/* * @Author : ChenJie * @Date : 2021-12-15 10:40:06 * @Version : V3.0 * @LastEditors : ChenJie * @LastEditTime : 2022-01-11 18:14:41 * @Description : AppFunc * @FilePath : \VehicleControl\VehicleControl\src\System\Vehicle\AppFunc.c */ #include "string.h" #include "stdlib.h" #include "HardwareLib.h" #include "CanVar.h" #include "math.h" #include "AppFunc.h" #include "Std_Types.h" #define Lock 0 #define Unlock 1 #define LockCtrl() PSwtDrv_Interface(_PSWT_INDEX_HBAK1_CHAN, Lock) #define UnlockCtrl() PSwtDrv_Interface(_PSWT_INDEX_HBAK1_CHAN, Unlock) void LockAndUnlockCtrl() { static uint16 LockDelay = 0; static uint16 UnlockDelay = 0; static uint8 CtrlFlg = 0; static uint16 BleConCounter = 0; static uint16 battSwpeModeCounter = 0; if (ebcd_flg_ebcManCtrlEn) //手动控制使能 { if (ebcd_flg_ebcManCtrlMode==1)//循环控制模式 { if(ebcd_st_lockSensor==1)//处于锁紧状态,传感器判定一个 { LockDelay = LockDelay + 10; if(LockDelay>LockDelayTime)//锁紧状态超时就解锁 { ManuControlTimes++; LockDelay = 0; CtrlFlg = Unlock; } } else if(ebcd_st_unlockSensor==1)//处于解锁状态,传感器判定一个 { UnlockDelay = UnlockDelay + 10; if(UnlockDelay>UnlockDelayTime) { UnlockDelay = 0; CtrlFlg = Lock; } } } else if(ebcd_flg_ebcManCtrlMode==2)//控制锁紧 { CtrlFlg = Lock; } else if(ebcd_flg_ebcManCtrlMode==3)//控制解锁 { CtrlFlg = Unlock; } } else //正常工作模式 { switch(ebcd_st_ebcWork) { case DriveMode://行车状态,自动进入,默认状态 { PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL,0);//行车状态换电指示灯关闭 if(bled_flg_handShake==1) { ebcd_st_ebcWork = CommuMode;//进入通讯状态 bled_flg_handShake = 0; break; } break; } case CommuMode://通讯状态,握手才能进入 { BleConCounter = BleConCounter + 10; if((BleConCounter%1000)<500)//换电指示灯闪烁 { PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL,1); } else { PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL,0); } if(BleConCounter>=60*1000||bled_flg_backToDrv == 1) { ebcd_st_ebcWork = DriveMode;//切换到行车状态 BleConCounter = 0; bled_flg_backToDrv = 0; break; } else if(BattCD_stWakeupU.B.bLogic==0 && BattCD_stWakeupU.B.bWkpSig1==1) { ebcd_st_ebcWork = SwapMode;//切换到换电状态 BleConCounter = 0; break; } if(bled_st_dataTrans==1) { BleConCounter = 0; bled_st_dataTrans = 0; } break; } case SwapMode://换电状态 { PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL,1);//换电状态换电指示灯常亮 battSwpeModeCounter = battSwpeModeCounter + 10; if(bled_flg_swapBattDone==1) { bled_flg_swapBattDone = 0; ebcd_st_ebcWork = CommuMode; //切换到通讯状态 break; } else if(battSwpeModeCounter>=60*1000) { battSwpeModeCounter = DriveMode;//切换到行车状态 ebcd_st_ebcWork = 0; break; } if(bled_st_dataTrans==1) { battSwpeModeCounter = 0; bled_st_dataTrans = 0; } if(bled_flg_unlockCmdForce) { CtrlFlg = Unlock; bled_flg_unlockCmdForce = 0; } if(bled_flg_lockCmdForce) { CtrlFlg = Lock; bled_flg_lockCmdForce = 0; } break; } } } //锁紧解锁执行 if(CtrlFlg) { UnlockCtrl(); } else { LockCtrl(); } } /** * @brief : 互锁检测函数 * @param {*} * @return {*} */ void GetHVLockState(void) { // PWM输出,互锁1检测,频率100HZ,占空比30% uint16 VehCo_fTestUI = 1000; uint16 VehCo_rTestUW = 3000; uint32 PwmFreAcq = 0; uint16 PwmDutyAcq = 0; PPWMDrv_Interface(_PPWM_INDEX_HVLOCK2, VehCo_fTestUI, VehCo_rTestUW); PulseAcqDrv_GetChanFreq(_PULSEACQ_INDEX_HVLOCK2, &PwmFreAcq, &PwmDutyAcq); if (abs(PwmFreAcq - VehCo_fTestUI) < 100 && abs(PwmDutyAcq - VehCo_rTestUW) < 500) { m_flg_HVlock1 = 1; } else { m_flg_HVlock1 = 0; } //互锁2检测,配置高有效,悬空为0则未接入,高电平为1则接入, // DINDrv_SetChanThres(_DIN_INDEX_PLUGHVLOCK, 0, 4095 * 3); m_flg_HVlock2 = DINDrv_GetChanState(_DIN_INDEX_PLUGHVLOCK); } /** * @brief : 数字量传感器信号检测函数 * @param {*} * @return {*} */ void GetDIOState(void) { uint8 temp[4]; //松开传感器检测,配置低有效,底层悬空为1,触发为0,应用层输出悬空为0,触发为1 memset(temp, 0x00, 4); ebcd_st_unlockSensor = 0; DINDrv_SetChanThres(_DIN_INDEX_UNLOCKSENSOR1, 1, 4095U); DINDrv_SetChanThres(_DIN_INDEX_UNLOCKSENSOR2, 1, 4095U); DINDrv_SetChanThres(_DIN_INDEX_UNLOCKSENSOR3, 1, 4095U); DINDrv_SetChanThres(_DIN_INDEX_UNLOCKSENSOR4, 1, 4095U); temp[0] = !DINDrv_GetChanState(_DIN_INDEX_UNLOCKSENSOR1); temp[1] = !DINDrv_GetChanState(_DIN_INDEX_UNLOCKSENSOR2); temp[2] = !DINDrv_GetChanState(_DIN_INDEX_UNLOCKSENSOR3); temp[3] = !DINDrv_GetChanState(_DIN_INDEX_UNLOCKSENSOR4); ebcd_st_unlockSensor = (getbit(temp[3], 0) << 3) | (getbit(temp[2], 0) << 2) | (getbit(temp[1], 0) << 1) | (getbit(temp[0], 0) << 0); //夹紧传感器检测,配置低有效,底层悬空为1,触发为0,应用层输出悬空为0,触发为1 memset(temp, 0x00, 4); ebcd_st_lockSensor = 0; DINDrv_SetChanThres(_DIN_INDEX_LOCKSENSOR1, 1, 4095U); DINDrv_SetChanThres(_DIN_INDEX_LOCKSENSOR2, 1, 4095U); DINDrv_SetChanThres(_DIN_INDEX_LOCKSENSOR3, 1, 4095U); DINDrv_SetChanThres(_DIN_INDEX_LOCKSENSOR4, 1, 4095U); temp[0] = !DINDrv_GetChanState(_DIN_INDEX_LOCKSENSOR1); temp[1] = !DINDrv_GetChanState(_DIN_INDEX_LOCKSENSOR2); temp[2] = !DINDrv_GetChanState(_DIN_INDEX_LOCKSENSOR3); temp[3] = !DINDrv_GetChanState(_DIN_INDEX_LOCKSENSOR4); ebcd_st_lockSensor = (getbit(temp[3], 0) << 3) | (getbit(temp[2], 0) << 2) | (getbit(temp[1], 0) << 1) | (getbit(temp[0], 0) << 0); //落座传感器检测,高有效,悬空为0则未接入,高电平为1则接入 memset(temp, 0x00, 4); temp[0] = !DINDrv_GetChanState(_DIN_INDEX_READYSENSOR1); temp[1] = !DINDrv_GetChanState(_DIN_INDEX_READYSENSOR2); ebcd_st_pedstSensor = (getbit(temp[1], 0) << 1) | (getbit(temp[