|
- * scheduler is suspended so interrupts will not be accessing the ready
|
|
|
- * lists. */
|
|
|
- listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
-
|
|
|
- if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* The unblocked task has a priority above that of the calling task, so
|
|
|
- * a context switch is required. This function is called with the
|
|
|
- * scheduler suspended so xYieldPending is set so the context switch
|
|
|
- * occurs immediately that the scheduler is resumed (unsuspended). */
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
|
|
|
-{
|
|
|
- configASSERT( pxTimeOut );
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- pxTimeOut->xOverflowCount = xNumOfOverflows;
|
|
|
- pxTimeOut->xTimeOnEntering = xTickCount;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
|
|
|
-{
|
|
|
- /* For internal use only as it does not use a critical section. */
|
|
|
- pxTimeOut->xOverflowCount = xNumOfOverflows;
|
|
|
- pxTimeOut->xTimeOnEntering = xTickCount;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
|
|
|
- TickType_t * const pxTicksToWait )
|
|
|
-{
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( pxTimeOut );
|
|
|
- configASSERT( pxTicksToWait );
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* Minor optimisation. The tick count cannot change in this block. */
|
|
|
- const TickType_t xConstTickCount = xTickCount;
|
|
|
- const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
|
|
|
- {
|
|
|
- /* The delay was aborted, which is not the same as a time out,
|
|
|
- * but has the same result. */
|
|
|
- pxCurrentTCB->ucDelayAborted = pdFALSE;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- if( *pxTicksToWait == portMAX_DELAY )
|
|
|
- {
|
|
|
- /* If INCLUDE_vTaskSuspend is set to 1 and the block time
|
|
|
- * specified is the maximum block time then the task should block
|
|
|
- * indefinitely, and therefore never time out. */
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- #endif
|
|
|
-
|
|
|
- if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
|
|
|
- {
|
|
|
- /* The tick count is greater than the time at which
|
|
|
- * vTaskSetTimeout() was called, but has also overflowed since
|
|
|
- * vTaskSetTimeOut() was called. It must have wrapped all the way
|
|
|
- * around and gone past again. This passed since vTaskSetTimeout()
|
|
|
- * was called. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- *pxTicksToWait = ( TickType_t ) 0;
|
|
|
- }
|
|
|
- else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
|
|
|
- {
|
|
|
- /* Not a genuine timeout. Adjust parameters for time remaining. */
|
|
|
- *pxTicksToWait -= xElapsedTime;
|
|
|
- vTaskInternalSetTimeOutState( pxTimeOut );
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- *pxTicksToWait = ( TickType_t ) 0;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return xReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskMissedYield( void )
|
|
|
-{
|
|
|
- xYieldPending = pdTRUE;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- UBaseType_t uxReturn;
|
|
|
- TCB_t const * pxTCB;
|
|
|
-
|
|
|
- if( xTask != NULL )
|
|
|
- {
|
|
|
- pxTCB = xTask;
|
|
|
- uxReturn = pxTCB->uxTaskNumber;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- uxReturn = 0U;
|
|
|
- }
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- void vTaskSetTaskNumber( TaskHandle_t xTask,
|
|
|
- const UBaseType_t uxHandle )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- if( xTask != NULL )
|
|
|
- {
|
|
|
- pxTCB = xTask;
|
|
|
- pxTCB->uxTaskNumber = uxHandle;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-
|
|
|
-/*
|
|
|
- * -----------------------------------------------------------
|
|
|
- * The Idle task.
|
|
|
- * ----------------------------------------------------------
|
|
|
- *
|
|
|
- * The portTASK_FUNCTION() macro is used to allow port/compiler specific
|
|
|
- * language extensions. The equivalent prototype for this function is:
|
|
|
- *
|
|
|
- * void prvIdleTask( void *pvParameters );
|
|
|
- *
|
|
|
- */
|
|
|
-static portTASK_FUNCTION( prvIdleTask, pvParameters )
|
|
|
-{
|
|
|
- /* Stop warnings. */
|
|
|
- ( void ) pvParameters;
|
|
|
-
|
|
|
- /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
|
|
|
- * SCHEDULER IS STARTED. **/
|
|
|
-
|
|
|
- /* In case a task that has a secure context deletes itself, in which case
|
|
|
- * the idle task is responsible for deleting the task's secure context, if
|
|
|
- * any. */
|
|
|
- portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
|
|
|
-
|
|
|
- for( ; ; )
|
|
|
- {
|
|
|
- /* See if any tasks have deleted themselves - if so then the idle task
|
|
|
- * is responsible for freeing the deleted task's TCB and stack. */
|
|
|
- prvCheckTasksWaitingTermination();
|
|
|
-
|
|
|
- #if ( configUSE_PREEMPTION == 0 )
|
|
|
- {
|
|
|
- /* If we are not using preemption we keep forcing a task switch to
|
|
|
- * see if any other task has become available. If we are using
|
|
|
- * preemption we don't need to do this as any task becoming available
|
|
|
- * will automatically get the processor anyway. */
|
|
|
- taskYIELD();
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
-
|
|
|
- #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
|
|
|
- {
|
|
|
- /* When using preemption tasks of equal priority will be
|
|
|
- * timesliced. If a task that is sharing the idle priority is ready
|
|
|
- * to run then the idle task should yield before the end of the
|
|
|
- * timeslice.
|
|
|
- *
|
|
|
- * A critical region is not required here as we are just reading from
|
|
|
- * the list, and an occasional incorrect value will not matter. If
|
|
|
- * the ready list at the idle priority contains more than one task
|
|
|
- * then a task other than the idle task is ready to execute. */
|
|
|
- if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
|
|
|
- {
|
|
|
- taskYIELD();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
|
|
|
-
|
|
|
- #if ( configUSE_IDLE_HOOK == 1 )
|
|
|
- {
|
|
|
- extern void vApplicationIdleHook( void );
|
|
|
-
|
|
|
- /* Call the user defined function from within the idle task. This
|
|
|
- * allows the application designer to add background functionality
|
|
|
- * without the overhead of a separate task.
|
|
|
- * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
|
|
|
- * CALL A FUNCTION THAT MIGHT BLOCK. */
|
|
|
- vApplicationIdleHook();
|
|
|
- }
|
|
|
- #endif /* configUSE_IDLE_HOOK */
|
|
|
-
|
|
|
- /* This conditional compilation should use inequality to 0, not equality
|
|
|
- * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
|
|
|
- * user defined low power mode implementations require
|
|
|
- * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- TickType_t xExpectedIdleTime;
|
|
|
-
|
|
|
- /* It is not desirable to suspend then resume the scheduler on
|
|
|
- * each iteration of the idle task. Therefore, a preliminary
|
|
|
- * test of the expected idle time is performed without the
|
|
|
- * scheduler suspended. The result here is not necessarily
|
|
|
- * valid. */
|
|
|
- xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
-
|
|
|
- if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
|
- {
|
|
|
- vTaskSuspendAll();
|
|
|
- {
|
|
|
- /* Now the scheduler is suspended, the expected idle
|
|
|
- * time can be sampled again, and this time its value can
|
|
|
- * be used. */
|
|
|
- configASSERT( xNextTaskUnblockTime >= xTickCount );
|
|
|
- xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
-
|
|
|
- /* Define the following macro to set xExpectedIdleTime to 0
|
|
|
- * if the application does not want
|
|
|
- * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
|
|
|
- configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
|
|
|
-
|
|
|
- if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
|
- {
|
|
|
- traceLOW_POWER_IDLE_BEGIN();
|
|
|
- portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
|
|
|
- traceLOW_POWER_IDLE_END();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) xTaskResumeAll();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_TICKLESS_IDLE */
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- eSleepModeStatus eTaskConfirmSleepModeStatus( void )
|
|
|
- {
|
|
|
- /* The idle task exists in addition to the application tasks. */
|
|
|
- const UBaseType_t uxNonApplicationTasks = 1;
|
|
|
- eSleepModeStatus eReturn = eStandardSleep;
|
|
|
-
|
|
|
- /* This function must be called from a critical section. */
|
|
|
-
|
|
|
- if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
|
|
|
- {
|
|
|
- /* A task was made ready while the scheduler was suspended. */
|
|
|
- eReturn = eAbortSleep;
|
|
|
- }
|
|
|
- else if( xYieldPending != pdFALSE )
|
|
|
- {
|
|
|
- /* A yield was pended while the scheduler was suspended. */
|
|
|
- eReturn = eAbortSleep;
|
|
|
- }
|
|
|
- else if( xPendedTicks != 0 )
|
|
|
- {
|
|
|
- /* A tick interrupt has already occurred but was held pending
|
|
|
- * because the scheduler is suspended. */
|
|
|
- eReturn = eAbortSleep;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* If all the tasks are in the suspended list (which might mean they
|
|
|
- * have an infinite block time rather than actually being suspended)
|
|
|
- * then it is safe to turn all clocks off and just wait for external
|
|
|
- * interrupts. */
|
|
|
- if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
|
|
|
- {
|
|
|
- eReturn = eNoTasksWaitingTimeout;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return eReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TICKLESS_IDLE */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
-
|
|
|
- void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
|
|
|
- BaseType_t xIndex,
|
|
|
- void * pvValue )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
|
- {
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToSet );
|
|
|
- configASSERT( pxTCB != NULL );
|
|
|
- pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
-
|
|
|
- void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
|
|
|
- BaseType_t xIndex )
|
|
|
- {
|
|
|
- void * pvReturn = NULL;
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
|
- {
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
|
- pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pvReturn = NULL;
|
|
|
- }
|
|
|
-
|
|
|
- return pvReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
-
|
|
|
- void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
|
|
|
- const MemoryRegion_t * const xRegions )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* If null is passed in here then we are modifying the MPU settings of
|
|
|
- * the calling task. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToModify );
|
|
|
-
|
|
|
- vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portUSING_MPU_WRAPPERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvInitialiseTaskLists( void )
|
|
|
-{
|
|
|
- UBaseType_t uxPriority;
|
|
|
-
|
|
|
- for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
|
|
|
- {
|
|
|
- vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
|
|
|
- }
|
|
|
-
|
|
|
- vListInitialise( &xDelayedTaskList1 );
|
|
|
- vListInitialise( &xDelayedTaskList2 );
|
|
|
- vListInitialise( &xPendingReadyList );
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- vListInitialise( &xTasksWaitingTermination );
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskDelete */
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- vListInitialise( &xSuspendedTaskList );
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskSuspend */
|
|
|
-
|
|
|
- /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
|
|
|
- * using list2. */
|
|
|
- pxDelayedTaskList = &xDelayedTaskList1;
|
|
|
- pxOverflowDelayedTaskList = &xDelayedTaskList2;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvCheckTasksWaitingTermination( void )
|
|
|
-{
|
|
|
- /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
|
|
|
- * being called too often in the idle task. */
|
|
|
- while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- --uxCurrentNumberOfTasks;
|
|
|
- --uxDeletedTasksWaitingCleanUp;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- prvDeleteTCB( pxTCB );
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskDelete */
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- void vTaskGetInfo( TaskHandle_t xTask,
|
|
|
- TaskStatus_t * pxTaskStatus,
|
|
|
- BaseType_t xGetFreeStackSpace,
|
|
|
- eTaskState eState )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* xTask is NULL then get the state of the calling task. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
|
|
|
- pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
|
|
|
- pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
|
|
|
- pxTaskStatus->pxStackBase = pxTCB->pxStack;
|
|
|
- pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pxTaskStatus->uxBasePriority = 0;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pxTaskStatus->ulRunTimeCounter = 0;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Obtaining the task state is a little fiddly, so is only done if the
|
|
|
- * value of eState passed into this function is eInvalid - otherwise the
|
|
|
- * state is just set to whatever is passed in. */
|
|
|
- if( eState != eInvalid )
|
|
|
- {
|
|
|
- if( pxTCB == pxCurrentTCB )
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eRunning;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eState;
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- /* If the task is in the suspended list then there is a
|
|
|
- * chance it is actually just blocked indefinitely - so really
|
|
|
- * it should be reported as being in the Blocked state. */
|
|
|
- if( eState == eSuspended )
|
|
|
- {
|
|
|
- vTaskSuspendAll();
|
|
|
- {
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eBlocked;
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) xTaskResumeAll();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskSuspend */
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
|
|
|
- }
|
|
|
-
|
|
|
- /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
|
|
|
- * parameter is provided to allow it to be skipped. */
|
|
|
- if( xGetFreeStackSpace != pdFALSE )
|
|
|
- {
|
|
|
- #if ( portSTACK_GROWTH > 0 )
|
|
|
- {
|
|
|
- pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxTaskStatus->usStackHighWaterMark = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
|
|
|
- List_t * pxList,
|
|
|
- eTaskState eState )
|
|
|
- {
|
|
|
- configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
|
|
|
- UBaseType_t uxTask = 0;
|
|
|
-
|
|
|
- if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
-
|
|
|
- /* Populate an TaskStatus_t structure within the
|
|
|
- * pxTaskStatusArray array for each task that is referenced from
|
|
|
- * pxList. See the definition of TaskStatus_t in task.h for the
|
|
|
- * meaning of each TaskStatus_t structure member. */
|
|
|
- do
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
|
|
|
- uxTask++;
|
|
|
- } while( pxNextTCB != pxFirstTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return uxTask;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
-
|
|
|
- static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
|
|
|
- {
|
|
|
- uint32_t ulCount = 0U;
|
|
|
-
|
|
|
- while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
|
|
|
- {
|
|
|
- pucStackByte -= portSTACK_GROWTH;
|
|
|
- ulCount++;
|
|
|
- }
|
|
|
-
|
|
|
- ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
|
|
|
-
|
|
|
- return ( configSTACK_DEPTH_TYPE ) ulCount;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
|
|
|
-
|
|
|
-/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
|
|
|
- * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
|
|
|
- * user to determine the return type. It gets around the problem of the value
|
|
|
- * overflowing on 8-bit types without breaking backward compatibility for
|
|
|
- * applications that expect an 8-bit return type. */
|
|
|
- configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t * pucEndOfStack;
|
|
|
- configSTACK_DEPTH_TYPE uxReturn;
|
|
|
-
|
|
|
- /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
|
|
|
- * the same except for their return type. Using configSTACK_DEPTH_TYPE
|
|
|
- * allows the user to determine the return type. It gets around the
|
|
|
- * problem of the value overflowing on 8-bit types without breaking
|
|
|
- * backward compatibility for applications that expect an 8-bit return
|
|
|
- * type. */
|
|
|
-
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- #if portSTACK_GROWTH < 0
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t * pucEndOfStack;
|
|
|
- UBaseType_t uxReturn;
|
|
|
-
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- #if portSTACK_GROWTH < 0
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- static void prvDeleteTCB( TCB_t * pxTCB )
|
|
|
- {
|
|
|
- /* This call is required specifically for the TriCore port. It must be
|
|
|
- * above the vPortFree() calls. The call is also used by ports/demos that
|
|
|
- * want to allocate and clean RAM statically. */
|
|
|
- portCLEAN_UP_TCB( pxTCB );
|
|
|
-
|
|
|
- /* Free up the memory allocated by the scheduler for the task. It is up
|
|
|
- * to the task to free any memory allocated at the application level.
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- _reclaim_reent( &( pxTCB->xNewLib_reent ) );
|
|
|
- }
|
|
|
- #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
-
|
|
|
- #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
|
|
|
- {
|
|
|
- /* The task can only have been allocated dynamically - free both
|
|
|
- * the stack and TCB. */
|
|
|
- vPortFreeStack( pxTCB->pxStack );
|
|
|
- vPortFree( pxTCB );
|
|
|
- }
|
|
|
- #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
- {
|
|
|
- /* The task could have been allocated statically or dynamically, so
|
|
|
- * check what was statically allocated before trying to free the
|
|
|
- * memory. */
|
|
|
- if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
|
|
|
- {
|
|
|
- /* Both the stack and TCB were allocated dynamically, so both
|
|
|
- * must be freed. */
|
|
|
- vPortFreeStack( pxTCB->pxStack );
|
|
|
- vPortFree( pxTCB );
|
|
|
- }
|
|
|
- else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
|
|
|
- {
|
|
|
- /* Only the stack was statically allocated, so the TCB is the
|
|
|
- * only memory that must be freed. */
|
|
|
- vPortFree( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Neither the stack nor the TCB were allocated dynamically, so
|
|
|
- * nothing needs to be freed. */
|
|
|
- configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskDelete */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvResetNextTaskUnblockTime( void )
|
|
|
-{
|
|
|
- if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
|
- {
|
|
|
- /* The new current delayed list is empty. Set xNextTaskUnblockTime to
|
|
|
- * the maximum possible value so it is extremely unlikely that the
|
|
|
- * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
|
|
|
- * there is an item in the delayed list. */
|
|
|
- xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The new current delayed list is not empty, get the value of
|
|
|
- * the item at the head of the delayed list. This is the time at
|
|
|
- * which the task at the head of the delayed list should be removed
|
|
|
- * from the Blocked state. */
|
|
|
- xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
|
|
|
-
|
|
|
- TaskHandle_t xTaskGetCurrentTaskHandle( void )
|
|
|
- {
|
|
|
- TaskHandle_t xReturn;
|
|
|
-
|
|
|
- /* A critical section is not required as this is not called from
|
|
|
- * an interrupt and the current TCB will always be the same for any
|
|
|
- * individual execution thread. */
|
|
|
- xReturn = pxCurrentTCB;
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskGetSchedulerState( void )
|
|
|
- {
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- if( xSchedulerRunning == pdFALSE )
|
|
|
- {
|
|
|
- xReturn = taskSCHEDULER_NOT_STARTED;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- xReturn = taskSCHEDULER_RUNNING;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = taskSCHEDULER_SUSPENDED;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
|
|
|
- {
|
|
|
- TCB_t * const pxMutexHolderTCB = pxMutexHolder;
|
|
|
- BaseType_t xReturn = pdFALSE;
|
|
|
-
|
|
|
- /* If the mutex was given back by an interrupt while the queue was
|
|
|
- * locked then the mutex holder might now be NULL. _RB_ Is this still
|
|
|
- * needed as interrupts can no longer use mutexes? */
|
|
|
- if( pxMutexHolder != NULL )
|
|
|
- {
|
|
|
- /* If the holder of the mutex has a priority below the priority of
|
|
|
- * the task attempting to obtain the mutex then it will temporarily
|
|
|
- * inherit the priority of the task attempting to obtain the mutex. */
|
|
|
- if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* Adjust the mutex holder state to account for its new
|
|
|
- * priority. Only reset the event list item value if the value is
|
|
|
- * not being used for anything else. */
|
|
|
- if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
- {
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* If the task being modified is in the ready state it will need
|
|
|
- * to be moved into a new list. */
|
|
|
- if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* It is known that the task is in its ready list so
|
|
|
- * there is no need to check again and the port level
|
|
|
- * reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Inherit the priority before being moved into the new list. */
|
|
|
- pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
|
|
|
- prvAddTaskToReadyList( pxMutexHolderTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Just inherit the priority. */
|
|
|
- pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
|
|
|
-
|
|
|
- /* Inheritance occurred. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* The base priority of the mutex holder is lower than the
|
|
|
- * priority of the task attempting to take the mutex, but the
|
|
|
- * current priority of the mutex holder is not lower than the
|
|
|
- * priority of the task attempting to take the mutex.
|
|
|
- * Therefore the mutex holder must have already inherited a
|
|
|
- * priority, but inheritance would have occurred if that had
|
|
|
- * not been the case. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
|
|
|
- {
|
|
|
- TCB_t * const pxTCB = pxMutexHolder;
|
|
|
- BaseType_t xReturn = pdFALSE;
|
|
|
-
|
|
|
- if( pxMutexHolder != NULL )
|
|
|
- {
|
|
|
- /* A task can only have an inherited priority if it holds the mutex.
|
|
|
- * If the mutex is held by a task then it cannot be given from an
|
|
|
- * interrupt, and if a mutex is given by the holding task then it must
|
|
|
- * be the running state task. */
|
|
|
- configASSERT( pxTCB == pxCurrentTCB );
|
|
|
- configASSERT( pxTCB->uxMutexesHeld );
|
|
|
- ( pxTCB->uxMutexesHeld )--;
|
|
|
-
|
|
|
- /* Has the holder of the mutex inherited the priority of another
|
|
|
- * task? */
|
|
|
- if( pxTCB->uxPriority != pxTCB->uxBasePriority )
|
|
|
- {
|
|
|
- /* Only disinherit if no other mutexes are held. */
|
|
|
- if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* A task can only have an inherited priority if it holds
|
|
|
- * the mutex. If the mutex is held by a task then it cannot be
|
|
|
- * given from an interrupt, and if a mutex is given by the
|
|
|
- * holding task then it must be the running state task. Remove
|
|
|
- * the holding task from the ready list. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Disinherit the priority before adding the task into the
|
|
|
- * new ready list. */
|
|
|
- traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
|
|
|
- pxTCB->uxPriority = pxTCB->uxBasePriority;
|
|
|
-
|
|
|
- /* Reset the event list item value. It cannot be in use for
|
|
|
- * any other purpose if this task is running, and it must be
|
|
|
- * running to give back the mutex. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* Return true to indicate that a context switch is required.
|
|
|
- * This is only actually required in the corner case whereby
|
|
|
- * multiple mutexes were held and the mutexes were given back
|
|
|
- * in an order different to that in which they were taken.
|
|
|
- * If a context switch did not occur when the first mutex was
|
|
|
- * returned, even if a task was waiting on it, then a context
|
|
|
- * switch should occur when the last mutex is returned whether
|
|
|
- * a task is waiting on it or not. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
|
|
|
- UBaseType_t uxHighestPriorityWaitingTask )
|
|
|
- {
|
|
|
- TCB_t * const pxTCB = pxMutexHolder;
|
|
|
- UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
|
|
|
- const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
|
|
|
-
|
|
|
- if( pxMutexHolder != NULL )
|
|
|
- {
|
|
|
- /* If pxMutexHolder is not NULL then the holder must hold at least
|
|
|
- * one mutex. */
|
|
|
- configASSERT( pxTCB->uxMutexesHeld );
|
|
|
-
|
|
|
- /* Determine the priority to which the priority of the task that
|
|
|
- * holds the mutex should be set. This will be the greater of the
|
|
|
- * holding task's base priority and the priority of the highest
|
|
|
- * priority task that is waiting to obtain the mutex. */
|
|
|
- if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
|
|
|
- {
|
|
|
- uxPriorityToUse = uxHighestPriorityWaitingTask;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- uxPriorityToUse = pxTCB->uxBasePriority;
|
|
|
- }
|
|
|
-
|
|
|
- /* Does the priority need to change? */
|
|
|
- if( pxTCB->uxPriority != uxPriorityToUse )
|
|
|
- {
|
|
|
- /* Only disinherit if no other mutexes are held. This is a
|
|
|
- * simplification in the priority inheritance implementation. If
|
|
|
- * the task that holds the mutex is also holding other mutexes then
|
|
|
- * the other mutexes may have caused the priority inheritance. */
|
|
|
- if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
|
|
|
- {
|
|
|
- /* If a task has timed out because it already holds the
|
|
|
- * mutex it was trying to obtain then it cannot of inherited
|
|
|
- * its own priority. */
|
|
|
- configASSERT( pxTCB != pxCurrentTCB );
|
|
|
-
|
|
|
- /* Disinherit the priority, remembering the previous
|
|
|
- * priority to facilitate determining the subject task's
|
|
|
- * state. */
|
|
|
- traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
|
|
|
- uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
- pxTCB->uxPriority = uxPriorityToUse;
|
|
|
-
|
|
|
- /* Only reset the event list item value if the value is not
|
|
|
- * being used for anything else. */
|
|
|
- if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
- {
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* If the running task is not the task that holds the mutex
|
|
|
- * then the task that holds the mutex could be in either the
|
|
|
- * Ready, Blocked or Suspended states. Only remove the task
|
|
|
- * from its current state list if it is in the Ready state as
|
|
|
- * the task's priority is going to change and there is one
|
|
|
- * Ready list per priority. */
|
|
|
- if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* It is known that the task is in its ready list so
|
|
|
- * there is no need to check again and the port level
|
|
|
- * reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
-
|
|
|
- void vTaskEnterCritical( void )
|
|
|
- {
|
|
|
- portDISABLE_INTERRUPTS();
|
|
|
-
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- ( pxCurrentTCB->uxCriticalNesting )++;
|
|
|
-
|
|
|
- /* This is not the interrupt safe version of the enter critical
|
|
|
- * function so assert() if it is being called from an interrupt
|
|
|
- * context. Only API functions that end in "FromISR" can be used in an
|
|
|
- * interrupt. Only assert if the critical nesting count is 1 to
|
|
|
- * protect against recursive calls if the assert function also uses a
|
|
|
- * critical section. */
|
|
|
- if( pxCurrentTCB->uxCriticalNesting == 1 )
|
|
|
- {
|
|
|
- portASSERT_IF_IN_ISR();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
-
|
|
|
- void vTaskExitCritical( void )
|
|
|
- {
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- if( pxCurrentTCB->uxCriticalNesting > 0U )
|
|
|
- {
|
|
|
- ( pxCurrentTCB->uxCriticalNesting )--;
|
|
|
-
|
|
|
- if( pxCurrentTCB->uxCriticalNesting == 0U )
|
|
|
- {
|
|
|
- portENABLE_INTERRUPTS();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
-
|
|
|
- static char * prvWriteNameToBuffer( char * pcBuffer,
|
|
|
- const char * pcTaskName )
|
|
|
- {
|
|
|
- size_t x;
|
|
|
-
|
|
|
- /* Start by copying the entire string. */
|
|
|
- strcpy( pcBuffer, pcTaskName );
|
|
|
-
|
|
|
- /* Pad the end of the string with spaces to ensure columns line up when
|
|
|
- * printed out. */
|
|
|
- for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
|
|
|
- {
|
|
|
- pcBuffer[ x ] = ' ';
|
|
|
- }
|
|
|
-
|
|
|
- /* Terminate. */
|
|
|
- pcBuffer[ x ] = ( char ) 0x00;
|
|
|
-
|
|
|
- /* Return the new end of string. */
|
|
|
- return &( pcBuffer[ x ] );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- void vTaskList( char * pcWriteBuffer )
|
|
|
- {
|
|
|
- TaskStatus_t * pxTaskStatusArray;
|
|
|
- UBaseType_t uxArraySize, x;
|
|
|
- char cStatus;
|
|
|
-
|
|
|
- /*
|
|
|
- * PLEASE NOTE:
|
|
|
- *
|
|
|
- * This function is provided for convenience only, and is used by many
|
|
|
- * of the demo applications. Do not consider it to be part of the
|
|
|
- * scheduler.
|
|
|
- *
|
|
|
- * vTaskList() calls uxTaskGetSystemState(), then formats part of the
|
|
|
- * uxTaskGetSystemState() output into a human readable table that
|
|
|
- * displays task: names, states, priority, stack usage and task number.
|
|
|
- * Stack usage specified as the number of unused StackType_t words stack can hold
|
|
|
- * on top of stack - not the number of bytes.
|
|
|
- *
|
|
|
- * vTaskList() has a dependency on the sprintf() C library function that
|
|
|
- * might bloat the code size, use a lot of stack, and provide different
|
|
|
- * results on different platforms. An alternative, tiny, third party,
|
|
|
- * and limited functionality implementation of sprintf() is provided in
|
|
|
- * many of the FreeRTOS/Demo sub-directories in a file called
|
|
|
- * printf-stdarg.c (note printf-stdarg.c does not provide a full
|
|
|
- * snprintf() implementation!).
|
|
|
- *
|
|
|
- * It is recommended that production systems call uxTaskGetSystemState()
|
|
|
- * directly to get access to raw stats data, rather than indirectly
|
|
|
- * through a call to vTaskList().
|
|
|
- */
|
|
|
-
|
|
|
-
|
|
|
- /* Make sure the write buffer does not contain a string. */
|
|
|
- *pcWriteBuffer = ( char ) 0x00;
|
|
|
-
|
|
|
- /* Take a snapshot of the number of tasks in case it changes while this
|
|
|
- * function is executing. */
|
|
|
- uxArraySize = uxCurrentNumberOfTasks;
|
|
|
-
|
|
|
- /* Allocate an array index for each task. NOTE! if
|
|
|
- * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
|
|
|
- * equate to NULL. */
|
|
|
- pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
|
|
|
-
|
|
|
- if( pxTaskStatusArray != NULL )
|
|
|
- {
|
|
|
- /* Generate the (binary) data. */
|
|
|
- uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
|
|
|
-
|
|
|
- /* Create a human readable table from the binary data. */
|
|
|
- for( x = 0; x < uxArraySize; x++ )
|
|
|
- {
|
|
|
- switch( pxTaskStatusArray[ x ].eCurrentState )
|
|
|
- {
|
|
|
- case eRunning:
|
|
|
- cStatus = tskRUNNING_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eReady:
|
|
|
- cStatus = tskREADY_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eBlocked:
|
|
|
- cStatus = tskBLOCKED_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSuspended:
|
|
|
- cStatus = tskSUSPENDED_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eDeleted:
|
|
|
- cStatus = tskDELETED_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eInvalid: /* Fall through. */
|
|
|
- default: /* Should not get here, but it is included
|
|
|
- * to prevent static checking errors. */
|
|
|
- cStatus = ( char ) 0x00;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* Write the task name to the string, padding with spaces so it
|
|
|
- * can be printed in tabular form more easily. */
|
|
|
- pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
-
|
|
|
- /* Write the rest of the string. */
|
|
|
- sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
- pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
|
|
|
- }
|
|
|
-
|
|
|
- /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
|
|
|
- * is 0 then vPortFree() will be #defined to nothing. */
|
|
|
- vPortFree( pxTaskStatusArray );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- void vTaskGetRunTimeStats( char * pcWriteBuffer )
|
|
|
- {
|
|
|
- TaskStatus_t * pxTaskStatusArray;
|
|
|
- UBaseType_t uxArraySize, x;
|
|
|
- uint32_t ulTotalTime, ulStatsAsPercentage;
|
|
|
-
|
|
|
- #if ( configUSE_TRACE_FACILITY != 1 )
|
|
|
- {
|
|
|
- #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /*
|
|
|
- * PLEASE NOTE:
|
|
|
- *
|
|
|
- * This function is provided for convenience only, and is used by many
|
|
|
- * of the demo applications. Do not consider it to be part of the
|
|
|
- * scheduler.
|
|
|
- *
|
|
|
- * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
|
|
|
- * of the uxTaskGetSystemState() output into a human readable table that
|
|
|
- * displays the amount of time each task has spent in the Running state
|
|
|
- * in both absolute and percentage terms.
|
|
|
- *
|
|
|
- * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
|
|
|
- * function that might bloat the code size, use a lot of stack, and
|
|
|
- * provide different results on different platforms. An alternative,
|
|
|
- * tiny, third party, and limited functionality implementation of
|
|
|
- * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
|
|
|
- * a file called printf-stdarg.c (note printf-stdarg.c does not provide
|
|
|
- * a full snprintf() implementation!).
|
|
|
- *
|
|
|
- * It is recommended that production systems call uxTaskGetSystemState()
|
|
|
- * directly to get access to raw stats data, rather than indirectly
|
|
|
- * through a call to vTaskGetRunTimeStats().
|
|
|
- */
|
|
|
-
|
|
|
- /* Make sure the write buffer does not contain a string. */
|
|
|
- *pcWriteBuffer = ( char ) 0x00;
|
|
|
-
|
|
|
- /* Take a snapshot of the number of tasks in case it changes while this
|
|
|
- * function is executing. */
|
|
|
- uxArraySize = uxCurrentNumberOfTasks;
|
|
|
-
|
|
|
- /* Allocate an array index for each task. NOTE! If
|
|
|
- * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
|
|
|
- * equate to NULL. */
|
|
|
- pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
|
|
|
-
|
|
|
- if( pxTaskStatusArray != NULL )
|
|
|
- {
|
|
|
- /* Generate the (binary) data. */
|
|
|
- uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
|
|
|
-
|
|
|
- /* For percentage calculations. */
|
|
|
- ulTotalTime /= 100UL;
|
|
|
-
|
|
|
- /* Avoid divide by zero errors. */
|
|
|
- if( ulTotalTime > 0UL )
|
|
|
- {
|
|
|
- /* Create a human readable table from the binary data. */
|
|
|
- for( x = 0; x < uxArraySize; x++ )
|
|
|
- {
|
|
|
- /* What percentage of the total run time has the task used?
|
|
|
- * This will always be rounded down to the nearest integer.
|
|
|
- * ulTotalRunTimeDiv100 has already been divided by 100. */
|
|
|
- ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
|
|
|
-
|
|
|
- /* Write the task name to the string, padding with
|
|
|
- * spaces so it can be printed in tabular form more
|
|
|
- * easily. */
|
|
|
- pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
-
|
|
|
- if( ulStatsAsPercentage > 0UL )
|
|
|
- {
|
|
|
- #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
|
- {
|
|
|
- sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- /* sizeof( int ) == sizeof( long ) so a smaller
|
|
|
- * printf() library can be used. */
|
|
|
- sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* If the percentage is zero here then the task has
|
|
|
- * consumed less than 1% of the total run time. */
|
|
|
- #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
|
- {
|
|
|
- sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- /* sizeof( int ) == sizeof( long ) so a smaller
|
|
|
- * printf() library can be used. */
|
|
|
- sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
|
|
|
- * is 0 then vPortFree() will be #defined to nothing. */
|
|
|
- vPortFree( pxTaskStatusArray );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-TickType_t uxTaskResetEventItemValue( void )
|
|
|
-{
|
|
|
- TickType_t uxReturn;
|
|
|
-
|
|
|
- uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
|
|
|
-
|
|
|
- /* Reset the event list item to its normal value - so it can be used with
|
|
|
- * queues and semaphores. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- TaskHandle_t pvTaskIncrementMutexHeldCount( void )
|
|
|
- {
|
|
|
- /* If xSemaphoreCreateMutex() is called before any tasks have been created
|
|
|
- * then pxCurrentTCB will be NULL. */
|
|
|
- if( pxCurrentTCB != NULL )
|
|
|
- {
|
|
|
- ( pxCurrentTCB->uxMutexesHeld )++;
|
|
|
- }
|
|
|
-
|
|
|
- return pxCurrentTCB;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
|
|
|
- BaseType_t xClearCountOnExit,
|
|
|
- TickType_t xTicksToWait )
|
|
|
- {
|
|
|
- uint32_t ulReturn;
|
|
|
-
|
|
|
- configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* Only block if the notification count is not already non-zero. */
|
|
|
- if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
|
|
|
- {
|
|
|
- /* Mark this task as waiting for a notification. */
|
|
|
- pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
|
|
|
-
|
|
|
- if( xTicksToWait > ( TickType_t ) 0 )
|
|
|
- {
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
- traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
|
|
|
-
|
|
|
- /* All ports are written to allow a yield in a critical
|
|
|
- * section (some will yield immediately, others wait until the
|
|
|
- * critical section exits) - but it is not something that
|
|
|
- * application code should ever do. */
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- traceTASK_NOTIFY_TAKE( uxIndexToWait );
|
|
|
- ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
|
|
|
-
|
|
|
- if( ulReturn != 0UL )
|
|
|
- {
|
|
|
- if( xClearCountOnExit != pdFALSE )
|
|
|
- {
|
|
|
- pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return ulReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
|
|
|
- uint32_t ulBitsToClearOnEntry,
|
|
|
- uint32_t ulBitsToClearOnExit,
|
|
|
- uint32_t * pulNotificationValue,
|
|
|
- TickType_t xTicksToWait )
|
|
|
- {
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* Only block if a notification is not already pending. */
|
|
|
- if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- /* Clear bits in the task's notification value as bits may get
|
|
|
- * set by the notifying task or interrupt. This can be used to
|
|
|
- * clear the value to zero. */
|
|
|
- pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
|
|
|
-
|
|
|
- /* Mark this task as waiting for a notification. */
|
|
|
- pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
|
|
|
-
|
|
|
- if( xTicksToWait > ( TickType_t ) 0 )
|
|
|
- {
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
- traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
|
|
|
-
|
|
|
- /* All ports are written to allow a yield in a critical
|
|
|
- * section (some will yield immediately, others wait until the
|
|
|
- * critical section exits) - but it is not something that
|
|
|
- * application code should ever do. */
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- traceTASK_NOTIFY_WAIT( uxIndexToWait );
|
|
|
-
|
|
|
- if( pulNotificationValue != NULL )
|
|
|
- {
|
|
|
- /* Output the current notification value, which may or may not
|
|
|
- * have changed. */
|
|
|
- *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
|
|
|
- }
|
|
|
-
|
|
|
- /* If ucNotifyValue is set then either the task never entered the
|
|
|
- * blocked state (because a notification was already pending) or the
|
|
|
- * task unblocked because of a notification. Otherwise the task
|
|
|
- * unblocked because of a timeout. */
|
|
|
- if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- /* A notification was not received. */
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* A notification was already pending or a notification was
|
|
|
- * received while the task was waiting. */
|
|
|
- pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
-
|
|
|
- pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
|
|
|
- UBaseType_t uxIndexToNotify,
|
|
|
- uint32_t ulValue,
|
|
|
- eNotifyAction eAction,
|
|
|
- uint32_t * pulPreviousNotificationValue )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- BaseType_t xReturn = pdPASS;
|
|
|
- uint8_t ucOriginalNotifyState;
|
|
|
-
|
|
|
- configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
- configASSERT( xTaskToNotify );
|
|
|
- pxTCB = xTaskToNotify;
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- if( pulPreviousNotificationValue != NULL )
|
|
|
- {
|
|
|
- *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
|
|
|
- }
|
|
|
-
|
|
|
- ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
-
|
|
|
- pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
-
|
|
|
- switch( eAction )
|
|
|
- {
|
|
|
- case eSetBits:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eIncrement:
|
|
|
- ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithOverwrite:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithoutOverwrite:
|
|
|
-
|
|
|
- if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The value could not be written to the task. */
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
-
|
|
|
- break;
|
|
|
-
|
|
|
- case eNoAction:
|
|
|
-
|
|
|
- /* The task is being notified without its notify value being
|
|
|
- * updated. */
|
|
|
- break;
|
|
|
-
|
|
|
- default:
|
|
|
-
|
|
|
- /* Should not get here if all enums are handled.
|
|
|
- * Artificially force an assert by testing a value the
|
|
|
- * compiler can't assume is const. */
|
|
|
- configASSERT( xTickCount == ( TickType_t ) 0 );
|
|
|
-
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_NOTIFY( uxIndexToNotify );
|
|
|
-
|
|
|
- /* If the task is in the blocked state specifically to wait for a
|
|
|
- * notification then unblock it now. */
|
|
|
- if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* The task should not have been on an event list. */
|
|
|
- configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
-
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- /* If a task is blocked waiting for a notification then
|
|
|
- * xNextTaskUnblockTime might be set to the blocked task's time
|
|
|
- * out time. If the task is unblocked for a reason other than
|
|
|
- * a timeout xNextTaskUnblockTime is normally left unchanged,
|
|
|
- * because it will automatically get reset to a new value when
|
|
|
- * the tick count equals xNextTaskUnblockTime. However if
|
|
|
- * tickless idling is used it might be more important to enter
|
|
|
- * sleep mode at the earliest possible time - so reset
|
|
|
- * xNextTaskUnblockTime here to ensure it is updated at the
|
|
|
- * earliest possible time. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* The notified task has a priority above the currently
|
|
|
- * executing task so a yield is required. */
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
|
|
|
- UBaseType_t uxIndexToNotify,
|
|
|
- uint32_t ulValue,
|
|
|
- eNotifyAction eAction,
|
|
|
- uint32_t * pulPreviousNotificationValue,
|
|
|
- BaseType_t * pxHigherPriorityTaskWoken )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t ucOriginalNotifyState;
|
|
|
- BaseType_t xReturn = pdPASS;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- configASSERT( xTaskToNotify );
|
|
|
- configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- pxTCB = xTaskToNotify;
|
|
|
-
|
|
|
- uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- {
|
|
|
- if( pulPreviousNotificationValue != NULL )
|
|
|
- {
|
|
|
- *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
|
|
|
- }
|
|
|
-
|
|
|
- ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
- pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
-
|
|
|
- switch( eAction )
|
|
|
- {
|
|
|
- case eSetBits:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eIncrement:
|
|
|
- ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithOverwrite:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithoutOverwrite:
|
|
|
-
|
|
|
- if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The value could not be written to the task. */
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
-
|
|
|
- break;
|
|
|
-
|
|
|
- case eNoAction:
|
|
|
-
|
|
|
- /* The task is being notified without its notify value being
|
|
|
- * updated. */
|
|
|
- break;
|
|
|
-
|
|
|
- default:
|
|
|
-
|
|
|
- /* Should not get here if all enums are handled.
|
|
|
- * Artificially force an assert by testing a value the
|
|
|
- * compiler can't assume is const. */
|
|
|
- configASSERT( xTickCount == ( TickType_t ) 0 );
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
|
|
|
-
|
|
|
- /* If the task is in the blocked state specifically to wait for a
|
|
|
- * notification then unblock it now. */
|
|
|
- if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- /* The task should not have been on an event list. */
|
|
|
- configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
-
|
|
|
- if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed and ready lists cannot be accessed, so hold
|
|
|
- * this task pending until the scheduler is resumed. */
|
|
|
- listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
-
|
|
|
- if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* The notified task has a priority above the currently
|
|
|
- * executing task so a yield is required. */
|
|
|
- if( pxHigherPriorityTaskWoken != NULL )
|
|
|
- {
|
|
|
- *pxHigherPriorityTaskWoken = pdTRUE;
|
|
|
- }
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not
|
|
|
- * using the "xHigherPriorityTaskWoken" parameter to an ISR
|
|
|
- * safe FreeRTOS function. */
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
|
|
|
- UBaseType_t uxIndexToNotify,
|
|
|
- BaseType_t * pxHigherPriorityTaskWoken )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t ucOriginalNotifyState;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- configASSERT( xTaskToNotify );
|
|
|
- configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- pxTCB = xTaskToNotify;
|
|
|
-
|
|
|
- uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- {
|
|
|
- ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
- pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
-
|
|
|
- /* 'Giving' is equivalent to incrementing a count in a counting
|
|
|
- * semaphore. */
|
|
|
- ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
-
|
|
|
- traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
|
|
|
-
|
|
|
- /* If the task is in the blocked state specifically to wait for a
|
|
|
- * notification then unblock it now. */
|
|
|
- if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- /* The task should not have been on an event list. */
|
|
|
- configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
-
|
|
|
- if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
- {
|
|
|
- listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed and ready lists cannot be accessed, so hold
|
|
|
- * this task pending until the scheduler is resumed. */
|
|
|
- listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
-
|
|
|
- if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
- {
|
|
|
- /* The notified task has a priority above the currently
|
|
|
- * executing task so a yield is required. */
|
|
|
- if( pxHigherPriorityTaskWoken != NULL )
|
|
|
- {
|
|
|
- *pxHigherPriorityTaskWoken = pdTRUE;
|
|
|
- }
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not
|
|
|
- * using the "xHigherPriorityTaskWoken" parameter in an ISR
|
|
|
- * safe FreeRTOS function. */
|
|
|
- xYieldPending = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
|
|
|
- UBaseType_t uxIndexToClear )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- /* If null is passed in here then it is the calling task that is having
|
|
|
- * its notification state cleared. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
|
|
|
- UBaseType_t uxIndexToClear,
|
|
|
- uint32_t ulBitsToClear )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint32_t ulReturn;
|
|
|
-
|
|
|
- /* If null is passed in here then it is the calling task that is having
|
|
|
- * its notification state cleared. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- taskENTER_CRITICAL();
|
|
|
- {
|
|
|
- /* Return the notification as it was before the bits were cleared,
|
|
|
- * then clear the bit mask. */
|
|
|
- ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL();
|
|
|
-
|
|
|
- return ulReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
|
|
|
-
|
|
|
- uint32_t ulTaskGetIdleRunTimeCounter( void )
|
|
|
- {
|
|
|
- return xIdleTaskHandle->ulRunTimeCounter;
|
|
|
- }
|
|
|
-
|
|
|
-#endif
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
|
|
|
- const BaseType_t xCanBlockIndefinitely )
|
|
|
-{
|
|
|
- TickType_t xTimeToWake;
|
|
|
- const TickType_t xConstTickCount = xTickCount;
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- {
|
|
|
- /* About to enter a delayed list, so ensure the ucDelayAborted flag is
|
|
|
- * reset to pdFALSE so it can be detected as having been set to pdTRUE
|
|
|
- * when the task leaves the Blocked state. */
|
|
|
- pxCurrentTCB->ucDelayAborted = pdFALSE;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Remove the task from the ready list before adding it to the blocked list
|
|
|
- * as the same list item is used for both lists. */
|
|
|
- if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* The current task must be in a ready list, so there is no need to
|
|
|
- * check, and the port reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
|
|
|
- {
|
|
|
- /* Add the task to the suspended task list instead of a delayed task
|
|
|
- * list to ensure it is not woken by a timing event. It will block
|
|
|
- * indefinitely. */
|
|
|
- listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Calculate the time at which the task should be woken if the event
|
|
|
- * does not occur. This may overflow but this doesn't matter, the
|
|
|
- * kernel will manage it correctly. */
|
|
|
- xTimeToWake = xConstTickCount + xTicksToWait;
|
|
|
-
|
|
|
- /* The list item will be inserted in wake time order. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
|
|
|
-
|
|
|
- if( xTimeToWake < xConstTickCount )
|
|
|
- {
|
|
|
- /* Wake time has overflowed. Place this item in the overflow
|
|
|
- * list. */
|
|
|
- vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The wake time has not overflowed, so the current block list
|
|
|
- * is used. */
|
|
|
- vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* If the task entering the blocked state was placed at the
|
|
|
- * head of the list of blocked tasks then xNextTaskUnblockTime
|
|
|
- * needs to be updated too. */
|
|
|
- if( xTimeToWake < xNextTaskUnblockTime )
|
|
|
- {
|
|
|
- xNextTaskUnblockTime = xTimeToWake;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* INCLUDE_vTaskSuspend */
|
|
|
- {
|
|
|
- /* Calculate the time at which the task should be woken if the event
|
|
|
- * does not occur. This may overflow but this doesn't matter, the kernel
|
|
|
- * will manage it correctly. */
|
|
|
- xTimeToWake = xConstTickCount + xTicksToWait;
|
|
|
-
|
|
|
- /* The list item will be inserted in wake time order. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
|
|
|
-
|
|
|
- if( xTimeToWake < xConstTickCount )
|
|
|
- {
|
|
|
- /* Wake time has overflowed. Place this item in the overflow list. */
|
|
|
- vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The wake time has not overflowed, so the current block list is used. */
|
|
|
- vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* If the task entering the blocked state was placed at the head of the
|
|
|
- * list of blocked tasks then xNextTaskUnblockTime needs to be updated
|
|
|
- * too. */
|
|
|
- if( xTimeToWake < xNextTaskUnblockTime )
|
|
|
- {
|
|
|
- xNextTaskUnblockTime = xTimeToWake;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
|
|
|
- ( void ) xCanBlockIndefinitely;
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskSuspend */
|
|
|
-}
|
|
|
-
|
|
|
-/* Code below here allows additional code to be inserted into this source file,
|
|
|
- * especially where access to file scope functions and data is needed (for example
|
|
|
- * when performing module tests). */
|
|
|
-
|
|
|
-#ifdef FREERTOS_MODULE_TEST
|
|
|
- #include "tasks_test_access_functions.h"
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
-#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
|
|
|
-
|
|
|
- #include "freertos_tasks_c_additions.h"
|
|
|
-
|
|
|
- #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
- static void freertos_tasks_c_additions_init( void )
|
|
|
- {
|
|
|
- FREERTOS_TASKS_C_ADDITIONS_INIT();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
-#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
|
|
|
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
|
+ * this software and associated documentation files (the "Software"), to deal in
|
|
|
+ * the Software without restriction, including without limitation the rights to
|
|
|
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
|
+ * the Software, and to permit persons to whom the Software is furnished to do so,
|
|
|
+ * subject to the following conditions:
|
|
|
+ *
|
|
|
+ * The above copyright notice and this permission notice shall be included in all
|
|
|
+ * copies or substantial portions of the Software.
|
|
|
+ *
|
|
|
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
|
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
|
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
|
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
+ *
|
|
|
+ * https://www.FreeRTOS.org
|
|
|
+ * https://github.com/FreeRTOS
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+/* Standard includes. */
|
|
|
+#include <stdlib.h>
|
|
|
+#include <string.h>
|
|
|
+
|
|
|
+/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
|
+ * all the API functions to use the MPU wrappers. That should only be done when
|
|
|
+ * task.h is included from an application file. */
|
|
|
+#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
+
|
|
|
+/* FreeRTOS includes. */
|
|
|
+#include "FreeRTOS.h"
|
|
|
+#include "task.h"
|
|
|
+#include "timers.h"
|
|
|
+#include "stack_macros.h"
|
|
|
+
|
|
|
+/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
|
|
|
+ * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
|
|
|
+ * for the header files above, but not in this file, in order to generate the
|
|
|
+ * correct privileged Vs unprivileged linkage and placement. */
|
|
|
+#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
|
|
|
+
|
|
|
+/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
|
|
|
+ * functions but without including stdio.h here. */
|
|
|
+#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
|
|
|
+
|
|
|
+/* At the bottom of this file are two optional functions that can be used
|
|
|
+ * to generate human readable text from the raw data generated by the
|
|
|
+ * uxTaskGetSystemState() function. Note the formatting functions are provided
|
|
|
+ * for convenience only, and are NOT considered part of the kernel. */
|
|
|
+ #include <stdio.h>
|
|
|
+#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
|
|
|
+
|
|
|
+#if ( configUSE_PREEMPTION == 0 )
|
|
|
+
|
|
|
+/* If the cooperative scheduler is being used then a yield should not be
|
|
|
+ * performed just because a higher priority task has been woken. */
|
|
|
+ #define taskYIELD_IF_USING_PREEMPTION()
|
|
|
+#else
|
|
|
+ #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
|
|
+#endif
|
|
|
+
|
|
|
+/* Values that can be assigned to the ucNotifyState member of the TCB. */
|
|
|
+#define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
|
|
|
+#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
|
|
|
+#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
|
|
|
+
|
|
|
+/*
|
|
|
+ * The value used to fill the stack of a task when the task is created. This
|
|
|
+ * is used purely for checking the high water mark for tasks.
|
|
|
+ */
|
|
|
+#define tskSTACK_FILL_BYTE ( 0xa5U )
|
|
|
+
|
|
|
+/* Bits used to record how a task's stack and TCB were allocated. */
|
|
|
+#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
|
|
|
+#define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
|
|
|
+#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
|
|
|
+
|
|
|
+/* If any of the following are set then task stacks are filled with a known
|
|
|
+ * value so the high water mark can be determined. If none of the following are
|
|
|
+ * set then don't fill the stack so there is no unnecessary dependency on memset. */
|
|
|
+#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
+ #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
|
|
|
+#else
|
|
|
+ #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Macros used by vListTask to indicate which state a task is in.
|
|
|
+ */
|
|
|
+#define tskRUNNING_CHAR ( 'X' )
|
|
|
+#define tskBLOCKED_CHAR ( 'B' )
|
|
|
+#define tskREADY_CHAR ( 'R' )
|
|
|
+#define tskDELETED_CHAR ( 'D' )
|
|
|
+#define tskSUSPENDED_CHAR ( 'S' )
|
|
|
+
|
|
|
+/*
|
|
|
+ * Some kernel aware debuggers require the data the debugger needs access to to
|
|
|
+ * be global, rather than file scope.
|
|
|
+ */
|
|
|
+#ifdef portREMOVE_STATIC_QUALIFIER
|
|
|
+ #define static
|
|
|
+#endif
|
|
|
+
|
|
|
+/* The name allocated to the Idle task. This can be overridden by defining
|
|
|
+ * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
|
|
|
+#ifndef configIDLE_TASK_NAME
|
|
|
+ #define configIDLE_TASK_NAME "IDLE"
|
|
|
+#endif
|
|
|
+
|
|
|
+#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
+
|
|
|
+/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
|
|
|
+ * performed in a generic way that is not optimised to any particular
|
|
|
+ * microcontroller architecture. */
|
|
|
+
|
|
|
+/* uxTopReadyPriority holds the priority of the highest priority ready
|
|
|
+ * state task. */
|
|
|
+ #define taskRECORD_READY_PRIORITY( uxPriority ) \
|
|
|
+ { \
|
|
|
+ if( ( uxPriority ) > uxTopReadyPriority ) \
|
|
|
+ { \
|
|
|
+ uxTopReadyPriority = ( uxPriority ); \
|
|
|
+ } \
|
|
|
+ } /* taskRECORD_READY_PRIORITY */
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+ #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
|
+ { \
|
|
|
+ UBaseType_t uxTopPriority = uxTopReadyPriority; \
|
|
|
+ \
|
|
|
+ /* Find the highest priority queue that contains ready tasks. */ \
|
|
|
+ while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
|
|
|
+ { \
|
|
|
+ configASSERT( uxTopPriority ); \
|
|
|
+ --uxTopPriority; \
|
|
|
+ } \
|
|
|
+ \
|
|
|
+ /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
|
|
|
+ * the same priority get an equal share of the processor time. */ \
|
|
|
+ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
|
|
+ uxTopReadyPriority = uxTopPriority; \
|
|
|
+ } /* taskSELECT_HIGHEST_PRIORITY_TASK */
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
|
|
|
+ * they are only required when a port optimised method of task selection is
|
|
|
+ * being used. */
|
|
|
+ #define taskRESET_READY_PRIORITY( uxPriority )
|
|
|
+ #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
+
|
|
|
+#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
+
|
|
|
+/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
|
|
|
+ * performed in a way that is tailored to the particular microcontroller
|
|
|
+ * architecture being used. */
|
|
|
+
|
|
|
+/* A port optimised version is provided. Call the port defined macros. */
|
|
|
+ #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+ #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
|
+ { \
|
|
|
+ UBaseType_t uxTopPriority; \
|
|
|
+ \
|
|
|
+ /* Find the highest priority list that contains ready tasks. */ \
|
|
|
+ portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
|
|
|
+ configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
|
|
|
+ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
|
|
+ } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+/* A port optimised version is provided, call it only if the TCB being reset
|
|
|
+ * is being referenced from a ready list. If it is referenced from a delayed
|
|
|
+ * or suspended list then it won't be in a ready list. */
|
|
|
+ #define taskRESET_READY_PRIORITY( uxPriority ) \
|
|
|
+ { \
|
|
|
+ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
|
|
|
+ { \
|
|
|
+ portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
|
|
|
+ } \
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
|
|
|
+ * count overflows. */
|
|
|
+#define taskSWITCH_DELAYED_LISTS() \
|
|
|
+ { \
|
|
|
+ List_t * pxTemp; \
|
|
|
+ \
|
|
|
+ /* The delayed tasks list should be empty when the lists are switched. */ \
|
|
|
+ configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
|
|
|
+ \
|
|
|
+ pxTemp = pxDelayedTaskList; \
|
|
|
+ pxDelayedTaskList = pxOverflowDelayedTaskList; \
|
|
|
+ pxOverflowDelayedTaskList = pxTemp; \
|
|
|
+ xNumOfOverflows++; \
|
|
|
+ prvResetNextTaskUnblockTime(); \
|
|
|
+ }
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+/*
|
|
|
+ * Place the task represented by pxTCB into the appropriate ready list for
|
|
|
+ * the task. It is inserted at the end of the list.
|
|
|
+ */
|
|
|
+#define prvAddTaskToReadyList( pxTCB ) \
|
|
|
+ traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
|
|
|
+ taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
|
|
|
+ listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
|
|
|
+ tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+/*
|
|
|
+ * Several functions take a TaskHandle_t parameter that can optionally be NULL,
|
|
|
+ * where NULL is used to indicate that the handle of the currently executing
|
|
|
+ * task should be used in place of the parameter. This macro simply checks to
|
|
|
+ * see if the parameter is NULL and returns a pointer to the appropriate TCB.
|
|
|
+ */
|
|
|
+#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
|
|
|
+
|
|
|
+/* The item value of the event list item is normally used to hold the priority
|
|
|
+ * of the task to which it belongs (coded to allow it to be held in reverse
|
|
|
+ * priority order). However, it is occasionally borrowed for other purposes. It
|
|
|
+ * is important its value is not updated due to a task priority change while it is
|
|
|
+ * being used for another purpose. The following bit definition is used to inform
|
|
|
+ * the scheduler that the value should not be changed - in which case it is the
|
|
|
+ * responsibility of whichever module is using the value to ensure it gets set back
|
|
|
+ * to its original value when it is released. */
|
|
|
+#if ( configUSE_16_BIT_TICKS == 1 )
|
|
|
+ #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
|
|
|
+#else
|
|
|
+ #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Task control block. A task control block (TCB) is allocated for each task,
|
|
|
+ * and stores task state information, including a pointer to the task's context
|
|
|
+ * (the task's run time environment, including register values)
|
|
|
+ */
|
|
|
+typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
|
|
|
+{
|
|
|
+ volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
|
|
|
+
|
|
|
+ #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
+ xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
|
|
|
+ #endif
|
|
|
+
|
|
|
+ ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
|
|
|
+ ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
|
|
|
+ UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
|
|
|
+ StackType_t * pxStack; /*< Points to the start of the stack. */
|
|
|
+ char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
+
|
|
|
+ #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
|
|
|
+ StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
+ UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+ UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
|
|
|
+ UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_MUTEXES == 1 )
|
|
|
+ UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
|
|
|
+ UBaseType_t uxMutexesHeld;
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
+ TaskHookFunction_t pxTaskTag;
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
|
|
|
+ void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
+ uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
+ /* Allocate a Newlib reent structure that is specific to this task.
|
|
|
+ * Note Newlib support has been included by popular demand, but is not
|
|
|
+ * used by the FreeRTOS maintainers themselves. FreeRTOS is not
|
|
|
+ * responsible for resulting newlib operation. User must be familiar with
|
|
|
+ * newlib and must provide system-wide implementations of the necessary
|
|
|
+ * stubs. Be warned that (at the time of writing) the current newlib design
|
|
|
+ * implements a system-wide malloc() that must be provided with locks.
|
|
|
+ *
|
|
|
+ * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
+ * for additional information. */
|
|
|
+ struct _reent xNewLib_reent;
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+ volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
|
|
|
+ volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* See the comments in FreeRTOS.h with the definition of
|
|
|
+ * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
|
|
|
+ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
+ uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
+ uint8_t ucDelayAborted;
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
+ int iTaskErrno;
|
|
|
+ #endif
|
|
|
+} tskTCB;
|
|
|
+
|
|
|
+/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
|
|
|
+ * below to enable the use of older kernel aware debuggers. */
|
|
|
+typedef tskTCB TCB_t;
|
|
|
+
|
|
|
+/*lint -save -e956 A manual analysis and inspection has been used to determine
|
|
|
+ * which static variables must be declared volatile. */
|
|
|
+PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
|
|
|
+
|
|
|
+/* Lists for ready and blocked tasks. --------------------
|
|
|
+ * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
|
|
|
+ * doing so breaks some kernel aware debuggers and debuggers that rely on removing
|
|
|
+ * the static qualifier. */
|
|
|
+PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
|
|
|
+PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
|
|
|
+PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
|
|
|
+PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
|
|
|
+PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
|
|
|
+PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+
|
|
|
+ PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
|
|
|
+ PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+
|
|
|
+ PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/* Global POSIX errno. Its value is changed upon context switching to match
|
|
|
+ * the errno of the currently running task. */
|
|
|
+#if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
+ int FreeRTOS_errno = 0;
|
|
|
+#endif
|
|
|
+
|
|
|
+/* Other file private variables. --------------------------------*/
|
|
|
+PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
|
|
|
+PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
|
|
|
+PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
|
|
|
+PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
|
|
|
+PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
|
|
|
+PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
|
|
|
+PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
|
|
|
+PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
|
|
|
+PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
|
|
|
+PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
|
|
|
+
|
|
|
+/* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
|
|
|
+ * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
|
|
|
+ * to determine the number of priority lists to read back from the remote target. */
|
|
|
+const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
|
|
|
+
|
|
|
+/* Context switches are held pending while the scheduler is suspended. Also,
|
|
|
+ * interrupts must not manipulate the xStateListItem of a TCB, or any of the
|
|
|
+ * lists the xStateListItem can be referenced from, if the scheduler is suspended.
|
|
|
+ * If an interrupt needs to unblock a task while the scheduler is suspended then it
|
|
|
+ * moves the task's event list item into the xPendingReadyList, ready for the
|
|
|
+ * kernel to move the task from the pending ready list into the real ready list
|
|
|
+ * when the scheduler is unsuspended. The pending ready list itself can only be
|
|
|
+ * accessed from a critical section. */
|
|
|
+PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
|
|
|
+
|
|
|
+#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
+
|
|
|
+/* Do not move these variables to function scope as doing so prevents the
|
|
|
+ * code working with debuggers that need to remove the static qualifier. */
|
|
|
+ PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
|
|
|
+ PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*lint -restore */
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+/* File private functions. --------------------------------*/
|
|
|
+
|
|
|
+/**
|
|
|
+ * Utility task that simply returns pdTRUE if the task referenced by xTask is
|
|
|
+ * currently in the Suspended state, or pdFALSE if the task referenced by xTask
|
|
|
+ * is in any other state.
|
|
|
+ */
|
|
|
+#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+
|
|
|
+ static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskSuspend */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Utility to ready all the lists used by the scheduler. This is called
|
|
|
+ * automatically upon the creation of the first task.
|
|
|
+ */
|
|
|
+static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+/*
|
|
|
+ * The idle task, which as all tasks is implemented as a never ending loop.
|
|
|
+ * The idle task is automatically created and added to the ready lists upon
|
|
|
+ * creation of the first user task.
|
|
|
+ *
|
|
|
+ * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
|
|
|
+ * language extensions. The equivalent prototype for this function is:
|
|
|
+ *
|
|
|
+ * void prvIdleTask( void *pvParameters );
|
|
|
+ *
|
|
|
+ */
|
|
|
+static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Utility to free all memory allocated by the scheduler to hold a TCB,
|
|
|
+ * including the stack pointed to by the TCB.
|
|
|
+ *
|
|
|
+ * This does not free memory allocated by the task itself (i.e. memory
|
|
|
+ * allocated by calls to pvPortMalloc from within the tasks application code).
|
|
|
+ */
|
|
|
+#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+
|
|
|
+ static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Used only by the idle task. This checks to see if anything has been placed
|
|
|
+ * in the list of tasks waiting to be deleted. If so the task is cleaned up
|
|
|
+ * and its TCB deleted.
|
|
|
+ */
|
|
|
+static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+/*
|
|
|
+ * The currently executing task is entering the Blocked state. Add the task to
|
|
|
+ * either the current or the overflow delayed task list.
|
|
|
+ */
|
|
|
+static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
|
|
|
+ const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Fills an TaskStatus_t structure with information on each task that is
|
|
|
+ * referenced from the pxList list (which may be a ready list, a delayed list,
|
|
|
+ * a suspended list, etc.).
|
|
|
+ *
|
|
|
+ * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
|
|
|
+ * NORMAL APPLICATION CODE.
|
|
|
+ */
|
|
|
+#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+
|
|
|
+ static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
|
|
|
+ List_t * pxList,
|
|
|
+ eTaskState eState ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Searches pxList for a task with name pcNameToQuery - returning a handle to
|
|
|
+ * the task if it is found, or NULL if the task is not found.
|
|
|
+ */
|
|
|
+#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
+
|
|
|
+ static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
|
|
|
+ const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * When a task is created, the stack of the task is filled with a known value.
|
|
|
+ * This function determines the 'high water mark' of the task stack by
|
|
|
+ * determining how much of the stack remains at the original preset value.
|
|
|
+ */
|
|
|
+#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
+
|
|
|
+ static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return the amount of time, in ticks, that will pass before the kernel will
|
|
|
+ * next move a task from the Blocked state to the Running state.
|
|
|
+ *
|
|
|
+ * This conditional compilation should use inequality to 0, not equality to 1.
|
|
|
+ * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
|
|
|
+ * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
|
|
|
+ * set to a value other than 1.
|
|
|
+ */
|
|
|
+#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+
|
|
|
+ static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Set xNextTaskUnblockTime to the time at which the next Blocked state task
|
|
|
+ * will exit the Blocked state.
|
|
|
+ */
|
|
|
+static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
+
|
|
|
+/*
|
|
|
+ * Helper function used to pad task names with spaces when printing out
|
|
|
+ * human readable tables of task information.
|
|
|
+ */
|
|
|
+ static char * prvWriteNameToBuffer( char * pcBuffer,
|
|
|
+ const char * pcTaskName ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Called after a Task_t structure has been allocated either statically or
|
|
|
+ * dynamically to fill in the structure's members.
|
|
|
+ */
|
|
|
+static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
|
|
|
+ const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
+ const uint32_t ulStackDepth,
|
|
|
+ void * const pvParameters,
|
|
|
+ UBaseType_t uxPriority,
|
|
|
+ TaskHandle_t * const pxCreatedTask,
|
|
|
+ TCB_t * pxNewTCB,
|
|
|
+ const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Called after a new task has been created and initialised to place the task
|
|
|
+ * under the control of the scheduler.
|
|
|
+ */
|
|
|
+static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+/*
|
|
|
+ * freertos_tasks_c_additions_init() should only be called if the user definable
|
|
|
+ * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
|
|
|
+ * called by the function.
|
|
|
+ */
|
|
|
+#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
+
|
|
|
+ static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
+
|
|
|
+ TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
|
|
|
+ const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
+ const uint32_t ulStackDepth,
|
|
|
+ void * const pvParameters,
|
|
|
+ UBaseType_t uxPriority,
|
|
|
+ StackType_t * const puxStackBuffer,
|
|
|
+ StaticTask_t * const pxTaskBuffer )
|
|
|
+ {
|
|
|
+ TCB_t * pxNewTCB;
|
|
|
+ TaskHandle_t xReturn;
|
|
|
+
|
|
|
+ configASSERT( puxStackBuffer != NULL );
|
|
|
+ configASSERT( pxTaskBuffer != NULL );
|
|
|
+
|
|
|
+ #if ( configASSERT_DEFINED == 1 )
|
|
|
+ {
|
|
|
+ /* Sanity check that the size of the structure used to declare a
|
|
|
+ * variable of type StaticTask_t equals the size of the real task
|
|
|
+ * structure. */
|
|
|
+ volatile size_t xSize = sizeof( StaticTask_t );
|
|
|
+ configASSERT( xSize == sizeof( TCB_t ) );
|
|
|
+ ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
|
|
|
+ }
|
|
|
+ #endif /* configASSERT_DEFINED */
|
|
|
+
|
|
|
+ if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
|
|
|
+ {
|
|
|
+ /* The memory used for the task's TCB and stack are passed into this
|
|
|
+ * function - use them. */
|
|
|
+ pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
|
|
|
+ pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
|
|
|
+
|
|
|
+ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
+ {
|
|
|
+ /* Tasks can be created statically or dynamically, so note this
|
|
|
+ * task was created statically in case the task is later deleted. */
|
|
|
+ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
|
|
|
+ }
|
|
|
+ #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
+
|
|
|
+ prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
|
|
|
+ prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* SUPPORT_STATIC_ALLOCATION */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
|
|
|
+
|
|
|
+ BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
|
|
|
+ TaskHandle_t * pxCreatedTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxNewTCB;
|
|
|
+ BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
+
|
|
|
+ configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
|
|
|
+ configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
|
|
|
+
|
|
|
+ if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
|
|
|
+ {
|
|
|
+ /* Allocate space for the TCB. Where the memory comes from depends
|
|
|
+ * on the implementation of the port malloc function and whether or
|
|
|
+ * not static allocation is being used. */
|
|
|
+ pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
|
|
|
+
|
|
|
+ /* Store the stack location in the TCB. */
|
|
|
+ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
|
|
|
+
|
|
|
+ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
|
|
|
+ {
|
|
|
+ /* Tasks can be created statically or dynamically, so note this
|
|
|
+ * task was created statically in case the task is later deleted. */
|
|
|
+ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
|
|
|
+ }
|
|
|
+ #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
+
|
|
|
+ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
|
|
|
+ pxTaskDefinition->pcName,
|
|
|
+ ( uint32_t ) pxTaskDefinition->usStackDepth,
|
|
|
+ pxTaskDefinition->pvParameters,
|
|
|
+ pxTaskDefinition->uxPriority,
|
|
|
+ pxCreatedTask, pxNewTCB,
|
|
|
+ pxTaskDefinition->xRegions );
|
|
|
+
|
|
|
+ prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
+ xReturn = pdPASS;
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
+
|
|
|
+ BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
|
|
|
+ TaskHandle_t * pxCreatedTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxNewTCB;
|
|
|
+ BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
+
|
|
|
+ configASSERT( pxTaskDefinition->puxStackBuffer );
|
|
|
+
|
|
|
+ if( pxTaskDefinition->puxStackBuffer != NULL )
|
|
|
+ {
|
|
|
+ /* Allocate space for the TCB. Where the memory comes from depends
|
|
|
+ * on the implementation of the port malloc function and whether or
|
|
|
+ * not static allocation is being used. */
|
|
|
+ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
|
|
+
|
|
|
+ if( pxNewTCB != NULL )
|
|
|
+ {
|
|
|
+ /* Store the stack location in the TCB. */
|
|
|
+ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
|
|
|
+
|
|
|
+ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
|
|
|
+ {
|
|
|
+ /* Tasks can be created statically or dynamically, so note
|
|
|
+ * this task had a statically allocated stack in case it is
|
|
|
+ * later deleted. The TCB was allocated dynamically. */
|
|
|
+ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
|
|
|
+ }
|
|
|
+ #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
+
|
|
|
+ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
|
|
|
+ pxTaskDefinition->pcName,
|
|
|
+ ( uint32_t ) pxTaskDefinition->usStackDepth,
|
|
|
+ pxTaskDefinition->pvParameters,
|
|
|
+ pxTaskDefinition->uxPriority,
|
|
|
+ pxCreatedTask, pxNewTCB,
|
|
|
+ pxTaskDefinition->xRegions );
|
|
|
+
|
|
|
+ prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
+ xReturn = pdPASS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* portUSING_MPU_WRAPPERS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
|
|
|
+ const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
+ const configSTACK_DEPTH_TYPE usStackDepth,
|
|
|
+ void * const pvParameters,
|
|
|
+ UBaseType_t uxPriority,
|
|
|
+ TaskHandle_t * const pxCreatedTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxNewTCB;
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ /* If the stack grows down then allocate the stack then the TCB so the stack
|
|
|
+ * does not grow into the TCB. Likewise if the stack grows up then allocate
|
|
|
+ * the TCB then the stack. */
|
|
|
+ #if ( portSTACK_GROWTH > 0 )
|
|
|
+ {
|
|
|
+ /* Allocate space for the TCB. Where the memory comes from depends on
|
|
|
+ * the implementation of the port malloc function and whether or not static
|
|
|
+ * allocation is being used. */
|
|
|
+ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
|
|
+
|
|
|
+ if( pxNewTCB != NULL )
|
|
|
+ {
|
|
|
+ /* Allocate space for the stack used by the task being created.
|
|
|
+ * The base of the stack memory stored in the TCB so the task can
|
|
|
+ * be deleted later if required. */
|
|
|
+ pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+
|
|
|
+ if( pxNewTCB->pxStack == NULL )
|
|
|
+ {
|
|
|
+ /* Could not allocate the stack. Delete the allocated TCB. */
|
|
|
+ vPortFree( pxNewTCB );
|
|
|
+ pxNewTCB = NULL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #else /* portSTACK_GROWTH */
|
|
|
+ {
|
|
|
+ StackType_t * pxStack;
|
|
|
+
|
|
|
+ /* Allocate space for the stack used by the task being created. */
|
|
|
+ pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
|
|
|
+
|
|
|
+ if( pxStack != NULL )
|
|
|
+ {
|
|
|
+ /* Allocate space for the TCB. */
|
|
|
+ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
|
|
|
+
|
|
|
+ if( pxNewTCB != NULL )
|
|
|
+ {
|
|
|
+ /* Store the stack location in the TCB. */
|
|
|
+ pxNewTCB->pxStack = pxStack;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The stack cannot be used as the TCB was not created. Free
|
|
|
+ * it again. */
|
|
|
+ vPortFreeStack( pxStack );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pxNewTCB = NULL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* portSTACK_GROWTH */
|
|
|
+
|
|
|
+ if( pxNewTCB != NULL )
|
|
|
+ {
|
|
|
+ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
|
|
|
+ {
|
|
|
+ /* Tasks can be created statically or dynamically, so note this
|
|
|
+ * task was created dynamically in case it is later deleted. */
|
|
|
+ pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
|
|
|
+ }
|
|
|
+ #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
+
|
|
|
+ prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
|
|
|
+ prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
+ xReturn = pdPASS;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
|
|
|
+ const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
+ const uint32_t ulStackDepth,
|
|
|
+ void * const pvParameters,
|
|
|
+ UBaseType_t uxPriority,
|
|
|
+ TaskHandle_t * const pxCreatedTask,
|
|
|
+ TCB_t * pxNewTCB,
|
|
|
+ const MemoryRegion_t * const xRegions )
|
|
|
+{
|
|
|
+ StackType_t * pxTopOfStack;
|
|
|
+ UBaseType_t x;
|
|
|
+
|
|
|
+ #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
+ /* Should the task be created in privileged mode? */
|
|
|
+ BaseType_t xRunPrivileged;
|
|
|
+
|
|
|
+ if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
|
|
|
+ {
|
|
|
+ xRunPrivileged = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xRunPrivileged = pdFALSE;
|
|
|
+ }
|
|
|
+ uxPriority &= ~portPRIVILEGE_BIT;
|
|
|
+ #endif /* portUSING_MPU_WRAPPERS == 1 */
|
|
|
+
|
|
|
+ /* Avoid dependency on memset() if it is not required. */
|
|
|
+ #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
|
|
|
+ {
|
|
|
+ /* Fill the stack with a known value to assist debugging. */
|
|
|
+ ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
|
|
|
+ }
|
|
|
+ #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
|
|
|
+
|
|
|
+ /* Calculate the top of stack address. This depends on whether the stack
|
|
|
+ * grows from high memory to low (as per the 80x86) or vice versa.
|
|
|
+ * portSTACK_GROWTH is used to make the result positive or negative as required
|
|
|
+ * by the port. */
|
|
|
+ #if ( portSTACK_GROWTH < 0 )
|
|
|
+ {
|
|
|
+ pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
|
|
|
+ pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
|
|
|
+
|
|
|
+ /* Check the alignment of the calculated top of stack is correct. */
|
|
|
+ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
+
|
|
|
+ #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
|
|
|
+ {
|
|
|
+ /* Also record the stack's high address, which may assist
|
|
|
+ * debugging. */
|
|
|
+ pxNewTCB->pxEndOfStack = pxTopOfStack;
|
|
|
+ }
|
|
|
+ #endif /* configRECORD_STACK_HIGH_ADDRESS */
|
|
|
+ }
|
|
|
+ #else /* portSTACK_GROWTH */
|
|
|
+ {
|
|
|
+ pxTopOfStack = pxNewTCB->pxStack;
|
|
|
+
|
|
|
+ /* Check the alignment of the stack buffer is correct. */
|
|
|
+ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
+
|
|
|
+ /* The other extreme of the stack space is required if stack checking is
|
|
|
+ * performed. */
|
|
|
+ pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
|
|
|
+ }
|
|
|
+ #endif /* portSTACK_GROWTH */
|
|
|
+
|
|
|
+ /* Store the task name in the TCB. */
|
|
|
+ if( pcName != NULL )
|
|
|
+ {
|
|
|
+ for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
|
+ {
|
|
|
+ pxNewTCB->pcTaskName[ x ] = pcName[ x ];
|
|
|
+
|
|
|
+ /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
|
|
|
+ * configMAX_TASK_NAME_LEN characters just in case the memory after the
|
|
|
+ * string is not accessible (extremely unlikely). */
|
|
|
+ if( pcName[ x ] == ( char ) 0x00 )
|
|
|
+ {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Ensure the name string is terminated in the case that the string length
|
|
|
+ * was greater or equal to configMAX_TASK_NAME_LEN. */
|
|
|
+ pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The task has not been given a name, so just ensure there is a NULL
|
|
|
+ * terminator when it is read out. */
|
|
|
+ pxNewTCB->pcTaskName[ 0 ] = 0x00;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* This is used as an array index so must ensure it's not too large. */
|
|
|
+ configASSERT( uxPriority < configMAX_PRIORITIES );
|
|
|
+ if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
|
+ {
|
|
|
+ uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ pxNewTCB->uxPriority = uxPriority;
|
|
|
+ #if ( configUSE_MUTEXES == 1 )
|
|
|
+ {
|
|
|
+ pxNewTCB->uxBasePriority = uxPriority;
|
|
|
+ pxNewTCB->uxMutexesHeld = 0;
|
|
|
+ }
|
|
|
+ #endif /* configUSE_MUTEXES */
|
|
|
+
|
|
|
+ vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
|
|
|
+ vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
|
|
|
+
|
|
|
+ /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
|
|
|
+ * back to the containing TCB from a generic item in a list. */
|
|
|
+ listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
|
|
|
+
|
|
|
+ /* Event lists are always in priority order. */
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+ listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
|
|
|
+
|
|
|
+ #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
+ {
|
|
|
+ pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
|
|
|
+ }
|
|
|
+ #endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
+
|
|
|
+ #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
+ {
|
|
|
+ pxNewTCB->pxTaskTag = NULL;
|
|
|
+ }
|
|
|
+ #endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
+
|
|
|
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
+ {
|
|
|
+ pxNewTCB->ulRunTimeCounter = 0UL;
|
|
|
+ }
|
|
|
+ #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
+
|
|
|
+ #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
+ {
|
|
|
+ vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ /* Avoid compiler warning about unreferenced parameter. */
|
|
|
+ ( void ) xRegions;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
+ {
|
|
|
+ memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+ {
|
|
|
+ memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
|
|
|
+ memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
+ {
|
|
|
+ /* Initialise this task's Newlib reent structure.
|
|
|
+ * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
+ * for additional information. */
|
|
|
+ _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
+ {
|
|
|
+ pxNewTCB->ucDelayAborted = pdFALSE;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* Initialize the TCB stack to look as if the task was already running,
|
|
|
+ * but had been interrupted by the scheduler. The return address is set
|
|
|
+ * to the start of the task function. Once the stack has been initialised
|
|
|
+ * the top of stack variable is updated. */
|
|
|
+ #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
+ {
|
|
|
+ /* If the port has capability to detect stack overflow,
|
|
|
+ * pass the stack end address to the stack initialization
|
|
|
+ * function as well. */
|
|
|
+ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
|
|
|
+ {
|
|
|
+ #if ( portSTACK_GROWTH < 0 )
|
|
|
+ {
|
|
|
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
+ }
|
|
|
+ #else /* portSTACK_GROWTH */
|
|
|
+ {
|
|
|
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
+ }
|
|
|
+ #endif /* portSTACK_GROWTH */
|
|
|
+ }
|
|
|
+ #else /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
+ {
|
|
|
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
+ }
|
|
|
+ #endif /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
+ }
|
|
|
+ #else /* portUSING_MPU_WRAPPERS */
|
|
|
+ {
|
|
|
+ /* If the port has capability to detect stack overflow,
|
|
|
+ * pass the stack end address to the stack initialization
|
|
|
+ * function as well. */
|
|
|
+ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
|
|
|
+ {
|
|
|
+ #if ( portSTACK_GROWTH < 0 )
|
|
|
+ {
|
|
|
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
|
|
|
+ }
|
|
|
+ #else /* portSTACK_GROWTH */
|
|
|
+ {
|
|
|
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
|
|
|
+ }
|
|
|
+ #endif /* portSTACK_GROWTH */
|
|
|
+ }
|
|
|
+ #else /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
+ {
|
|
|
+ pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
|
|
|
+ }
|
|
|
+ #endif /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
+ }
|
|
|
+ #endif /* portUSING_MPU_WRAPPERS */
|
|
|
+
|
|
|
+ if( pxCreatedTask != NULL )
|
|
|
+ {
|
|
|
+ /* Pass the handle out in an anonymous way. The handle can be used to
|
|
|
+ * change the created task's priority, delete the created task, etc.*/
|
|
|
+ *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
|
|
|
+{
|
|
|
+ /* Ensure interrupts don't access the task lists while the lists are being
|
|
|
+ * updated. */
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ uxCurrentNumberOfTasks++;
|
|
|
+
|
|
|
+ if( pxCurrentTCB == NULL )
|
|
|
+ {
|
|
|
+ /* There are no other tasks, or all the other tasks are in
|
|
|
+ * the suspended state - make this the current task. */
|
|
|
+ pxCurrentTCB = pxNewTCB;
|
|
|
+
|
|
|
+ if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
|
|
|
+ {
|
|
|
+ /* This is the first task to be created so do the preliminary
|
|
|
+ * initialisation required. We will not recover if this call
|
|
|
+ * fails, but we will report the failure. */
|
|
|
+ prvInitialiseTaskLists();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* If the scheduler is not already running, make this task the
|
|
|
+ * current task if it is the highest priority task to be created
|
|
|
+ * so far. */
|
|
|
+ if( xSchedulerRunning == pdFALSE )
|
|
|
+ {
|
|
|
+ if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
|
|
|
+ {
|
|
|
+ pxCurrentTCB = pxNewTCB;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ uxTaskNumber++;
|
|
|
+
|
|
|
+ #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+ {
|
|
|
+ /* Add a counter into the TCB for tracing only. */
|
|
|
+ pxNewTCB->uxTCBNumber = uxTaskNumber;
|
|
|
+ }
|
|
|
+ #endif /* configUSE_TRACE_FACILITY */
|
|
|
+ traceTASK_CREATE( pxNewTCB );
|
|
|
+
|
|
|
+ prvAddTaskToReadyList( pxNewTCB );
|
|
|
+
|
|
|
+ portSETUP_TCB( pxNewTCB );
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ if( xSchedulerRunning != pdFALSE )
|
|
|
+ {
|
|
|
+ /* If the created task is of a higher priority than the current task
|
|
|
+ * then it should run now. */
|
|
|
+ if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
|
|
|
+ {
|
|
|
+ taskYIELD_IF_USING_PREEMPTION();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+
|
|
|
+ void vTaskDelete( TaskHandle_t xTaskToDelete )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* If null is passed in here then it is the calling task that is
|
|
|
+ * being deleted. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTaskToDelete );
|
|
|
+
|
|
|
+ /* Remove task from the ready/delayed list. */
|
|
|
+ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Is the task waiting on an event also? */
|
|
|
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
+ {
|
|
|
+ ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Increment the uxTaskNumber also so kernel aware debuggers can
|
|
|
+ * detect that the task lists need re-generating. This is done before
|
|
|
+ * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
|
|
|
+ * not return. */
|
|
|
+ uxTaskNumber++;
|
|
|
+
|
|
|
+ if( pxTCB == pxCurrentTCB )
|
|
|
+ {
|
|
|
+ /* A task is deleting itself. This cannot complete within the
|
|
|
+ * task itself, as a context switch to another task is required.
|
|
|
+ * Place the task in the termination list. The idle task will
|
|
|
+ * check the termination list and free up any memory allocated by
|
|
|
+ * the scheduler for the TCB and stack of the deleted task. */
|
|
|
+ vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
|
|
|
+
|
|
|
+ /* Increment the ucTasksDeleted variable so the idle task knows
|
|
|
+ * there is a task that has been deleted and that it should therefore
|
|
|
+ * check the xTasksWaitingTermination list. */
|
|
|
+ ++uxDeletedTasksWaitingCleanUp;
|
|
|
+
|
|
|
+ /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
|
|
|
+ * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
|
|
|
+ traceTASK_DELETE( pxTCB );
|
|
|
+
|
|
|
+ /* The pre-delete hook is primarily for the Windows simulator,
|
|
|
+ * in which Windows specific clean up operations are performed,
|
|
|
+ * after which it is not possible to yield away from this task -
|
|
|
+ * hence xYieldPending is used to latch that a context switch is
|
|
|
+ * required. */
|
|
|
+ portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ --uxCurrentNumberOfTasks;
|
|
|
+ traceTASK_DELETE( pxTCB );
|
|
|
+ prvDeleteTCB( pxTCB );
|
|
|
+
|
|
|
+ /* Reset the next expected unblock time in case it referred to
|
|
|
+ * the task that has just been deleted. */
|
|
|
+ prvResetNextTaskUnblockTime();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ /* Force a reschedule if it is the currently running task that has just
|
|
|
+ * been deleted. */
|
|
|
+ if( xSchedulerRunning != pdFALSE )
|
|
|
+ {
|
|
|
+ if( pxTCB == pxCurrentTCB )
|
|
|
+ {
|
|
|
+ configASSERT( uxSchedulerSuspended == 0 );
|
|
|
+ portYIELD_WITHIN_API();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskDelete */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_xTaskDelayUntil == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
|
|
|
+ const TickType_t xTimeIncrement )
|
|
|
+ {
|
|
|
+ TickType_t xTimeToWake;
|
|
|
+ BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
|
|
|
+
|
|
|
+ configASSERT( pxPreviousWakeTime );
|
|
|
+ configASSERT( ( xTimeIncrement > 0U ) );
|
|
|
+ configASSERT( uxSchedulerSuspended == 0 );
|
|
|
+
|
|
|
+ vTaskSuspendAll();
|
|
|
+ {
|
|
|
+ /* Minor optimisation. The tick count cannot change in this
|
|
|
+ * block. */
|
|
|
+ const TickType_t xConstTickCount = xTickCount;
|
|
|
+
|
|
|
+ /* Generate the tick time at which the task wants to wake. */
|
|
|
+ xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
|
|
|
+
|
|
|
+ if( xConstTickCount < *pxPreviousWakeTime )
|
|
|
+ {
|
|
|
+ /* The tick count has overflowed since this function was
|
|
|
+ * lasted called. In this case the only time we should ever
|
|
|
+ * actually delay is if the wake time has also overflowed,
|
|
|
+ * and the wake time is greater than the tick time. When this
|
|
|
+ * is the case it is as if neither time had overflowed. */
|
|
|
+ if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
|
|
|
+ {
|
|
|
+ xShouldDelay = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The tick time has not overflowed. In this case we will
|
|
|
+ * delay if either the wake time has overflowed, and/or the
|
|
|
+ * tick time is less than the wake time. */
|
|
|
+ if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
|
|
|
+ {
|
|
|
+ xShouldDelay = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Update the wake time ready for the next call. */
|
|
|
+ *pxPreviousWakeTime = xTimeToWake;
|
|
|
+
|
|
|
+ if( xShouldDelay != pdFALSE )
|
|
|
+ {
|
|
|
+ traceTASK_DELAY_UNTIL( xTimeToWake );
|
|
|
+
|
|
|
+ /* prvAddCurrentTaskToDelayedList() needs the block time, not
|
|
|
+ * the time to wake, so subtract the current tick count. */
|
|
|
+ prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ xAlreadyYielded = xTaskResumeAll();
|
|
|
+
|
|
|
+ /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
|
+ * have put ourselves to sleep. */
|
|
|
+ if( xAlreadyYielded == pdFALSE )
|
|
|
+ {
|
|
|
+ portYIELD_WITHIN_API();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ return xShouldDelay;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_xTaskDelayUntil */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskDelay == 1 )
|
|
|
+
|
|
|
+ void vTaskDelay( const TickType_t xTicksToDelay )
|
|
|
+ {
|
|
|
+ BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
+
|
|
|
+ /* A delay time of zero just forces a reschedule. */
|
|
|
+ if( xTicksToDelay > ( TickType_t ) 0U )
|
|
|
+ {
|
|
|
+ configASSERT( uxSchedulerSuspended == 0 );
|
|
|
+ vTaskSuspendAll();
|
|
|
+ {
|
|
|
+ traceTASK_DELAY();
|
|
|
+
|
|
|
+ /* A task that is removed from the event list while the
|
|
|
+ * scheduler is suspended will not get placed in the ready
|
|
|
+ * list or removed from the blocked list until the scheduler
|
|
|
+ * is resumed.
|
|
|
+ *
|
|
|
+ * This task cannot be in an event list as it is the currently
|
|
|
+ * executing task. */
|
|
|
+ prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
|
|
|
+ }
|
|
|
+ xAlreadyYielded = xTaskResumeAll();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
|
+ * have put ourselves to sleep. */
|
|
|
+ if( xAlreadyYielded == pdFALSE )
|
|
|
+ {
|
|
|
+ portYIELD_WITHIN_API();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskDelay */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
|
|
|
+
|
|
|
+ eTaskState eTaskGetState( TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ eTaskState eReturn;
|
|
|
+ List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
|
|
|
+ const TCB_t * const pxTCB = xTask;
|
|
|
+
|
|
|
+ configASSERT( pxTCB );
|
|
|
+
|
|
|
+ if( pxTCB == pxCurrentTCB )
|
|
|
+ {
|
|
|
+ /* The task calling this function is querying its own state. */
|
|
|
+ eReturn = eRunning;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
|
|
|
+ pxDelayedList = pxDelayedTaskList;
|
|
|
+ pxOverflowedDelayedList = pxOverflowDelayedTaskList;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
|
|
|
+ {
|
|
|
+ /* The task being queried is referenced from one of the Blocked
|
|
|
+ * lists. */
|
|
|
+ eReturn = eBlocked;
|
|
|
+ }
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+ else if( pxStateList == &xSuspendedTaskList )
|
|
|
+ {
|
|
|
+ /* The task being queried is referenced from the suspended
|
|
|
+ * list. Is it genuinely suspended or is it blocked
|
|
|
+ * indefinitely? */
|
|
|
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
|
|
|
+ {
|
|
|
+ #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+ {
|
|
|
+ BaseType_t x;
|
|
|
+
|
|
|
+ /* The task does not appear on the event list item of
|
|
|
+ * and of the RTOS objects, but could still be in the
|
|
|
+ * blocked state if it is waiting on its notification
|
|
|
+ * rather than waiting on an object. If not, is
|
|
|
+ * suspended. */
|
|
|
+ eReturn = eSuspended;
|
|
|
+
|
|
|
+ for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
|
|
|
+ {
|
|
|
+ if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
|
|
|
+ {
|
|
|
+ eReturn = eBlocked;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
+ {
|
|
|
+ eReturn = eSuspended;
|
|
|
+ }
|
|
|
+ #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ eReturn = eBlocked;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+ else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
|
|
|
+ {
|
|
|
+ /* The task being queried is referenced from the deleted
|
|
|
+ * tasks list, or it is not referenced from any lists at
|
|
|
+ * all. */
|
|
|
+ eReturn = eDeleted;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
|
|
|
+ {
|
|
|
+ /* If the task is not in any other state, it must be in the
|
|
|
+ * Ready (including pending ready) state. */
|
|
|
+ eReturn = eReady;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return eReturn;
|
|
|
+ } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
+
|
|
|
+#endif /* INCLUDE_eTaskGetState */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
|
+
|
|
|
+ UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ TCB_t const * pxTCB;
|
|
|
+ UBaseType_t uxReturn;
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* If null is passed in here then it is the priority of the task
|
|
|
+ * that called uxTaskPriorityGet() that is being queried. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+ uxReturn = pxTCB->uxPriority;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return uxReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_uxTaskPriorityGet */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
|
+
|
|
|
+ UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ TCB_t const * pxTCB;
|
|
|
+ UBaseType_t uxReturn, uxSavedInterruptState;
|
|
|
+
|
|
|
+ /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
+ * maximum system call (or maximum API call) interrupt priority.
|
|
|
+ * Interrupts that are above the maximum system call priority are keep
|
|
|
+ * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
+ * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
+ * is defined in FreeRTOSConfig.h then
|
|
|
+ * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
+ * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
+ * been assigned a priority above the configured maximum system call
|
|
|
+ * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
+ * from interrupts that have been assigned a priority at or (logically)
|
|
|
+ * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
+ * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
+ * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
+ * provided on the following link:
|
|
|
+ * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
+
|
|
|
+ uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
+ {
|
|
|
+ /* If null is passed in here then it is the priority of the calling
|
|
|
+ * task that is being queried. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+ uxReturn = pxTCB->uxPriority;
|
|
|
+ }
|
|
|
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
|
|
|
+
|
|
|
+ return uxReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_uxTaskPriorityGet */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskPrioritySet == 1 )
|
|
|
+
|
|
|
+ void vTaskPrioritySet( TaskHandle_t xTask,
|
|
|
+ UBaseType_t uxNewPriority )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
|
|
|
+ BaseType_t xYieldRequired = pdFALSE;
|
|
|
+
|
|
|
+ configASSERT( uxNewPriority < configMAX_PRIORITIES );
|
|
|
+
|
|
|
+ /* Ensure the new priority is valid. */
|
|
|
+ if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
|
+ {
|
|
|
+ uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* If null is passed in here then it is the priority of the calling
|
|
|
+ * task that is being changed. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
|
|
|
+
|
|
|
+ #if ( configUSE_MUTEXES == 1 )
|
|
|
+ {
|
|
|
+ uxCurrentBasePriority = pxTCB->uxBasePriority;
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ uxCurrentBasePriority = pxTCB->uxPriority;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ if( uxCurrentBasePriority != uxNewPriority )
|
|
|
+ {
|
|
|
+ /* The priority change may have readied a task of higher
|
|
|
+ * priority than the calling task. */
|
|
|
+ if( uxNewPriority > uxCurrentBasePriority )
|
|
|
+ {
|
|
|
+ if( pxTCB != pxCurrentTCB )
|
|
|
+ {
|
|
|
+ /* The priority of a task other than the currently
|
|
|
+ * running task is being raised. Is the priority being
|
|
|
+ * raised above that of the running task? */
|
|
|
+ if( uxNewPriority >= pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ xYieldRequired = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The priority of the running task is being raised,
|
|
|
+ * but the running task must already be the highest
|
|
|
+ * priority task able to run so no yield is required. */
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if( pxTCB == pxCurrentTCB )
|
|
|
+ {
|
|
|
+ /* Setting the priority of the running task down means
|
|
|
+ * there may now be another task of higher priority that
|
|
|
+ * is ready to execute. */
|
|
|
+ xYieldRequired = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* Setting the priority of any other task down does not
|
|
|
+ * require a yield as the running task must be above the
|
|
|
+ * new priority of the task being modified. */
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Remember the ready list the task might be referenced from
|
|
|
+ * before its uxPriority member is changed so the
|
|
|
+ * taskRESET_READY_PRIORITY() macro can function correctly. */
|
|
|
+ uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
+
|
|
|
+ #if ( configUSE_MUTEXES == 1 )
|
|
|
+ {
|
|
|
+ /* Only change the priority being used if the task is not
|
|
|
+ * currently using an inherited priority. */
|
|
|
+ if( pxTCB->uxBasePriority == pxTCB->uxPriority )
|
|
|
+ {
|
|
|
+ pxTCB->uxPriority = uxNewPriority;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* The base priority gets set whatever. */
|
|
|
+ pxTCB->uxBasePriority = uxNewPriority;
|
|
|
+ }
|
|
|
+ #else /* if ( configUSE_MUTEXES == 1 ) */
|
|
|
+ {
|
|
|
+ pxTCB->uxPriority = uxNewPriority;
|
|
|
+ }
|
|
|
+ #endif /* if ( configUSE_MUTEXES == 1 ) */
|
|
|
+
|
|
|
+ /* Only reset the event list item value if the value is not
|
|
|
+ * being used for anything else. */
|
|
|
+ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
+ {
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If the task is in the blocked or suspended list we need do
|
|
|
+ * nothing more than change its priority variable. However, if
|
|
|
+ * the task is in a ready list it needs to be removed and placed
|
|
|
+ * in the list appropriate to its new priority. */
|
|
|
+ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
+ {
|
|
|
+ /* The task is currently in its ready list - remove before
|
|
|
+ * adding it to its new ready list. As we are in a critical
|
|
|
+ * section we can do this even if the scheduler is suspended. */
|
|
|
+ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ /* It is known that the task is in its ready list so
|
|
|
+ * there is no need to check again and the port level
|
|
|
+ * reset macro can be called directly. */
|
|
|
+ portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ if( xYieldRequired != pdFALSE )
|
|
|
+ {
|
|
|
+ taskYIELD_IF_USING_PREEMPTION();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Remove compiler warning about unused variables when the port
|
|
|
+ * optimised task selection is not being used. */
|
|
|
+ ( void ) uxPriorityUsedOnEntry;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskPrioritySet */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+
|
|
|
+ void vTaskSuspend( TaskHandle_t xTaskToSuspend )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* If null is passed in here then it is the running task that is
|
|
|
+ * being suspended. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
|
|
|
+
|
|
|
+ traceTASK_SUSPEND( pxTCB );
|
|
|
+
|
|
|
+ /* Remove task from the ready/delayed list and place in the
|
|
|
+ * suspended list. */
|
|
|
+ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Is the task waiting on an event also? */
|
|
|
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
+ {
|
|
|
+ ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
|
|
|
+
|
|
|
+ #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+ {
|
|
|
+ BaseType_t x;
|
|
|
+
|
|
|
+ for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
|
|
|
+ {
|
|
|
+ if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
|
|
|
+ {
|
|
|
+ /* The task was blocked to wait for a notification, but is
|
|
|
+ * now suspended, so no notification was received. */
|
|
|
+ pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ if( xSchedulerRunning != pdFALSE )
|
|
|
+ {
|
|
|
+ /* Reset the next expected unblock time in case it referred to the
|
|
|
+ * task that is now in the Suspended state. */
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ prvResetNextTaskUnblockTime();
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ if( pxTCB == pxCurrentTCB )
|
|
|
+ {
|
|
|
+ if( xSchedulerRunning != pdFALSE )
|
|
|
+ {
|
|
|
+ /* The current task has just been suspended. */
|
|
|
+ configASSERT( uxSchedulerSuspended == 0 );
|
|
|
+ portYIELD_WITHIN_API();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The scheduler is not running, but the task that was pointed
|
|
|
+ * to by pxCurrentTCB has just been suspended and pxCurrentTCB
|
|
|
+ * must be adjusted to point to a different task. */
|
|
|
+ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
|
|
|
+ {
|
|
|
+ /* No other tasks are ready, so set pxCurrentTCB back to
|
|
|
+ * NULL so when the next task is created pxCurrentTCB will
|
|
|
+ * be set to point to it no matter what its relative priority
|
|
|
+ * is. */
|
|
|
+ pxCurrentTCB = NULL;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ vTaskSwitchContext();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskSuspend */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+
|
|
|
+ static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ BaseType_t xReturn = pdFALSE;
|
|
|
+ const TCB_t * const pxTCB = xTask;
|
|
|
+
|
|
|
+ /* Accesses xPendingReadyList so must be called from a critical
|
|
|
+ * section. */
|
|
|
+
|
|
|
+ /* It does not make sense to check if the calling task is suspended. */
|
|
|
+ configASSERT( xTask );
|
|
|
+
|
|
|
+ /* Is the task being resumed actually in the suspended list? */
|
|
|
+ if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
+ {
|
|
|
+ /* Has the task already been resumed from within an ISR? */
|
|
|
+ if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
|
|
|
+ {
|
|
|
+ /* Is it in the suspended list because it is in the Suspended
|
|
|
+ * state, or because is is blocked with no timeout? */
|
|
|
+ if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
|
|
|
+ {
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskSuspend */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+
|
|
|
+ void vTaskResume( TaskHandle_t xTaskToResume )
|
|
|
+ {
|
|
|
+ TCB_t * const pxTCB = xTaskToResume;
|
|
|
+
|
|
|
+ /* It does not make sense to resume the calling task. */
|
|
|
+ configASSERT( xTaskToResume );
|
|
|
+
|
|
|
+ /* The parameter cannot be NULL as it is impossible to resume the
|
|
|
+ * currently executing task. */
|
|
|
+ if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
|
|
|
+ {
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
|
|
|
+ {
|
|
|
+ traceTASK_RESUME( pxTCB );
|
|
|
+
|
|
|
+ /* The ready list can be accessed even if the scheduler is
|
|
|
+ * suspended because this is inside a critical section. */
|
|
|
+ ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+
|
|
|
+ /* A higher priority task may have just been resumed. */
|
|
|
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* This yield may not cause the task just resumed to run,
|
|
|
+ * but will leave the lists in the correct state for the
|
|
|
+ * next yield. */
|
|
|
+ taskYIELD_IF_USING_PREEMPTION();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskSuspend */
|
|
|
+
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
|
|
|
+
|
|
|
+ BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
|
|
|
+ {
|
|
|
+ BaseType_t xYieldRequired = pdFALSE;
|
|
|
+ TCB_t * const pxTCB = xTaskToResume;
|
|
|
+ UBaseType_t uxSavedInterruptStatus;
|
|
|
+
|
|
|
+ configASSERT( xTaskToResume );
|
|
|
+
|
|
|
+ /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
+ * maximum system call (or maximum API call) interrupt priority.
|
|
|
+ * Interrupts that are above the maximum system call priority are keep
|
|
|
+ * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
+ * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
+ * is defined in FreeRTOSConfig.h then
|
|
|
+ * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
+ * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
+ * been assigned a priority above the configured maximum system call
|
|
|
+ * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
+ * from interrupts that have been assigned a priority at or (logically)
|
|
|
+ * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
+ * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
+ * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
+ * provided on the following link:
|
|
|
+ * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
+
|
|
|
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
+ {
|
|
|
+ if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
|
|
|
+ {
|
|
|
+ traceTASK_RESUME_FROM_ISR( pxTCB );
|
|
|
+
|
|
|
+ /* Check the ready lists can be accessed. */
|
|
|
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ /* Ready lists can be accessed so move the task from the
|
|
|
+ * suspended list to the ready list directly. */
|
|
|
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ xYieldRequired = pdTRUE;
|
|
|
+
|
|
|
+ /* Mark that a yield is pending in case the user is not
|
|
|
+ * using the return value to initiate a context switch
|
|
|
+ * from the ISR using portYIELD_FROM_ISR. */
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The delayed or ready lists cannot be accessed so the task
|
|
|
+ * is held in the pending ready list until the scheduler is
|
|
|
+ * unsuspended. */
|
|
|
+ vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
+
|
|
|
+ return xYieldRequired;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskStartScheduler( void )
|
|
|
+{
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ /* Add the idle task at the lowest priority. */
|
|
|
+ #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
+ {
|
|
|
+ StaticTask_t * pxIdleTaskTCBBuffer = NULL;
|
|
|
+ StackType_t * pxIdleTaskStackBuffer = NULL;
|
|
|
+ uint32_t ulIdleTaskStackSize;
|
|
|
+
|
|
|
+ /* The Idle task is created using user provided RAM - obtain the
|
|
|
+ * address of the RAM then create the idle task. */
|
|
|
+ vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
|
|
|
+ xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
|
|
|
+ configIDLE_TASK_NAME,
|
|
|
+ ulIdleTaskStackSize,
|
|
|
+ ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
|
|
|
+ portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
+ pxIdleTaskStackBuffer,
|
|
|
+ pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
+
|
|
|
+ if( xIdleTaskHandle != NULL )
|
|
|
+ {
|
|
|
+ xReturn = pdPASS;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = pdFAIL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
|
|
|
+ {
|
|
|
+ /* The Idle task is being created using dynamically allocated RAM. */
|
|
|
+ xReturn = xTaskCreate( prvIdleTask,
|
|
|
+ configIDLE_TASK_NAME,
|
|
|
+ configMINIMAL_STACK_SIZE,
|
|
|
+ ( void * ) NULL,
|
|
|
+ portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
+ &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
+ }
|
|
|
+ #endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
|
+
|
|
|
+ #if ( configUSE_TIMERS == 1 )
|
|
|
+ {
|
|
|
+ if( xReturn == pdPASS )
|
|
|
+ {
|
|
|
+ xReturn = xTimerCreateTimerTask();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* configUSE_TIMERS */
|
|
|
+
|
|
|
+ if( xReturn == pdPASS )
|
|
|
+ {
|
|
|
+ /* freertos_tasks_c_additions_init() should only be called if the user
|
|
|
+ * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
|
|
|
+ * the only macro called by the function. */
|
|
|
+ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
+ {
|
|
|
+ freertos_tasks_c_additions_init();
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* Interrupts are turned off here, to ensure a tick does not occur
|
|
|
+ * before or during the call to xPortStartScheduler(). The stacks of
|
|
|
+ * the created tasks contain a status word with interrupts switched on
|
|
|
+ * so interrupts will automatically get re-enabled when the first task
|
|
|
+ * starts to run. */
|
|
|
+ portDISABLE_INTERRUPTS();
|
|
|
+
|
|
|
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
+ {
|
|
|
+ /* Switch Newlib's _impure_ptr variable to point to the _reent
|
|
|
+ * structure specific to the task that will run first.
|
|
|
+ * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
+ * for additional information. */
|
|
|
+ _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
|
|
+ }
|
|
|
+ #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
+
|
|
|
+ xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
+ xSchedulerRunning = pdTRUE;
|
|
|
+ xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
|
|
|
+
|
|
|
+ /* If configGENERATE_RUN_TIME_STATS is defined then the following
|
|
|
+ * macro must be defined to configure the timer/counter used to generate
|
|
|
+ * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
|
|
|
+ * is set to 0 and the following line fails to build then ensure you do not
|
|
|
+ * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
|
|
|
+ * FreeRTOSConfig.h file. */
|
|
|
+ portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
|
|
|
+
|
|
|
+ traceTASK_SWITCHED_IN();
|
|
|
+
|
|
|
+ /* Setting up the timer tick is hardware specific and thus in the
|
|
|
+ * portable interface. */
|
|
|
+ if( xPortStartScheduler() != pdFALSE )
|
|
|
+ {
|
|
|
+ /* Should not reach here as if the scheduler is running the
|
|
|
+ * function will not return. */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* Should only reach here if a task calls xTaskEndScheduler(). */
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* This line will only be reached if the kernel could not be started,
|
|
|
+ * because there was not enough FreeRTOS heap to create the idle task
|
|
|
+ * or the timer task. */
|
|
|
+ configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
|
|
|
+ * meaning xIdleTaskHandle is not used anywhere else. */
|
|
|
+ ( void ) xIdleTaskHandle;
|
|
|
+
|
|
|
+ /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
|
|
|
+ * from getting optimized out as it is no longer used by the kernel. */
|
|
|
+ ( void ) uxTopUsedPriority;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskEndScheduler( void )
|
|
|
+{
|
|
|
+ /* Stop the scheduler interrupts and call the portable scheduler end
|
|
|
+ * routine so the original ISRs can be restored if necessary. The port
|
|
|
+ * layer must ensure interrupts enable bit is left in the correct state. */
|
|
|
+ portDISABLE_INTERRUPTS();
|
|
|
+ xSchedulerRunning = pdFALSE;
|
|
|
+ vPortEndScheduler();
|
|
|
+}
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskSuspendAll( void )
|
|
|
+{
|
|
|
+ /* A critical section is not required as the variable is of type
|
|
|
+ * BaseType_t. Please read Richard Barry's reply in the following link to a
|
|
|
+ * post in the FreeRTOS support forum before reporting this as a bug! -
|
|
|
+ * https://goo.gl/wu4acr */
|
|
|
+
|
|
|
+ /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
|
|
|
+ * do not otherwise exhibit real time behaviour. */
|
|
|
+ portSOFTWARE_BARRIER();
|
|
|
+
|
|
|
+ /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
|
|
|
+ * is used to allow calls to vTaskSuspendAll() to nest. */
|
|
|
+ ++uxSchedulerSuspended;
|
|
|
+
|
|
|
+ /* Enforces ordering for ports and optimised compilers that may otherwise place
|
|
|
+ * the above increment elsewhere. */
|
|
|
+ portMEMORY_BARRIER();
|
|
|
+}
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+
|
|
|
+ static TickType_t prvGetExpectedIdleTime( void )
|
|
|
+ {
|
|
|
+ TickType_t xReturn;
|
|
|
+ UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
|
|
|
+
|
|
|
+ /* uxHigherPriorityReadyTasks takes care of the case where
|
|
|
+ * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
|
|
|
+ * task that are in the Ready state, even though the idle task is
|
|
|
+ * running. */
|
|
|
+ #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
+ {
|
|
|
+ if( uxTopReadyPriority > tskIDLE_PRIORITY )
|
|
|
+ {
|
|
|
+ uxHigherPriorityReadyTasks = pdTRUE;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
|
|
|
+
|
|
|
+ /* When port optimised task selection is used the uxTopReadyPriority
|
|
|
+ * variable is used as a bit map. If bits other than the least
|
|
|
+ * significant bit are set then there are tasks that have a priority
|
|
|
+ * above the idle priority that are in the Ready state. This takes
|
|
|
+ * care of the case where the co-operative scheduler is in use. */
|
|
|
+ if( uxTopReadyPriority > uxLeastSignificantBit )
|
|
|
+ {
|
|
|
+ uxHigherPriorityReadyTasks = pdTRUE;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
|
|
|
+
|
|
|
+ if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
|
|
|
+ {
|
|
|
+ xReturn = 0;
|
|
|
+ }
|
|
|
+ else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
|
|
|
+ {
|
|
|
+ /* There are other idle priority tasks in the ready state. If
|
|
|
+ * time slicing is used then the very next tick interrupt must be
|
|
|
+ * processed. */
|
|
|
+ xReturn = 0;
|
|
|
+ }
|
|
|
+ else if( uxHigherPriorityReadyTasks != pdFALSE )
|
|
|
+ {
|
|
|
+ /* There are tasks in the Ready state that have a priority above the
|
|
|
+ * idle priority. This path can only be reached if
|
|
|
+ * configUSE_PREEMPTION is 0. */
|
|
|
+ xReturn = 0;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = xNextTaskUnblockTime - xTickCount;
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TICKLESS_IDLE */
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+BaseType_t xTaskResumeAll( void )
|
|
|
+{
|
|
|
+ TCB_t * pxTCB = NULL;
|
|
|
+ BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
+
|
|
|
+ /* If uxSchedulerSuspended is zero then this function does not match a
|
|
|
+ * previous call to vTaskSuspendAll(). */
|
|
|
+ configASSERT( uxSchedulerSuspended );
|
|
|
+
|
|
|
+ /* It is possible that an ISR caused a task to be removed from an event
|
|
|
+ * list while the scheduler was suspended. If this was the case then the
|
|
|
+ * removed task will have been added to the xPendingReadyList. Once the
|
|
|
+ * scheduler has been resumed it is safe to move all the pending ready
|
|
|
+ * tasks from this list into their appropriate ready list. */
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ --uxSchedulerSuspended;
|
|
|
+
|
|
|
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
|
|
|
+ {
|
|
|
+ /* Move any readied tasks from the pending list into the
|
|
|
+ * appropriate ready list. */
|
|
|
+ while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
|
|
|
+ {
|
|
|
+ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+ listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
|
|
|
+ portMEMORY_BARRIER();
|
|
|
+ listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+
|
|
|
+ /* If the moved task has a priority higher than or equal to
|
|
|
+ * the current task then a yield must be performed. */
|
|
|
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if( pxTCB != NULL )
|
|
|
+ {
|
|
|
+ /* A task was unblocked while the scheduler was suspended,
|
|
|
+ * which may have prevented the next unblock time from being
|
|
|
+ * re-calculated, in which case re-calculate it now. Mainly
|
|
|
+ * important for low power tickless implementations, where
|
|
|
+ * this can prevent an unnecessary exit from low power
|
|
|
+ * state. */
|
|
|
+ prvResetNextTaskUnblockTime();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If any ticks occurred while the scheduler was suspended then
|
|
|
+ * they should be processed now. This ensures the tick count does
|
|
|
+ * not slip, and that any delayed tasks are resumed at the correct
|
|
|
+ * time. */
|
|
|
+ {
|
|
|
+ TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
|
|
|
+
|
|
|
+ if( xPendedCounts > ( TickType_t ) 0U )
|
|
|
+ {
|
|
|
+ do
|
|
|
+ {
|
|
|
+ if( xTaskIncrementTick() != pdFALSE )
|
|
|
+ {
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ --xPendedCounts;
|
|
|
+ } while( xPendedCounts > ( TickType_t ) 0U );
|
|
|
+
|
|
|
+ xPendedTicks = 0;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if( xYieldPending != pdFALSE )
|
|
|
+ {
|
|
|
+ #if ( configUSE_PREEMPTION != 0 )
|
|
|
+ {
|
|
|
+ xAlreadyYielded = pdTRUE;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ taskYIELD_IF_USING_PREEMPTION();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return xAlreadyYielded;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+TickType_t xTaskGetTickCount( void )
|
|
|
+{
|
|
|
+ TickType_t xTicks;
|
|
|
+
|
|
|
+ /* Critical section required if running on a 16 bit processor. */
|
|
|
+ portTICK_TYPE_ENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ xTicks = xTickCount;
|
|
|
+ }
|
|
|
+ portTICK_TYPE_EXIT_CRITICAL();
|
|
|
+
|
|
|
+ return xTicks;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+TickType_t xTaskGetTickCountFromISR( void )
|
|
|
+{
|
|
|
+ TickType_t xReturn;
|
|
|
+ UBaseType_t uxSavedInterruptStatus;
|
|
|
+
|
|
|
+ /* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
|
+ * system call (or maximum API call) interrupt priority. Interrupts that are
|
|
|
+ * above the maximum system call priority are kept permanently enabled, even
|
|
|
+ * when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
|
+ * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
|
+ * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
+ * failure if a FreeRTOS API function is called from an interrupt that has been
|
|
|
+ * assigned a priority above the configured maximum system call priority.
|
|
|
+ * Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
|
+ * that have been assigned a priority at or (logically) below the maximum
|
|
|
+ * system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
|
+ * safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
|
+ * More information (albeit Cortex-M specific) is provided on the following
|
|
|
+ * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
+
|
|
|
+ uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
|
|
|
+ {
|
|
|
+ xReturn = xTickCount;
|
|
|
+ }
|
|
|
+ portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+UBaseType_t uxTaskGetNumberOfTasks( void )
|
|
|
+{
|
|
|
+ /* A critical section is not required because the variables are of type
|
|
|
+ * BaseType_t. */
|
|
|
+ return uxCurrentNumberOfTasks;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
+{
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ /* If null is passed in here then the name of the calling task is being
|
|
|
+ * queried. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
|
+ configASSERT( pxTCB );
|
|
|
+ return &( pxTCB->pcTaskName[ 0 ] );
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
+
|
|
|
+ static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
|
|
|
+ const char pcNameToQuery[] )
|
|
|
+ {
|
|
|
+ TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
|
|
|
+ UBaseType_t x;
|
|
|
+ char cNextChar;
|
|
|
+ BaseType_t xBreakLoop;
|
|
|
+
|
|
|
+ /* This function is called with the scheduler suspended. */
|
|
|
+
|
|
|
+ if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+
|
|
|
+ do
|
|
|
+ {
|
|
|
+ listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+
|
|
|
+ /* Check each character in the name looking for a match or
|
|
|
+ * mismatch. */
|
|
|
+ xBreakLoop = pdFALSE;
|
|
|
+
|
|
|
+ for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
|
+ {
|
|
|
+ cNextChar = pxNextTCB->pcTaskName[ x ];
|
|
|
+
|
|
|
+ if( cNextChar != pcNameToQuery[ x ] )
|
|
|
+ {
|
|
|
+ /* Characters didn't match. */
|
|
|
+ xBreakLoop = pdTRUE;
|
|
|
+ }
|
|
|
+ else if( cNextChar == ( char ) 0x00 )
|
|
|
+ {
|
|
|
+ /* Both strings terminated, a match must have been
|
|
|
+ * found. */
|
|
|
+ pxReturn = pxNextTCB;
|
|
|
+ xBreakLoop = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ if( xBreakLoop != pdFALSE )
|
|
|
+ {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if( pxReturn != NULL )
|
|
|
+ {
|
|
|
+ /* The handle has been found. */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } while( pxNextTCB != pxFirstTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ return pxReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_xTaskGetHandle */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
+
|
|
|
+ TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
+ {
|
|
|
+ UBaseType_t uxQueue = configMAX_PRIORITIES;
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
|
|
|
+ configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
|
|
|
+
|
|
|
+ vTaskSuspendAll();
|
|
|
+ {
|
|
|
+ /* Search the ready lists. */
|
|
|
+ do
|
|
|
+ {
|
|
|
+ uxQueue--;
|
|
|
+ pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
|
|
|
+
|
|
|
+ if( pxTCB != NULL )
|
|
|
+ {
|
|
|
+ /* Found the handle. */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+
|
|
|
+ /* Search the delayed lists. */
|
|
|
+ if( pxTCB == NULL )
|
|
|
+ {
|
|
|
+ pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
|
|
|
+ }
|
|
|
+
|
|
|
+ if( pxTCB == NULL )
|
|
|
+ {
|
|
|
+ pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
|
|
|
+ }
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+ {
|
|
|
+ if( pxTCB == NULL )
|
|
|
+ {
|
|
|
+ /* Search the suspended list. */
|
|
|
+ pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+ {
|
|
|
+ if( pxTCB == NULL )
|
|
|
+ {
|
|
|
+ /* Search the deleted list. */
|
|
|
+ pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ ( void ) xTaskResumeAll();
|
|
|
+
|
|
|
+ return pxTCB;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_xTaskGetHandle */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+
|
|
|
+ UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
|
|
|
+ const UBaseType_t uxArraySize,
|
|
|
+ uint32_t * const pulTotalRunTime )
|
|
|
+ {
|
|
|
+ UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
|
|
|
+
|
|
|
+ vTaskSuspendAll();
|
|
|
+ {
|
|
|
+ /* Is there a space in the array for each task in the system? */
|
|
|
+ if( uxArraySize >= uxCurrentNumberOfTasks )
|
|
|
+ {
|
|
|
+ /* Fill in an TaskStatus_t structure with information on each
|
|
|
+ * task in the Ready state. */
|
|
|
+ do
|
|
|
+ {
|
|
|
+ uxQueue--;
|
|
|
+ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
|
|
|
+ } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+
|
|
|
+ /* Fill in an TaskStatus_t structure with information on each
|
|
|
+ * task in the Blocked state. */
|
|
|
+ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
|
|
|
+ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+ {
|
|
|
+ /* Fill in an TaskStatus_t structure with information on
|
|
|
+ * each task that has been deleted but not yet cleaned up. */
|
|
|
+ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+ {
|
|
|
+ /* Fill in an TaskStatus_t structure with information on
|
|
|
+ * each task in the Suspended state. */
|
|
|
+ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
+ {
|
|
|
+ if( pulTotalRunTime != NULL )
|
|
|
+ {
|
|
|
+ #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
|
+ portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
|
|
|
+ #else
|
|
|
+ *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
|
|
|
+ {
|
|
|
+ if( pulTotalRunTime != NULL )
|
|
|
+ {
|
|
|
+ *pulTotalRunTime = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ( void ) xTaskResumeAll();
|
|
|
+
|
|
|
+ return uxTask;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TRACE_FACILITY */
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
|
+
|
|
|
+ TaskHandle_t xTaskGetIdleTaskHandle( void )
|
|
|
+ {
|
|
|
+ /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
|
|
|
+ * started, then xIdleTaskHandle will be NULL. */
|
|
|
+ configASSERT( ( xIdleTaskHandle != NULL ) );
|
|
|
+ return xIdleTaskHandle;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+/* This conditional compilation should use inequality to 0, not equality to 1.
|
|
|
+ * This is to ensure vTaskStepTick() is available when user defined low power mode
|
|
|
+ * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
|
|
|
+ * 1. */
|
|
|
+#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+
|
|
|
+ void vTaskStepTick( const TickType_t xTicksToJump )
|
|
|
+ {
|
|
|
+ /* Correct the tick count value after a period during which the tick
|
|
|
+ * was suppressed. Note this does *not* call the tick hook function for
|
|
|
+ * each stepped tick. */
|
|
|
+ configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
|
|
|
+ xTickCount += xTicksToJump;
|
|
|
+ traceINCREASE_TICK_COUNT( xTicksToJump );
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TICKLESS_IDLE */
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
|
|
|
+{
|
|
|
+ BaseType_t xYieldOccurred;
|
|
|
+
|
|
|
+ /* Must not be called with the scheduler suspended as the implementation
|
|
|
+ * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
|
|
|
+ configASSERT( uxSchedulerSuspended == 0 );
|
|
|
+
|
|
|
+ /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
|
|
|
+ * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
|
|
|
+ vTaskSuspendAll();
|
|
|
+ xPendedTicks += xTicksToCatchUp;
|
|
|
+ xYieldOccurred = xTaskResumeAll();
|
|
|
+
|
|
|
+ return xYieldOccurred;
|
|
|
+}
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB = xTask;
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ configASSERT( pxTCB );
|
|
|
+
|
|
|
+ vTaskSuspendAll();
|
|
|
+ {
|
|
|
+ /* A task can only be prematurely removed from the Blocked state if
|
|
|
+ * it is actually in the Blocked state. */
|
|
|
+ if( eTaskGetState( xTask ) == eBlocked )
|
|
|
+ {
|
|
|
+ xReturn = pdPASS;
|
|
|
+
|
|
|
+ /* Remove the reference to the task from the blocked list. An
|
|
|
+ * interrupt won't touch the xStateListItem because the
|
|
|
+ * scheduler is suspended. */
|
|
|
+ ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
+
|
|
|
+ /* Is the task waiting on an event also? If so remove it from
|
|
|
+ * the event list too. Interrupts can touch the event list item,
|
|
|
+ * even though the scheduler is suspended, so a critical section
|
|
|
+ * is used. */
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
+ {
|
|
|
+ ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
+
|
|
|
+ /* This lets the task know it was forcibly removed from the
|
|
|
+ * blocked state so it should not re-evaluate its block time and
|
|
|
+ * then block again. */
|
|
|
+ pxTCB->ucDelayAborted = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ /* Place the unblocked task into the appropriate ready list. */
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+
|
|
|
+ /* A task being unblocked cannot cause an immediate context
|
|
|
+ * switch if preemption is turned off. */
|
|
|
+ #if ( configUSE_PREEMPTION == 1 )
|
|
|
+ {
|
|
|
+ /* Preemption is on, but a context switch should only be
|
|
|
+ * performed if the unblocked task has a priority that is
|
|
|
+ * higher than the currently executing task. */
|
|
|
+ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* Pend the yield to be performed when the scheduler
|
|
|
+ * is unsuspended. */
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* configUSE_PREEMPTION */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = pdFAIL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ( void ) xTaskResumeAll();
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_xTaskAbortDelay */
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+BaseType_t xTaskIncrementTick( void )
|
|
|
+{
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ TickType_t xItemValue;
|
|
|
+ BaseType_t xSwitchRequired = pdFALSE;
|
|
|
+
|
|
|
+ /* Called by the portable layer each time a tick interrupt occurs.
|
|
|
+ * Increments the tick then checks to see if the new tick value will cause any
|
|
|
+ * tasks to be unblocked. */
|
|
|
+ traceTASK_INCREMENT_TICK( xTickCount );
|
|
|
+
|
|
|
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ /* Minor optimisation. The tick count cannot change in this
|
|
|
+ * block. */
|
|
|
+ const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
|
|
|
+
|
|
|
+ /* Increment the RTOS tick, switching the delayed and overflowed
|
|
|
+ * delayed lists if it wraps to 0. */
|
|
|
+ xTickCount = xConstTickCount;
|
|
|
+
|
|
|
+ if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
|
|
|
+ {
|
|
|
+ taskSWITCH_DELAYED_LISTS();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* See if this tick has made a timeout expire. Tasks are stored in
|
|
|
+ * the queue in the order of their wake time - meaning once one task
|
|
|
+ * has been found whose block time has not expired there is no need to
|
|
|
+ * look any further down the list. */
|
|
|
+ if( xConstTickCount >= xNextTaskUnblockTime )
|
|
|
+ {
|
|
|
+ for( ; ; )
|
|
|
+ {
|
|
|
+ if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
|
+ {
|
|
|
+ /* The delayed list is empty. Set xNextTaskUnblockTime
|
|
|
+ * to the maximum possible value so it is extremely
|
|
|
+ * unlikely that the
|
|
|
+ * if( xTickCount >= xNextTaskUnblockTime ) test will pass
|
|
|
+ * next time through. */
|
|
|
+ xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The delayed list is not empty, get the value of the
|
|
|
+ * item at the head of the delayed list. This is the time
|
|
|
+ * at which the task at the head of the delayed list must
|
|
|
+ * be removed from the Blocked state. */
|
|
|
+ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+ xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
|
|
|
+
|
|
|
+ if( xConstTickCount < xItemValue )
|
|
|
+ {
|
|
|
+ /* It is not time to unblock this item yet, but the
|
|
|
+ * item value is the time at which the task at the head
|
|
|
+ * of the blocked list must be removed from the Blocked
|
|
|
+ * state - so record the item value in
|
|
|
+ * xNextTaskUnblockTime. */
|
|
|
+ xNextTaskUnblockTime = xItemValue;
|
|
|
+ break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* It is time to remove the item from the Blocked state. */
|
|
|
+ listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
+
|
|
|
+ /* Is the task waiting on an event also? If so remove
|
|
|
+ * it from the event list. */
|
|
|
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
+ {
|
|
|
+ listREMOVE_ITEM( &( pxTCB->xEventListItem ) );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Place the unblocked task into the appropriate ready
|
|
|
+ * list. */
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+
|
|
|
+ /* A task being unblocked cannot cause an immediate
|
|
|
+ * context switch if preemption is turned off. */
|
|
|
+ #if ( configUSE_PREEMPTION == 1 )
|
|
|
+ {
|
|
|
+ /* Preemption is on, but a context switch should
|
|
|
+ * only be performed if the unblocked task has a
|
|
|
+ * priority that is equal to or higher than the
|
|
|
+ * currently executing task. */
|
|
|
+ if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ xSwitchRequired = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* configUSE_PREEMPTION */
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Tasks of equal priority to the currently running task will share
|
|
|
+ * processing time (time slice) if preemption is on, and the application
|
|
|
+ * writer has not explicitly turned time slicing off. */
|
|
|
+ #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
|
|
|
+ {
|
|
|
+ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
|
|
|
+ {
|
|
|
+ xSwitchRequired = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
|
|
|
+
|
|
|
+ #if ( configUSE_TICK_HOOK == 1 )
|
|
|
+ {
|
|
|
+ /* Guard against the tick hook being called when the pended tick
|
|
|
+ * count is being unwound (when the scheduler is being unlocked). */
|
|
|
+ if( xPendedTicks == ( TickType_t ) 0 )
|
|
|
+ {
|
|
|
+ vApplicationTickHook();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* configUSE_TICK_HOOK */
|
|
|
+
|
|
|
+ #if ( configUSE_PREEMPTION == 1 )
|
|
|
+ {
|
|
|
+ if( xYieldPending != pdFALSE )
|
|
|
+ {
|
|
|
+ xSwitchRequired = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* configUSE_PREEMPTION */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ ++xPendedTicks;
|
|
|
+
|
|
|
+ /* The tick hook gets called at regular intervals, even if the
|
|
|
+ * scheduler is locked. */
|
|
|
+ #if ( configUSE_TICK_HOOK == 1 )
|
|
|
+ {
|
|
|
+ vApplicationTickHook();
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+
|
|
|
+ return xSwitchRequired;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
+
|
|
|
+ void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
|
|
|
+ TaskHookFunction_t pxHookFunction )
|
|
|
+ {
|
|
|
+ TCB_t * xTCB;
|
|
|
+
|
|
|
+ /* If xTask is NULL then it is the task hook of the calling task that is
|
|
|
+ * getting set. */
|
|
|
+ if( xTask == NULL )
|
|
|
+ {
|
|
|
+ xTCB = ( TCB_t * ) pxCurrentTCB;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xTCB = xTask;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Save the hook function in the TCB. A critical section is required as
|
|
|
+ * the value can be accessed from an interrupt. */
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ xTCB->pxTaskTag = pxHookFunction;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
+
|
|
|
+ TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ TaskHookFunction_t xReturn;
|
|
|
+
|
|
|
+ /* If xTask is NULL then set the calling task's hook. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ /* Save the hook function in the TCB. A critical section is required as
|
|
|
+ * the value can be accessed from an interrupt. */
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ xReturn = pxTCB->pxTaskTag;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
+
|
|
|
+ TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ TaskHookFunction_t xReturn;
|
|
|
+ UBaseType_t uxSavedInterruptStatus;
|
|
|
+
|
|
|
+ /* If xTask is NULL then set the calling task's hook. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ /* Save the hook function in the TCB. A critical section is required as
|
|
|
+ * the value can be accessed from an interrupt. */
|
|
|
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
+ {
|
|
|
+ xReturn = pxTCB->pxTaskTag;
|
|
|
+ }
|
|
|
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
|
|
|
+ void * pvParameter )
|
|
|
+ {
|
|
|
+ TCB_t * xTCB;
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ /* If xTask is NULL then we are calling our own task hook. */
|
|
|
+ if( xTask == NULL )
|
|
|
+ {
|
|
|
+ xTCB = pxCurrentTCB;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xTCB = xTask;
|
|
|
+ }
|
|
|
+
|
|
|
+ if( xTCB->pxTaskTag != NULL )
|
|
|
+ {
|
|
|
+ xReturn = xTCB->pxTaskTag( pvParameter );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = pdFAIL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskSwitchContext( void )
|
|
|
+{
|
|
|
+ if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ /* The scheduler is currently suspended - do not allow a context
|
|
|
+ * switch. */
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xYieldPending = pdFALSE;
|
|
|
+ traceTASK_SWITCHED_OUT();
|
|
|
+
|
|
|
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
+ {
|
|
|
+ #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
|
+ portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
|
|
|
+ #else
|
|
|
+ ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* Add the amount of time the task has been running to the
|
|
|
+ * accumulated time so far. The time the task started running was
|
|
|
+ * stored in ulTaskSwitchedInTime. Note that there is no overflow
|
|
|
+ * protection here so count values are only valid until the timer
|
|
|
+ * overflows. The guard against negative values is to protect
|
|
|
+ * against suspect run time stat counter implementations - which
|
|
|
+ * are provided by the application, not the kernel. */
|
|
|
+ if( ulTotalRunTime > ulTaskSwitchedInTime )
|
|
|
+ {
|
|
|
+ pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ ulTaskSwitchedInTime = ulTotalRunTime;
|
|
|
+ }
|
|
|
+ #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
+
|
|
|
+ /* Check for stack overflow, if configured. */
|
|
|
+ taskCHECK_FOR_STACK_OVERFLOW();
|
|
|
+
|
|
|
+ /* Before the currently running task is switched out, save its errno. */
|
|
|
+ #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
+ {
|
|
|
+ pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* Select a new task to run using either the generic C or port
|
|
|
+ * optimised asm code. */
|
|
|
+ taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+ traceTASK_SWITCHED_IN();
|
|
|
+
|
|
|
+ /* After the new task is switched in, update the global errno. */
|
|
|
+ #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
+ {
|
|
|
+ FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
+ {
|
|
|
+ /* Switch Newlib's _impure_ptr variable to point to the _reent
|
|
|
+ * structure specific to this task.
|
|
|
+ * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
+ * for additional information. */
|
|
|
+ _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
|
|
+ }
|
|
|
+ #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
+ }
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskPlaceOnEventList( List_t * const pxEventList,
|
|
|
+ const TickType_t xTicksToWait )
|
|
|
+{
|
|
|
+ configASSERT( pxEventList );
|
|
|
+
|
|
|
+ /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
|
|
|
+ * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
|
|
|
+
|
|
|
+ /* Place the event list item of the TCB in the appropriate event list.
|
|
|
+ * This is placed in the list in priority order so the highest priority task
|
|
|
+ * is the first to be woken by the event.
|
|
|
+ *
|
|
|
+ * Note: Lists are sorted in ascending order by ListItem_t.xItemValue.
|
|
|
+ * Normally, the xItemValue of a TCB's ListItem_t members is:
|
|
|
+ * xItemValue = ( configMAX_PRIORITIES - uxPriority )
|
|
|
+ * Therefore, the event list is sorted in descending priority order.
|
|
|
+ *
|
|
|
+ * The queue that contains the event list is locked, preventing
|
|
|
+ * simultaneous access from interrupts. */
|
|
|
+ vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
+
|
|
|
+ prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
|
|
|
+ const TickType_t xItemValue,
|
|
|
+ const TickType_t xTicksToWait )
|
|
|
+{
|
|
|
+ configASSERT( pxEventList );
|
|
|
+
|
|
|
+ /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
|
+ * the event groups implementation. */
|
|
|
+ configASSERT( uxSchedulerSuspended != 0 );
|
|
|
+
|
|
|
+ /* Store the item value in the event list item. It is safe to access the
|
|
|
+ * event list item here as interrupts won't access the event list item of a
|
|
|
+ * task that is not in the Blocked state. */
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
+
|
|
|
+ /* Place the event list item of the TCB at the end of the appropriate event
|
|
|
+ * list. It is safe to access the event list here because it is part of an
|
|
|
+ * event group implementation - and interrupts don't access event groups
|
|
|
+ * directly (instead they access them indirectly by pending function calls to
|
|
|
+ * the task level). */
|
|
|
+ listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
+
|
|
|
+ prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TIMERS == 1 )
|
|
|
+
|
|
|
+ void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
|
|
|
+ TickType_t xTicksToWait,
|
|
|
+ const BaseType_t xWaitIndefinitely )
|
|
|
+ {
|
|
|
+ configASSERT( pxEventList );
|
|
|
+
|
|
|
+ /* This function should not be called by application code hence the
|
|
|
+ * 'Restricted' in its name. It is not part of the public API. It is
|
|
|
+ * designed for use by kernel code, and has special calling requirements -
|
|
|
+ * it should be called with the scheduler suspended. */
|
|
|
+
|
|
|
+
|
|
|
+ /* Place the event list item of the TCB in the appropriate event list.
|
|
|
+ * In this case it is assume that this is the only task that is going to
|
|
|
+ * be waiting on this event list, so the faster vListInsertEnd() function
|
|
|
+ * can be used in place of vListInsert. */
|
|
|
+ listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
+
|
|
|
+ /* If the task should block indefinitely then set the block time to a
|
|
|
+ * value that will be recognised as an indefinite delay inside the
|
|
|
+ * prvAddCurrentTaskToDelayedList() function. */
|
|
|
+ if( xWaitIndefinitely != pdFALSE )
|
|
|
+ {
|
|
|
+ xTicksToWait = portMAX_DELAY;
|
|
|
+ }
|
|
|
+
|
|
|
+ traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
|
|
|
+ prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TIMERS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
|
|
|
+{
|
|
|
+ TCB_t * pxUnblockedTCB;
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
|
|
|
+ * called from a critical section within an ISR. */
|
|
|
+
|
|
|
+ /* The event list is sorted in priority order, so the first in the list can
|
|
|
+ * be removed as it is known to be the highest priority. Remove the TCB from
|
|
|
+ * the delayed list, and add it to the ready list.
|
|
|
+ *
|
|
|
+ * If an event is for a queue that is locked then this function will never
|
|
|
+ * get called - the lock count on the queue will get modified instead. This
|
|
|
+ * means exclusive access to the event list is guaranteed here.
|
|
|
+ *
|
|
|
+ * This function assumes that a check has already been made to ensure that
|
|
|
+ * pxEventList is not empty. */
|
|
|
+ pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+ configASSERT( pxUnblockedTCB );
|
|
|
+ listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) );
|
|
|
+
|
|
|
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
+
|
|
|
+ #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+ {
|
|
|
+ /* If a task is blocked on a kernel object then xNextTaskUnblockTime
|
|
|
+ * might be set to the blocked task's time out time. If the task is
|
|
|
+ * unblocked for a reason other than a timeout xNextTaskUnblockTime is
|
|
|
+ * normally left unchanged, because it is automatically reset to a new
|
|
|
+ * value when the tick count equals xNextTaskUnblockTime. However if
|
|
|
+ * tickless idling is used it might be more important to enter sleep mode
|
|
|
+ * at the earliest possible time - so reset xNextTaskUnblockTime here to
|
|
|
+ * ensure it is updated at the earliest possible time. */
|
|
|
+ prvResetNextTaskUnblockTime();
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The delayed and ready lists cannot be accessed, so hold this task
|
|
|
+ * pending until the scheduler is resumed. */
|
|
|
+ listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* Return true if the task removed from the event list has a higher
|
|
|
+ * priority than the calling task. This allows the calling task to know if
|
|
|
+ * it should force a context switch now. */
|
|
|
+ xReturn = pdTRUE;
|
|
|
+
|
|
|
+ /* Mark that a yield is pending in case the user is not using the
|
|
|
+ * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = pdFALSE;
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
|
|
|
+ const TickType_t xItemValue )
|
|
|
+{
|
|
|
+ TCB_t * pxUnblockedTCB;
|
|
|
+
|
|
|
+ /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
|
+ * the event flags implementation. */
|
|
|
+ configASSERT( uxSchedulerSuspended != pdFALSE );
|
|
|
+
|
|
|
+ /* Store the new item value in the event list. */
|
|
|
+ listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
+
|
|
|
+ /* Remove the event list form the event flag. Interrupts do not access
|
|
|
+ * event flags. */
|
|
|
+ pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+ configASSERT( pxUnblockedTCB );
|
|
|
+ listREMOVE_ITEM( pxEventListItem );
|
|
|
+
|
|
|
+ #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+ {
|
|
|
+ /* If a task is blocked on a kernel object then xNextTaskUnblockTime
|
|
|
+ * might be set to the blocked task's time out time. If the task is
|
|
|
+ * unblocked for a reason other than a timeout xNextTaskUnblockTime is
|
|
|
+ * normally left unchanged, because it is automatically reset to a new
|
|
|
+ * value when the tick count equals xNextTaskUnblockTime. However if
|
|
|
+ * tickless idling is used it might be more important to enter sleep mode
|
|
|
+ * at the earliest possible time - so reset xNextTaskUnblockTime here to
|
|
|
+ * ensure it is updated at the earliest possible time. */
|
|
|
+ prvResetNextTaskUnblockTime();
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* Remove the task from the delayed list and add it to the ready list. The
|
|
|
+ * scheduler is suspended so interrupts will not be accessing the ready
|
|
|
+ * lists. */
|
|
|
+ listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
+
|
|
|
+ if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* The unblocked task has a priority above that of the calling task, so
|
|
|
+ * a context switch is required. This function is called with the
|
|
|
+ * scheduler suspended so xYieldPending is set so the context switch
|
|
|
+ * occurs immediately that the scheduler is resumed (unsuspended). */
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
|
|
|
+{
|
|
|
+ configASSERT( pxTimeOut );
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ pxTimeOut->xOverflowCount = xNumOfOverflows;
|
|
|
+ pxTimeOut->xTimeOnEntering = xTickCount;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
|
|
|
+{
|
|
|
+ /* For internal use only as it does not use a critical section. */
|
|
|
+ pxTimeOut->xOverflowCount = xNumOfOverflows;
|
|
|
+ pxTimeOut->xTimeOnEntering = xTickCount;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
|
|
|
+ TickType_t * const pxTicksToWait )
|
|
|
+{
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ configASSERT( pxTimeOut );
|
|
|
+ configASSERT( pxTicksToWait );
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* Minor optimisation. The tick count cannot change in this block. */
|
|
|
+ const TickType_t xConstTickCount = xTickCount;
|
|
|
+ const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
|
|
|
+
|
|
|
+ #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
+ if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ /* The delay was aborted, which is not the same as a time out,
|
|
|
+ * but has the same result. */
|
|
|
+ pxCurrentTCB->ucDelayAborted = pdFALSE;
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+ if( *pxTicksToWait == portMAX_DELAY )
|
|
|
+ {
|
|
|
+ /* If INCLUDE_vTaskSuspend is set to 1 and the block time
|
|
|
+ * specified is the maximum block time then the task should block
|
|
|
+ * indefinitely, and therefore never time out. */
|
|
|
+ xReturn = pdFALSE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ #endif
|
|
|
+
|
|
|
+ if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
|
|
|
+ {
|
|
|
+ /* The tick count is greater than the time at which
|
|
|
+ * vTaskSetTimeout() was called, but has also overflowed since
|
|
|
+ * vTaskSetTimeOut() was called. It must have wrapped all the way
|
|
|
+ * around and gone past again. This passed since vTaskSetTimeout()
|
|
|
+ * was called. */
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ *pxTicksToWait = ( TickType_t ) 0;
|
|
|
+ }
|
|
|
+ else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
|
|
|
+ {
|
|
|
+ /* Not a genuine timeout. Adjust parameters for time remaining. */
|
|
|
+ *pxTicksToWait -= xElapsedTime;
|
|
|
+ vTaskInternalSetTimeOutState( pxTimeOut );
|
|
|
+ xReturn = pdFALSE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ *pxTicksToWait = ( TickType_t ) 0;
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+void vTaskMissedYield( void )
|
|
|
+{
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+
|
|
|
+ UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ UBaseType_t uxReturn;
|
|
|
+ TCB_t const * pxTCB;
|
|
|
+
|
|
|
+ if( xTask != NULL )
|
|
|
+ {
|
|
|
+ pxTCB = xTask;
|
|
|
+ uxReturn = pxTCB->uxTaskNumber;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ uxReturn = 0U;
|
|
|
+ }
|
|
|
+
|
|
|
+ return uxReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TRACE_FACILITY */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+
|
|
|
+ void vTaskSetTaskNumber( TaskHandle_t xTask,
|
|
|
+ const UBaseType_t uxHandle )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ if( xTask != NULL )
|
|
|
+ {
|
|
|
+ pxTCB = xTask;
|
|
|
+ pxTCB->uxTaskNumber = uxHandle;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TRACE_FACILITY */
|
|
|
+
|
|
|
+/*
|
|
|
+ * -----------------------------------------------------------
|
|
|
+ * The Idle task.
|
|
|
+ * ----------------------------------------------------------
|
|
|
+ *
|
|
|
+ * The portTASK_FUNCTION() macro is used to allow port/compiler specific
|
|
|
+ * language extensions. The equivalent prototype for this function is:
|
|
|
+ *
|
|
|
+ * void prvIdleTask( void *pvParameters );
|
|
|
+ *
|
|
|
+ */
|
|
|
+static portTASK_FUNCTION( prvIdleTask, pvParameters )
|
|
|
+{
|
|
|
+ /* Stop warnings. */
|
|
|
+ ( void ) pvParameters;
|
|
|
+
|
|
|
+ /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
|
|
|
+ * SCHEDULER IS STARTED. **/
|
|
|
+
|
|
|
+ /* In case a task that has a secure context deletes itself, in which case
|
|
|
+ * the idle task is responsible for deleting the task's secure context, if
|
|
|
+ * any. */
|
|
|
+ portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
|
|
|
+
|
|
|
+ for( ; ; )
|
|
|
+ {
|
|
|
+ /* See if any tasks have deleted themselves - if so then the idle task
|
|
|
+ * is responsible for freeing the deleted task's TCB and stack. */
|
|
|
+ prvCheckTasksWaitingTermination();
|
|
|
+
|
|
|
+ #if ( configUSE_PREEMPTION == 0 )
|
|
|
+ {
|
|
|
+ /* If we are not using preemption we keep forcing a task switch to
|
|
|
+ * see if any other task has become available. If we are using
|
|
|
+ * preemption we don't need to do this as any task becoming available
|
|
|
+ * will automatically get the processor anyway. */
|
|
|
+ taskYIELD();
|
|
|
+ }
|
|
|
+ #endif /* configUSE_PREEMPTION */
|
|
|
+
|
|
|
+ #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
|
|
|
+ {
|
|
|
+ /* When using preemption tasks of equal priority will be
|
|
|
+ * timesliced. If a task that is sharing the idle priority is ready
|
|
|
+ * to run then the idle task should yield before the end of the
|
|
|
+ * timeslice.
|
|
|
+ *
|
|
|
+ * A critical region is not required here as we are just reading from
|
|
|
+ * the list, and an occasional incorrect value will not matter. If
|
|
|
+ * the ready list at the idle priority contains more than one task
|
|
|
+ * then a task other than the idle task is ready to execute. */
|
|
|
+ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
|
|
|
+ {
|
|
|
+ taskYIELD();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
|
|
|
+
|
|
|
+ #if ( configUSE_IDLE_HOOK == 1 )
|
|
|
+ {
|
|
|
+ extern void vApplicationIdleHook( void );
|
|
|
+
|
|
|
+ /* Call the user defined function from within the idle task. This
|
|
|
+ * allows the application designer to add background functionality
|
|
|
+ * without the overhead of a separate task.
|
|
|
+ * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
|
|
|
+ * CALL A FUNCTION THAT MIGHT BLOCK. */
|
|
|
+ vApplicationIdleHook();
|
|
|
+ }
|
|
|
+ #endif /* configUSE_IDLE_HOOK */
|
|
|
+
|
|
|
+ /* This conditional compilation should use inequality to 0, not equality
|
|
|
+ * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
|
|
|
+ * user defined low power mode implementations require
|
|
|
+ * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
|
|
|
+ #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+ {
|
|
|
+ TickType_t xExpectedIdleTime;
|
|
|
+
|
|
|
+ /* It is not desirable to suspend then resume the scheduler on
|
|
|
+ * each iteration of the idle task. Therefore, a preliminary
|
|
|
+ * test of the expected idle time is performed without the
|
|
|
+ * scheduler suspended. The result here is not necessarily
|
|
|
+ * valid. */
|
|
|
+ xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
+
|
|
|
+ if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
|
+ {
|
|
|
+ vTaskSuspendAll();
|
|
|
+ {
|
|
|
+ /* Now the scheduler is suspended, the expected idle
|
|
|
+ * time can be sampled again, and this time its value can
|
|
|
+ * be used. */
|
|
|
+ configASSERT( xNextTaskUnblockTime >= xTickCount );
|
|
|
+ xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
+
|
|
|
+ /* Define the following macro to set xExpectedIdleTime to 0
|
|
|
+ * if the application does not want
|
|
|
+ * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
|
|
|
+ configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
|
|
|
+
|
|
|
+ if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
|
+ {
|
|
|
+ traceLOW_POWER_IDLE_BEGIN();
|
|
|
+ portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
|
|
|
+ traceLOW_POWER_IDLE_END();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ( void ) xTaskResumeAll();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* configUSE_TICKLESS_IDLE */
|
|
|
+ }
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+
|
|
|
+ eSleepModeStatus eTaskConfirmSleepModeStatus( void )
|
|
|
+ {
|
|
|
+ /* The idle task exists in addition to the application tasks. */
|
|
|
+ const UBaseType_t uxNonApplicationTasks = 1;
|
|
|
+ eSleepModeStatus eReturn = eStandardSleep;
|
|
|
+
|
|
|
+ /* This function must be called from a critical section. */
|
|
|
+
|
|
|
+ if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
|
|
|
+ {
|
|
|
+ /* A task was made ready while the scheduler was suspended. */
|
|
|
+ eReturn = eAbortSleep;
|
|
|
+ }
|
|
|
+ else if( xYieldPending != pdFALSE )
|
|
|
+ {
|
|
|
+ /* A yield was pended while the scheduler was suspended. */
|
|
|
+ eReturn = eAbortSleep;
|
|
|
+ }
|
|
|
+ else if( xPendedTicks != 0 )
|
|
|
+ {
|
|
|
+ /* A tick interrupt has already occurred but was held pending
|
|
|
+ * because the scheduler is suspended. */
|
|
|
+ eReturn = eAbortSleep;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* If all the tasks are in the suspended list (which might mean they
|
|
|
+ * have an infinite block time rather than actually being suspended)
|
|
|
+ * then it is safe to turn all clocks off and just wait for external
|
|
|
+ * interrupts. */
|
|
|
+ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
|
|
|
+ {
|
|
|
+ eReturn = eNoTasksWaitingTimeout;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return eReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TICKLESS_IDLE */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
+
|
|
|
+ void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
|
|
|
+ BaseType_t xIndex,
|
|
|
+ void * pvValue )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
|
+ {
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTaskToSet );
|
|
|
+ configASSERT( pxTCB != NULL );
|
|
|
+ pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
+
|
|
|
+ void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
|
|
|
+ BaseType_t xIndex )
|
|
|
+ {
|
|
|
+ void * pvReturn = NULL;
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
|
+ {
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
|
+ pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pvReturn = NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return pvReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
+
|
|
|
+ void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
|
|
|
+ const MemoryRegion_t * const xRegions )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ /* If null is passed in here then we are modifying the MPU settings of
|
|
|
+ * the calling task. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTaskToModify );
|
|
|
+
|
|
|
+ vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* portUSING_MPU_WRAPPERS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+static void prvInitialiseTaskLists( void )
|
|
|
+{
|
|
|
+ UBaseType_t uxPriority;
|
|
|
+
|
|
|
+ for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
|
|
|
+ {
|
|
|
+ vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ vListInitialise( &xDelayedTaskList1 );
|
|
|
+ vListInitialise( &xDelayedTaskList2 );
|
|
|
+ vListInitialise( &xPendingReadyList );
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+ {
|
|
|
+ vListInitialise( &xTasksWaitingTermination );
|
|
|
+ }
|
|
|
+ #endif /* INCLUDE_vTaskDelete */
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+ {
|
|
|
+ vListInitialise( &xSuspendedTaskList );
|
|
|
+ }
|
|
|
+ #endif /* INCLUDE_vTaskSuspend */
|
|
|
+
|
|
|
+ /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
|
|
|
+ * using list2. */
|
|
|
+ pxDelayedTaskList = &xDelayedTaskList1;
|
|
|
+ pxOverflowDelayedTaskList = &xDelayedTaskList2;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+static void prvCheckTasksWaitingTermination( void )
|
|
|
+{
|
|
|
+ /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
|
|
|
+ * being called too often in the idle task. */
|
|
|
+ while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
|
|
|
+ {
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+ ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
+ --uxCurrentNumberOfTasks;
|
|
|
+ --uxDeletedTasksWaitingCleanUp;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ prvDeleteTCB( pxTCB );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* INCLUDE_vTaskDelete */
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+
|
|
|
+ void vTaskGetInfo( TaskHandle_t xTask,
|
|
|
+ TaskStatus_t * pxTaskStatus,
|
|
|
+ BaseType_t xGetFreeStackSpace,
|
|
|
+ eTaskState eState )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+
|
|
|
+ /* xTask is NULL then get the state of the calling task. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
|
|
|
+ pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
|
|
|
+ pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
|
|
|
+ pxTaskStatus->pxStackBase = pxTCB->pxStack;
|
|
|
+ pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
|
|
|
+
|
|
|
+ #if ( configUSE_MUTEXES == 1 )
|
|
|
+ {
|
|
|
+ pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ pxTaskStatus->uxBasePriority = 0;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
+ {
|
|
|
+ pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ pxTaskStatus->ulRunTimeCounter = 0;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* Obtaining the task state is a little fiddly, so is only done if the
|
|
|
+ * value of eState passed into this function is eInvalid - otherwise the
|
|
|
+ * state is just set to whatever is passed in. */
|
|
|
+ if( eState != eInvalid )
|
|
|
+ {
|
|
|
+ if( pxTCB == pxCurrentTCB )
|
|
|
+ {
|
|
|
+ pxTaskStatus->eCurrentState = eRunning;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pxTaskStatus->eCurrentState = eState;
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+ {
|
|
|
+ /* If the task is in the suspended list then there is a
|
|
|
+ * chance it is actually just blocked indefinitely - so really
|
|
|
+ * it should be reported as being in the Blocked state. */
|
|
|
+ if( eState == eSuspended )
|
|
|
+ {
|
|
|
+ vTaskSuspendAll();
|
|
|
+ {
|
|
|
+ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
+ {
|
|
|
+ pxTaskStatus->eCurrentState = eBlocked;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ( void ) xTaskResumeAll();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* INCLUDE_vTaskSuspend */
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
|
|
|
+ * parameter is provided to allow it to be skipped. */
|
|
|
+ if( xGetFreeStackSpace != pdFALSE )
|
|
|
+ {
|
|
|
+ #if ( portSTACK_GROWTH > 0 )
|
|
|
+ {
|
|
|
+ pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pxTaskStatus->usStackHighWaterMark = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TRACE_FACILITY */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
+
|
|
|
+ static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
|
|
|
+ List_t * pxList,
|
|
|
+ eTaskState eState )
|
|
|
+ {
|
|
|
+ configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
|
|
|
+ UBaseType_t uxTask = 0;
|
|
|
+
|
|
|
+ if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+
|
|
|
+ /* Populate an TaskStatus_t structure within the
|
|
|
+ * pxTaskStatusArray array for each task that is referenced from
|
|
|
+ * pxList. See the definition of TaskStatus_t in task.h for the
|
|
|
+ * meaning of each TaskStatus_t structure member. */
|
|
|
+ do
|
|
|
+ {
|
|
|
+ listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
+ vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
|
|
|
+ uxTask++;
|
|
|
+ } while( pxNextTCB != pxFirstTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ return uxTask;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TRACE_FACILITY */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
+
|
|
|
+ static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
|
|
|
+ {
|
|
|
+ uint32_t ulCount = 0U;
|
|
|
+
|
|
|
+ while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
|
|
|
+ {
|
|
|
+ pucStackByte -= portSTACK_GROWTH;
|
|
|
+ ulCount++;
|
|
|
+ }
|
|
|
+
|
|
|
+ ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
|
|
|
+
|
|
|
+ return ( configSTACK_DEPTH_TYPE ) ulCount;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
|
|
|
+
|
|
|
+/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
|
|
|
+ * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
|
|
|
+ * user to determine the return type. It gets around the problem of the value
|
|
|
+ * overflowing on 8-bit types without breaking backward compatibility for
|
|
|
+ * applications that expect an 8-bit return type. */
|
|
|
+ configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ uint8_t * pucEndOfStack;
|
|
|
+ configSTACK_DEPTH_TYPE uxReturn;
|
|
|
+
|
|
|
+ /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
|
|
|
+ * the same except for their return type. Using configSTACK_DEPTH_TYPE
|
|
|
+ * allows the user to determine the return type. It gets around the
|
|
|
+ * problem of the value overflowing on 8-bit types without breaking
|
|
|
+ * backward compatibility for applications that expect an 8-bit return
|
|
|
+ * type. */
|
|
|
+
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ #if portSTACK_GROWTH < 0
|
|
|
+ {
|
|
|
+ pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
+
|
|
|
+ return uxReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
|
|
|
+
|
|
|
+ UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ uint8_t * pucEndOfStack;
|
|
|
+ UBaseType_t uxReturn;
|
|
|
+
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ #if portSTACK_GROWTH < 0
|
|
|
+ {
|
|
|
+ pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
+
|
|
|
+ return uxReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
+
|
|
|
+ static void prvDeleteTCB( TCB_t * pxTCB )
|
|
|
+ {
|
|
|
+ /* This call is required specifically for the TriCore port. It must be
|
|
|
+ * above the vPortFree() calls. The call is also used by ports/demos that
|
|
|
+ * want to allocate and clean RAM statically. */
|
|
|
+ portCLEAN_UP_TCB( pxTCB );
|
|
|
+
|
|
|
+ /* Free up the memory allocated by the scheduler for the task. It is up
|
|
|
+ * to the task to free any memory allocated at the application level.
|
|
|
+ * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
+ * for additional information. */
|
|
|
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
+ {
|
|
|
+ _reclaim_reent( &( pxTCB->xNewLib_reent ) );
|
|
|
+ }
|
|
|
+ #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
+
|
|
|
+ #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
|
|
|
+ {
|
|
|
+ /* The task can only have been allocated dynamically - free both
|
|
|
+ * the stack and TCB. */
|
|
|
+ vPortFreeStack( pxTCB->pxStack );
|
|
|
+ vPortFree( pxTCB );
|
|
|
+ }
|
|
|
+ #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
+ {
|
|
|
+ /* The task could have been allocated statically or dynamically, so
|
|
|
+ * check what was statically allocated before trying to free the
|
|
|
+ * memory. */
|
|
|
+ if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
|
|
|
+ {
|
|
|
+ /* Both the stack and TCB were allocated dynamically, so both
|
|
|
+ * must be freed. */
|
|
|
+ vPortFreeStack( pxTCB->pxStack );
|
|
|
+ vPortFree( pxTCB );
|
|
|
+ }
|
|
|
+ else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
|
|
|
+ {
|
|
|
+ /* Only the stack was statically allocated, so the TCB is the
|
|
|
+ * only memory that must be freed. */
|
|
|
+ vPortFree( pxTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* Neither the stack nor the TCB were allocated dynamically, so
|
|
|
+ * nothing needs to be freed. */
|
|
|
+ configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* INCLUDE_vTaskDelete */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+static void prvResetNextTaskUnblockTime( void )
|
|
|
+{
|
|
|
+ if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
|
+ {
|
|
|
+ /* The new current delayed list is empty. Set xNextTaskUnblockTime to
|
|
|
+ * the maximum possible value so it is extremely unlikely that the
|
|
|
+ * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
|
|
|
+ * there is an item in the delayed list. */
|
|
|
+ xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The new current delayed list is not empty, get the value of
|
|
|
+ * the item at the head of the delayed list. This is the time at
|
|
|
+ * which the task at the head of the delayed list should be removed
|
|
|
+ * from the Blocked state. */
|
|
|
+ xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
|
|
|
+ }
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
|
|
|
+
|
|
|
+ TaskHandle_t xTaskGetCurrentTaskHandle( void )
|
|
|
+ {
|
|
|
+ TaskHandle_t xReturn;
|
|
|
+
|
|
|
+ /* A critical section is not required as this is not called from
|
|
|
+ * an interrupt and the current TCB will always be the same for any
|
|
|
+ * individual execution thread. */
|
|
|
+ xReturn = pxCurrentTCB;
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
|
|
+
|
|
|
+ BaseType_t xTaskGetSchedulerState( void )
|
|
|
+ {
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ if( xSchedulerRunning == pdFALSE )
|
|
|
+ {
|
|
|
+ xReturn = taskSCHEDULER_NOT_STARTED;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ xReturn = taskSCHEDULER_RUNNING;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = taskSCHEDULER_SUSPENDED;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_MUTEXES == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
|
|
|
+ {
|
|
|
+ TCB_t * const pxMutexHolderTCB = pxMutexHolder;
|
|
|
+ BaseType_t xReturn = pdFALSE;
|
|
|
+
|
|
|
+ /* If the mutex was given back by an interrupt while the queue was
|
|
|
+ * locked then the mutex holder might now be NULL. _RB_ Is this still
|
|
|
+ * needed as interrupts can no longer use mutexes? */
|
|
|
+ if( pxMutexHolder != NULL )
|
|
|
+ {
|
|
|
+ /* If the holder of the mutex has a priority below the priority of
|
|
|
+ * the task attempting to obtain the mutex then it will temporarily
|
|
|
+ * inherit the priority of the task attempting to obtain the mutex. */
|
|
|
+ if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* Adjust the mutex holder state to account for its new
|
|
|
+ * priority. Only reset the event list item value if the value is
|
|
|
+ * not being used for anything else. */
|
|
|
+ if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
+ {
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If the task being modified is in the ready state it will need
|
|
|
+ * to be moved into a new list. */
|
|
|
+ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
|
|
|
+ {
|
|
|
+ if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ /* It is known that the task is in its ready list so
|
|
|
+ * there is no need to check again and the port level
|
|
|
+ * reset macro can be called directly. */
|
|
|
+ portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Inherit the priority before being moved into the new list. */
|
|
|
+ pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
|
|
|
+ prvAddTaskToReadyList( pxMutexHolderTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* Just inherit the priority. */
|
|
|
+ pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
|
|
|
+ }
|
|
|
+
|
|
|
+ traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );
|
|
|
+
|
|
|
+ /* Inheritance occurred. */
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* The base priority of the mutex holder is lower than the
|
|
|
+ * priority of the task attempting to take the mutex, but the
|
|
|
+ * current priority of the mutex holder is not lower than the
|
|
|
+ * priority of the task attempting to take the mutex.
|
|
|
+ * Therefore the mutex holder must have already inherited a
|
|
|
+ * priority, but inheritance would have occurred if that had
|
|
|
+ * not been the case. */
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_MUTEXES */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_MUTEXES == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
|
|
|
+ {
|
|
|
+ TCB_t * const pxTCB = pxMutexHolder;
|
|
|
+ BaseType_t xReturn = pdFALSE;
|
|
|
+
|
|
|
+ if( pxMutexHolder != NULL )
|
|
|
+ {
|
|
|
+ /* A task can only have an inherited priority if it holds the mutex.
|
|
|
+ * If the mutex is held by a task then it cannot be given from an
|
|
|
+ * interrupt, and if a mutex is given by the holding task then it must
|
|
|
+ * be the running state task. */
|
|
|
+ configASSERT( pxTCB == pxCurrentTCB );
|
|
|
+ configASSERT( pxTCB->uxMutexesHeld );
|
|
|
+ ( pxTCB->uxMutexesHeld )--;
|
|
|
+
|
|
|
+ /* Has the holder of the mutex inherited the priority of another
|
|
|
+ * task? */
|
|
|
+ if( pxTCB->uxPriority != pxTCB->uxBasePriority )
|
|
|
+ {
|
|
|
+ /* Only disinherit if no other mutexes are held. */
|
|
|
+ if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ /* A task can only have an inherited priority if it holds
|
|
|
+ * the mutex. If the mutex is held by a task then it cannot be
|
|
|
+ * given from an interrupt, and if a mutex is given by the
|
|
|
+ * holding task then it must be the running state task. Remove
|
|
|
+ * the holding task from the ready list. */
|
|
|
+ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Disinherit the priority before adding the task into the
|
|
|
+ * new ready list. */
|
|
|
+ traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
|
|
|
+ pxTCB->uxPriority = pxTCB->uxBasePriority;
|
|
|
+
|
|
|
+ /* Reset the event list item value. It cannot be in use for
|
|
|
+ * any other purpose if this task is running, and it must be
|
|
|
+ * running to give back the mutex. */
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+
|
|
|
+ /* Return true to indicate that a context switch is required.
|
|
|
+ * This is only actually required in the corner case whereby
|
|
|
+ * multiple mutexes were held and the mutexes were given back
|
|
|
+ * in an order different to that in which they were taken.
|
|
|
+ * If a context switch did not occur when the first mutex was
|
|
|
+ * returned, even if a task was waiting on it, then a context
|
|
|
+ * switch should occur when the last mutex is returned whether
|
|
|
+ * a task is waiting on it or not. */
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_MUTEXES */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_MUTEXES == 1 )
|
|
|
+
|
|
|
+ void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
|
|
|
+ UBaseType_t uxHighestPriorityWaitingTask )
|
|
|
+ {
|
|
|
+ TCB_t * const pxTCB = pxMutexHolder;
|
|
|
+ UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
|
|
|
+ const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
|
|
|
+
|
|
|
+ if( pxMutexHolder != NULL )
|
|
|
+ {
|
|
|
+ /* If pxMutexHolder is not NULL then the holder must hold at least
|
|
|
+ * one mutex. */
|
|
|
+ configASSERT( pxTCB->uxMutexesHeld );
|
|
|
+
|
|
|
+ /* Determine the priority to which the priority of the task that
|
|
|
+ * holds the mutex should be set. This will be the greater of the
|
|
|
+ * holding task's base priority and the priority of the highest
|
|
|
+ * priority task that is waiting to obtain the mutex. */
|
|
|
+ if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
|
|
|
+ {
|
|
|
+ uxPriorityToUse = uxHighestPriorityWaitingTask;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ uxPriorityToUse = pxTCB->uxBasePriority;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Does the priority need to change? */
|
|
|
+ if( pxTCB->uxPriority != uxPriorityToUse )
|
|
|
+ {
|
|
|
+ /* Only disinherit if no other mutexes are held. This is a
|
|
|
+ * simplification in the priority inheritance implementation. If
|
|
|
+ * the task that holds the mutex is also holding other mutexes then
|
|
|
+ * the other mutexes may have caused the priority inheritance. */
|
|
|
+ if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
|
|
|
+ {
|
|
|
+ /* If a task has timed out because it already holds the
|
|
|
+ * mutex it was trying to obtain then it cannot of inherited
|
|
|
+ * its own priority. */
|
|
|
+ configASSERT( pxTCB != pxCurrentTCB );
|
|
|
+
|
|
|
+ /* Disinherit the priority, remembering the previous
|
|
|
+ * priority to facilitate determining the subject task's
|
|
|
+ * state. */
|
|
|
+ traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
|
|
|
+ uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
+ pxTCB->uxPriority = uxPriorityToUse;
|
|
|
+
|
|
|
+ /* Only reset the event list item value if the value is not
|
|
|
+ * being used for anything else. */
|
|
|
+ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
+ {
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If the running task is not the task that holds the mutex
|
|
|
+ * then the task that holds the mutex could be in either the
|
|
|
+ * Ready, Blocked or Suspended states. Only remove the task
|
|
|
+ * from its current state list if it is in the Ready state as
|
|
|
+ * the task's priority is going to change and there is one
|
|
|
+ * Ready list per priority. */
|
|
|
+ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
+ {
|
|
|
+ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ /* It is known that the task is in its ready list so
|
|
|
+ * there is no need to check again and the port level
|
|
|
+ * reset macro can be called directly. */
|
|
|
+ portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_MUTEXES */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
+
|
|
|
+ void vTaskEnterCritical( void )
|
|
|
+ {
|
|
|
+ portDISABLE_INTERRUPTS();
|
|
|
+
|
|
|
+ if( xSchedulerRunning != pdFALSE )
|
|
|
+ {
|
|
|
+ ( pxCurrentTCB->uxCriticalNesting )++;
|
|
|
+
|
|
|
+ /* This is not the interrupt safe version of the enter critical
|
|
|
+ * function so assert() if it is being called from an interrupt
|
|
|
+ * context. Only API functions that end in "FromISR" can be used in an
|
|
|
+ * interrupt. Only assert if the critical nesting count is 1 to
|
|
|
+ * protect against recursive calls if the assert function also uses a
|
|
|
+ * critical section. */
|
|
|
+ if( pxCurrentTCB->uxCriticalNesting == 1 )
|
|
|
+ {
|
|
|
+ portASSERT_IF_IN_ISR();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
+
|
|
|
+ void vTaskExitCritical( void )
|
|
|
+ {
|
|
|
+ if( xSchedulerRunning != pdFALSE )
|
|
|
+ {
|
|
|
+ if( pxCurrentTCB->uxCriticalNesting > 0U )
|
|
|
+ {
|
|
|
+ ( pxCurrentTCB->uxCriticalNesting )--;
|
|
|
+
|
|
|
+ if( pxCurrentTCB->uxCriticalNesting == 0U )
|
|
|
+ {
|
|
|
+ portENABLE_INTERRUPTS();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
+
|
|
|
+ static char * prvWriteNameToBuffer( char * pcBuffer,
|
|
|
+ const char * pcTaskName )
|
|
|
+ {
|
|
|
+ size_t x;
|
|
|
+
|
|
|
+ /* Start by copying the entire string. */
|
|
|
+ strcpy( pcBuffer, pcTaskName );
|
|
|
+
|
|
|
+ /* Pad the end of the string with spaces to ensure columns line up when
|
|
|
+ * printed out. */
|
|
|
+ for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
|
|
|
+ {
|
|
|
+ pcBuffer[ x ] = ' ';
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Terminate. */
|
|
|
+ pcBuffer[ x ] = ( char ) 0x00;
|
|
|
+
|
|
|
+ /* Return the new end of string. */
|
|
|
+ return &( pcBuffer[ x ] );
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
+
|
|
|
+ void vTaskList( char * pcWriteBuffer )
|
|
|
+ {
|
|
|
+ TaskStatus_t * pxTaskStatusArray;
|
|
|
+ UBaseType_t uxArraySize, x;
|
|
|
+ char cStatus;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * PLEASE NOTE:
|
|
|
+ *
|
|
|
+ * This function is provided for convenience only, and is used by many
|
|
|
+ * of the demo applications. Do not consider it to be part of the
|
|
|
+ * scheduler.
|
|
|
+ *
|
|
|
+ * vTaskList() calls uxTaskGetSystemState(), then formats part of the
|
|
|
+ * uxTaskGetSystemState() output into a human readable table that
|
|
|
+ * displays task: names, states, priority, stack usage and task number.
|
|
|
+ * Stack usage specified as the number of unused StackType_t words stack can hold
|
|
|
+ * on top of stack - not the number of bytes.
|
|
|
+ *
|
|
|
+ * vTaskList() has a dependency on the sprintf() C library function that
|
|
|
+ * might bloat the code size, use a lot of stack, and provide different
|
|
|
+ * results on different platforms. An alternative, tiny, third party,
|
|
|
+ * and limited functionality implementation of sprintf() is provided in
|
|
|
+ * many of the FreeRTOS/Demo sub-directories in a file called
|
|
|
+ * printf-stdarg.c (note printf-stdarg.c does not provide a full
|
|
|
+ * snprintf() implementation!).
|
|
|
+ *
|
|
|
+ * It is recommended that production systems call uxTaskGetSystemState()
|
|
|
+ * directly to get access to raw stats data, rather than indirectly
|
|
|
+ * through a call to vTaskList().
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+ /* Make sure the write buffer does not contain a string. */
|
|
|
+ *pcWriteBuffer = ( char ) 0x00;
|
|
|
+
|
|
|
+ /* Take a snapshot of the number of tasks in case it changes while this
|
|
|
+ * function is executing. */
|
|
|
+ uxArraySize = uxCurrentNumberOfTasks;
|
|
|
+
|
|
|
+ /* Allocate an array index for each task. NOTE! if
|
|
|
+ * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
|
|
|
+ * equate to NULL. */
|
|
|
+ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
|
|
|
+
|
|
|
+ if( pxTaskStatusArray != NULL )
|
|
|
+ {
|
|
|
+ /* Generate the (binary) data. */
|
|
|
+ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
|
|
|
+
|
|
|
+ /* Create a human readable table from the binary data. */
|
|
|
+ for( x = 0; x < uxArraySize; x++ )
|
|
|
+ {
|
|
|
+ switch( pxTaskStatusArray[ x ].eCurrentState )
|
|
|
+ {
|
|
|
+ case eRunning:
|
|
|
+ cStatus = tskRUNNING_CHAR;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eReady:
|
|
|
+ cStatus = tskREADY_CHAR;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eBlocked:
|
|
|
+ cStatus = tskBLOCKED_CHAR;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eSuspended:
|
|
|
+ cStatus = tskSUSPENDED_CHAR;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eDeleted:
|
|
|
+ cStatus = tskDELETED_CHAR;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eInvalid: /* Fall through. */
|
|
|
+ default: /* Should not get here, but it is included
|
|
|
+ * to prevent static checking errors. */
|
|
|
+ cStatus = ( char ) 0x00;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Write the task name to the string, padding with spaces so it
|
|
|
+ * can be printed in tabular form more easily. */
|
|
|
+ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
+
|
|
|
+ /* Write the rest of the string. */
|
|
|
+ sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
+ pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
|
|
|
+ * is 0 then vPortFree() will be #defined to nothing. */
|
|
|
+ vPortFree( pxTaskStatusArray );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
|
|
|
+/*----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
+
|
|
|
+ void vTaskGetRunTimeStats( char * pcWriteBuffer )
|
|
|
+ {
|
|
|
+ TaskStatus_t * pxTaskStatusArray;
|
|
|
+ UBaseType_t uxArraySize, x;
|
|
|
+ uint32_t ulTotalTime, ulStatsAsPercentage;
|
|
|
+
|
|
|
+ #if ( configUSE_TRACE_FACILITY != 1 )
|
|
|
+ {
|
|
|
+ #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /*
|
|
|
+ * PLEASE NOTE:
|
|
|
+ *
|
|
|
+ * This function is provided for convenience only, and is used by many
|
|
|
+ * of the demo applications. Do not consider it to be part of the
|
|
|
+ * scheduler.
|
|
|
+ *
|
|
|
+ * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
|
|
|
+ * of the uxTaskGetSystemState() output into a human readable table that
|
|
|
+ * displays the amount of time each task has spent in the Running state
|
|
|
+ * in both absolute and percentage terms.
|
|
|
+ *
|
|
|
+ * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
|
|
|
+ * function that might bloat the code size, use a lot of stack, and
|
|
|
+ * provide different results on different platforms. An alternative,
|
|
|
+ * tiny, third party, and limited functionality implementation of
|
|
|
+ * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
|
|
|
+ * a file called printf-stdarg.c (note printf-stdarg.c does not provide
|
|
|
+ * a full snprintf() implementation!).
|
|
|
+ *
|
|
|
+ * It is recommended that production systems call uxTaskGetSystemState()
|
|
|
+ * directly to get access to raw stats data, rather than indirectly
|
|
|
+ * through a call to vTaskGetRunTimeStats().
|
|
|
+ */
|
|
|
+
|
|
|
+ /* Make sure the write buffer does not contain a string. */
|
|
|
+ *pcWriteBuffer = ( char ) 0x00;
|
|
|
+
|
|
|
+ /* Take a snapshot of the number of tasks in case it changes while this
|
|
|
+ * function is executing. */
|
|
|
+ uxArraySize = uxCurrentNumberOfTasks;
|
|
|
+
|
|
|
+ /* Allocate an array index for each task. NOTE! If
|
|
|
+ * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
|
|
|
+ * equate to NULL. */
|
|
|
+ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
|
|
|
+
|
|
|
+ if( pxTaskStatusArray != NULL )
|
|
|
+ {
|
|
|
+ /* Generate the (binary) data. */
|
|
|
+ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
|
|
|
+
|
|
|
+ /* For percentage calculations. */
|
|
|
+ ulTotalTime /= 100UL;
|
|
|
+
|
|
|
+ /* Avoid divide by zero errors. */
|
|
|
+ if( ulTotalTime > 0UL )
|
|
|
+ {
|
|
|
+ /* Create a human readable table from the binary data. */
|
|
|
+ for( x = 0; x < uxArraySize; x++ )
|
|
|
+ {
|
|
|
+ /* What percentage of the total run time has the task used?
|
|
|
+ * This will always be rounded down to the nearest integer.
|
|
|
+ * ulTotalRunTimeDiv100 has already been divided by 100. */
|
|
|
+ ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
|
|
|
+
|
|
|
+ /* Write the task name to the string, padding with
|
|
|
+ * spaces so it can be printed in tabular form more
|
|
|
+ * easily. */
|
|
|
+ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
+
|
|
|
+ if( ulStatsAsPercentage > 0UL )
|
|
|
+ {
|
|
|
+ #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
|
+ {
|
|
|
+ sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ /* sizeof( int ) == sizeof( long ) so a smaller
|
|
|
+ * printf() library can be used. */
|
|
|
+ sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* If the percentage is zero here then the task has
|
|
|
+ * consumed less than 1% of the total run time. */
|
|
|
+ #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
|
+ {
|
|
|
+ sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
|
|
|
+ }
|
|
|
+ #else
|
|
|
+ {
|
|
|
+ /* sizeof( int ) == sizeof( long ) so a smaller
|
|
|
+ * printf() library can be used. */
|
|
|
+ sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+
|
|
|
+ pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
|
|
|
+ * is 0 then vPortFree() will be #defined to nothing. */
|
|
|
+ vPortFree( pxTaskStatusArray );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+TickType_t uxTaskResetEventItemValue( void )
|
|
|
+{
|
|
|
+ TickType_t uxReturn;
|
|
|
+
|
|
|
+ uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
|
|
|
+
|
|
|
+ /* Reset the event list item to its normal value - so it can be used with
|
|
|
+ * queues and semaphores. */
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
+
|
|
|
+ return uxReturn;
|
|
|
+}
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_MUTEXES == 1 )
|
|
|
+
|
|
|
+ TaskHandle_t pvTaskIncrementMutexHeldCount( void )
|
|
|
+ {
|
|
|
+ /* If xSemaphoreCreateMutex() is called before any tasks have been created
|
|
|
+ * then pxCurrentTCB will be NULL. */
|
|
|
+ if( pxCurrentTCB != NULL )
|
|
|
+ {
|
|
|
+ ( pxCurrentTCB->uxMutexesHeld )++;
|
|
|
+ }
|
|
|
+
|
|
|
+ return pxCurrentTCB;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_MUTEXES */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+
|
|
|
+ uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
|
|
|
+ BaseType_t xClearCountOnExit,
|
|
|
+ TickType_t xTicksToWait )
|
|
|
+ {
|
|
|
+ uint32_t ulReturn;
|
|
|
+
|
|
|
+ configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* Only block if the notification count is not already non-zero. */
|
|
|
+ if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
|
|
|
+ {
|
|
|
+ /* Mark this task as waiting for a notification. */
|
|
|
+ pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
|
|
|
+
|
|
|
+ if( xTicksToWait > ( TickType_t ) 0 )
|
|
|
+ {
|
|
|
+ prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
+ traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
|
|
|
+
|
|
|
+ /* All ports are written to allow a yield in a critical
|
|
|
+ * section (some will yield immediately, others wait until the
|
|
|
+ * critical section exits) - but it is not something that
|
|
|
+ * application code should ever do. */
|
|
|
+ portYIELD_WITHIN_API();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ traceTASK_NOTIFY_TAKE( uxIndexToWait );
|
|
|
+ ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
|
|
|
+
|
|
|
+ if( ulReturn != 0UL )
|
|
|
+ {
|
|
|
+ if( xClearCountOnExit != pdFALSE )
|
|
|
+ {
|
|
|
+ pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return ulReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
|
|
|
+ uint32_t ulBitsToClearOnEntry,
|
|
|
+ uint32_t ulBitsToClearOnExit,
|
|
|
+ uint32_t * pulNotificationValue,
|
|
|
+ TickType_t xTicksToWait )
|
|
|
+ {
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* Only block if a notification is not already pending. */
|
|
|
+ if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
|
|
|
+ {
|
|
|
+ /* Clear bits in the task's notification value as bits may get
|
|
|
+ * set by the notifying task or interrupt. This can be used to
|
|
|
+ * clear the value to zero. */
|
|
|
+ pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
|
|
|
+
|
|
|
+ /* Mark this task as waiting for a notification. */
|
|
|
+ pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
|
|
|
+
|
|
|
+ if( xTicksToWait > ( TickType_t ) 0 )
|
|
|
+ {
|
|
|
+ prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
+ traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
|
|
|
+
|
|
|
+ /* All ports are written to allow a yield in a critical
|
|
|
+ * section (some will yield immediately, others wait until the
|
|
|
+ * critical section exits) - but it is not something that
|
|
|
+ * application code should ever do. */
|
|
|
+ portYIELD_WITHIN_API();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ traceTASK_NOTIFY_WAIT( uxIndexToWait );
|
|
|
+
|
|
|
+ if( pulNotificationValue != NULL )
|
|
|
+ {
|
|
|
+ /* Output the current notification value, which may or may not
|
|
|
+ * have changed. */
|
|
|
+ *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If ucNotifyValue is set then either the task never entered the
|
|
|
+ * blocked state (because a notification was already pending) or the
|
|
|
+ * task unblocked because of a notification. Otherwise the task
|
|
|
+ * unblocked because of a timeout. */
|
|
|
+ if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
|
|
|
+ {
|
|
|
+ /* A notification was not received. */
|
|
|
+ xReturn = pdFALSE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* A notification was already pending or a notification was
|
|
|
+ * received while the task was waiting. */
|
|
|
+ pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
|
|
|
+ xReturn = pdTRUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
|
|
|
+ UBaseType_t uxIndexToNotify,
|
|
|
+ uint32_t ulValue,
|
|
|
+ eNotifyAction eAction,
|
|
|
+ uint32_t * pulPreviousNotificationValue )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ BaseType_t xReturn = pdPASS;
|
|
|
+ uint8_t ucOriginalNotifyState;
|
|
|
+
|
|
|
+ configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
+ configASSERT( xTaskToNotify );
|
|
|
+ pxTCB = xTaskToNotify;
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ if( pulPreviousNotificationValue != NULL )
|
|
|
+ {
|
|
|
+ *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
|
|
|
+ }
|
|
|
+
|
|
|
+ ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
+
|
|
|
+ pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
+
|
|
|
+ switch( eAction )
|
|
|
+ {
|
|
|
+ case eSetBits:
|
|
|
+ pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eIncrement:
|
|
|
+ ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eSetValueWithOverwrite:
|
|
|
+ pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eSetValueWithoutOverwrite:
|
|
|
+
|
|
|
+ if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
|
|
|
+ {
|
|
|
+ pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The value could not be written to the task. */
|
|
|
+ xReturn = pdFAIL;
|
|
|
+ }
|
|
|
+
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eNoAction:
|
|
|
+
|
|
|
+ /* The task is being notified without its notify value being
|
|
|
+ * updated. */
|
|
|
+ break;
|
|
|
+
|
|
|
+ default:
|
|
|
+
|
|
|
+ /* Should not get here if all enums are handled.
|
|
|
+ * Artificially force an assert by testing a value the
|
|
|
+ * compiler can't assume is const. */
|
|
|
+ configASSERT( xTickCount == ( TickType_t ) 0 );
|
|
|
+
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ traceTASK_NOTIFY( uxIndexToNotify );
|
|
|
+
|
|
|
+ /* If the task is in the blocked state specifically to wait for a
|
|
|
+ * notification then unblock it now. */
|
|
|
+ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
+ {
|
|
|
+ listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+
|
|
|
+ /* The task should not have been on an event list. */
|
|
|
+ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
+
|
|
|
+ #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
+ {
|
|
|
+ /* If a task is blocked waiting for a notification then
|
|
|
+ * xNextTaskUnblockTime might be set to the blocked task's time
|
|
|
+ * out time. If the task is unblocked for a reason other than
|
|
|
+ * a timeout xNextTaskUnblockTime is normally left unchanged,
|
|
|
+ * because it will automatically get reset to a new value when
|
|
|
+ * the tick count equals xNextTaskUnblockTime. However if
|
|
|
+ * tickless idling is used it might be more important to enter
|
|
|
+ * sleep mode at the earliest possible time - so reset
|
|
|
+ * xNextTaskUnblockTime here to ensure it is updated at the
|
|
|
+ * earliest possible time. */
|
|
|
+ prvResetNextTaskUnblockTime();
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* The notified task has a priority above the currently
|
|
|
+ * executing task so a yield is required. */
|
|
|
+ taskYIELD_IF_USING_PREEMPTION();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
|
|
|
+ UBaseType_t uxIndexToNotify,
|
|
|
+ uint32_t ulValue,
|
|
|
+ eNotifyAction eAction,
|
|
|
+ uint32_t * pulPreviousNotificationValue,
|
|
|
+ BaseType_t * pxHigherPriorityTaskWoken )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ uint8_t ucOriginalNotifyState;
|
|
|
+ BaseType_t xReturn = pdPASS;
|
|
|
+ UBaseType_t uxSavedInterruptStatus;
|
|
|
+
|
|
|
+ configASSERT( xTaskToNotify );
|
|
|
+ configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
+
|
|
|
+ /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
+ * maximum system call (or maximum API call) interrupt priority.
|
|
|
+ * Interrupts that are above the maximum system call priority are keep
|
|
|
+ * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
+ * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
+ * is defined in FreeRTOSConfig.h then
|
|
|
+ * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
+ * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
+ * been assigned a priority above the configured maximum system call
|
|
|
+ * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
+ * from interrupts that have been assigned a priority at or (logically)
|
|
|
+ * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
+ * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
+ * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
+ * provided on the following link:
|
|
|
+ * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
+
|
|
|
+ pxTCB = xTaskToNotify;
|
|
|
+
|
|
|
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
+ {
|
|
|
+ if( pulPreviousNotificationValue != NULL )
|
|
|
+ {
|
|
|
+ *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
|
|
|
+ }
|
|
|
+
|
|
|
+ ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
+ pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
+
|
|
|
+ switch( eAction )
|
|
|
+ {
|
|
|
+ case eSetBits:
|
|
|
+ pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eIncrement:
|
|
|
+ ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eSetValueWithOverwrite:
|
|
|
+ pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eSetValueWithoutOverwrite:
|
|
|
+
|
|
|
+ if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
|
|
|
+ {
|
|
|
+ pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The value could not be written to the task. */
|
|
|
+ xReturn = pdFAIL;
|
|
|
+ }
|
|
|
+
|
|
|
+ break;
|
|
|
+
|
|
|
+ case eNoAction:
|
|
|
+
|
|
|
+ /* The task is being notified without its notify value being
|
|
|
+ * updated. */
|
|
|
+ break;
|
|
|
+
|
|
|
+ default:
|
|
|
+
|
|
|
+ /* Should not get here if all enums are handled.
|
|
|
+ * Artificially force an assert by testing a value the
|
|
|
+ * compiler can't assume is const. */
|
|
|
+ configASSERT( xTickCount == ( TickType_t ) 0 );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
|
|
|
+
|
|
|
+ /* If the task is in the blocked state specifically to wait for a
|
|
|
+ * notification then unblock it now. */
|
|
|
+ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
+ {
|
|
|
+ /* The task should not have been on an event list. */
|
|
|
+ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
+
|
|
|
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The delayed and ready lists cannot be accessed, so hold
|
|
|
+ * this task pending until the scheduler is resumed. */
|
|
|
+ listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* The notified task has a priority above the currently
|
|
|
+ * executing task so a yield is required. */
|
|
|
+ if( pxHigherPriorityTaskWoken != NULL )
|
|
|
+ {
|
|
|
+ *pxHigherPriorityTaskWoken = pdTRUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Mark that a yield is pending in case the user is not
|
|
|
+ * using the "xHigherPriorityTaskWoken" parameter to an ISR
|
|
|
+ * safe FreeRTOS function. */
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+
|
|
|
+ void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
|
|
|
+ UBaseType_t uxIndexToNotify,
|
|
|
+ BaseType_t * pxHigherPriorityTaskWoken )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ uint8_t ucOriginalNotifyState;
|
|
|
+ UBaseType_t uxSavedInterruptStatus;
|
|
|
+
|
|
|
+ configASSERT( xTaskToNotify );
|
|
|
+ configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
+
|
|
|
+ /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
+ * maximum system call (or maximum API call) interrupt priority.
|
|
|
+ * Interrupts that are above the maximum system call priority are keep
|
|
|
+ * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
+ * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
+ * is defined in FreeRTOSConfig.h then
|
|
|
+ * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
+ * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
+ * been assigned a priority above the configured maximum system call
|
|
|
+ * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
+ * from interrupts that have been assigned a priority at or (logically)
|
|
|
+ * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
+ * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
+ * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
+ * provided on the following link:
|
|
|
+ * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
+ portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
+
|
|
|
+ pxTCB = xTaskToNotify;
|
|
|
+
|
|
|
+ uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
+ {
|
|
|
+ ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
+ pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
+
|
|
|
+ /* 'Giving' is equivalent to incrementing a count in a counting
|
|
|
+ * semaphore. */
|
|
|
+ ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
+
|
|
|
+ traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
|
|
|
+
|
|
|
+ /* If the task is in the blocked state specifically to wait for a
|
|
|
+ * notification then unblock it now. */
|
|
|
+ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
+ {
|
|
|
+ /* The task should not have been on an event list. */
|
|
|
+ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
+
|
|
|
+ if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
|
|
+ {
|
|
|
+ listREMOVE_ITEM( &( pxTCB->xStateListItem ) );
|
|
|
+ prvAddTaskToReadyList( pxTCB );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The delayed and ready lists cannot be accessed, so hold
|
|
|
+ * this task pending until the scheduler is resumed. */
|
|
|
+ listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
|
|
|
+ {
|
|
|
+ /* The notified task has a priority above the currently
|
|
|
+ * executing task so a yield is required. */
|
|
|
+ if( pxHigherPriorityTaskWoken != NULL )
|
|
|
+ {
|
|
|
+ *pxHigherPriorityTaskWoken = pdTRUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Mark that a yield is pending in case the user is not
|
|
|
+ * using the "xHigherPriorityTaskWoken" parameter in an ISR
|
|
|
+ * safe FreeRTOS function. */
|
|
|
+ xYieldPending = pdTRUE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+
|
|
|
+ BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
|
|
|
+ UBaseType_t uxIndexToClear )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ BaseType_t xReturn;
|
|
|
+
|
|
|
+ configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
+
|
|
|
+ /* If null is passed in here then it is the calling task that is having
|
|
|
+ * its notification state cleared. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
|
|
|
+ {
|
|
|
+ pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
+ xReturn = pdPASS;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ xReturn = pdFAIL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return xReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
+
|
|
|
+ uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
|
|
|
+ UBaseType_t uxIndexToClear,
|
|
|
+ uint32_t ulBitsToClear )
|
|
|
+ {
|
|
|
+ TCB_t * pxTCB;
|
|
|
+ uint32_t ulReturn;
|
|
|
+
|
|
|
+ /* If null is passed in here then it is the calling task that is having
|
|
|
+ * its notification state cleared. */
|
|
|
+ pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
+
|
|
|
+ taskENTER_CRITICAL();
|
|
|
+ {
|
|
|
+ /* Return the notification as it was before the bits were cleared,
|
|
|
+ * then clear the bit mask. */
|
|
|
+ ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
|
|
|
+ pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
|
|
|
+ }
|
|
|
+ taskEXIT_CRITICAL();
|
|
|
+
|
|
|
+ return ulReturn;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
|
|
|
+
|
|
|
+ uint32_t ulTaskGetIdleRunTimeCounter( void )
|
|
|
+ {
|
|
|
+ return xIdleTaskHandle->ulRunTimeCounter;
|
|
|
+ }
|
|
|
+
|
|
|
+#endif
|
|
|
+/*-----------------------------------------------------------*/
|
|
|
+
|
|
|
+static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
|
|
|
+ const BaseType_t xCanBlockIndefinitely )
|
|
|
+{
|
|
|
+ TickType_t xTimeToWake;
|
|
|
+ const TickType_t xConstTickCount = xTickCount;
|
|
|
+
|
|
|
+ #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
+ {
|
|
|
+ /* About to enter a delayed list, so ensure the ucDelayAborted flag is
|
|
|
+ * reset to pdFALSE so it can be detected as having been set to pdTRUE
|
|
|
+ * when the task leaves the Blocked state. */
|
|
|
+ pxCurrentTCB->ucDelayAborted = pdFALSE;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+ /* Remove the task from the ready list before adding it to the blocked list
|
|
|
+ * as the same list item is used for both lists. */
|
|
|
+ if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
+ {
|
|
|
+ /* The current task must be in a ready list, so there is no need to
|
|
|
+ * check, and the port reset macro can be called directly. */
|
|
|
+ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+
|
|
|
+ #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
+ {
|
|
|
+ if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
|
|
|
+ {
|
|
|
+ /* Add the task to the suspended task list instead of a delayed task
|
|
|
+ * list to ensure it is not woken by a timing event. It will block
|
|
|
+ * indefinitely. */
|
|
|
+ listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* Calculate the time at which the task should be woken if the event
|
|
|
+ * does not occur. This may overflow but this doesn't matter, the
|
|
|
+ * kernel will manage it correctly. */
|
|
|
+ xTimeToWake = xConstTickCount + xTicksToWait;
|
|
|
+
|
|
|
+ /* The list item will be inserted in wake time order. */
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
|
|
|
+
|
|
|
+ if( xTimeToWake < xConstTickCount )
|
|
|
+ {
|
|
|
+ /* Wake time has overflowed. Place this item in the overflow
|
|
|
+ * list. */
|
|
|
+ vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The wake time has not overflowed, so the current block list
|
|
|
+ * is used. */
|
|
|
+ vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
+
|
|
|
+ /* If the task entering the blocked state was placed at the
|
|
|
+ * head of the list of blocked tasks then xNextTaskUnblockTime
|
|
|
+ * needs to be updated too. */
|
|
|
+ if( xTimeToWake < xNextTaskUnblockTime )
|
|
|
+ {
|
|
|
+ xNextTaskUnblockTime = xTimeToWake;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #else /* INCLUDE_vTaskSuspend */
|
|
|
+ {
|
|
|
+ /* Calculate the time at which the task should be woken if the event
|
|
|
+ * does not occur. This may overflow but this doesn't matter, the kernel
|
|
|
+ * will manage it correctly. */
|
|
|
+ xTimeToWake = xConstTickCount + xTicksToWait;
|
|
|
+
|
|
|
+ /* The list item will be inserted in wake time order. */
|
|
|
+ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
|
|
|
+
|
|
|
+ if( xTimeToWake < xConstTickCount )
|
|
|
+ {
|
|
|
+ /* Wake time has overflowed. Place this item in the overflow list. */
|
|
|
+ vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ /* The wake time has not overflowed, so the current block list is used. */
|
|
|
+ vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
|
|
|
+
|
|
|
+ /* If the task entering the blocked state was placed at the head of the
|
|
|
+ * list of blocked tasks then xNextTaskUnblockTime needs to be updated
|
|
|
+ * too. */
|
|
|
+ if( xTimeToWake < xNextTaskUnblockTime )
|
|
|
+ {
|
|
|
+ xNextTaskUnblockTime = xTimeToWake;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ mtCOVERAGE_TEST_MARKER();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
|
|
|
+ ( void ) xCanBlockIndefinitely;
|
|
|
+ }
|
|
|
+ #endif /* INCLUDE_vTaskSuspend */
|
|
|
+}
|
|
|
+
|
|
|
+/* Code below here allows additional code to be inserted into this source file,
|
|
|
+ * especially where access to file scope functions and data is needed (for example
|
|
|
+ * when performing module tests). */
|
|
|
+
|
|
|
+#ifdef FREERTOS_MODULE_TEST
|
|
|
+ #include "tasks_test_access_functions.h"
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
|
|
|
+
|
|
|
+ #include "freertos_tasks_c_additions.h"
|
|
|
+
|
|
|
+ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
+ static void freertos_tasks_c_additions_init( void )
|
|
|
+ {
|
|
|
+ FREERTOS_TASKS_C_ADDITIONS_INIT();
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+
|
|
|
+#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
|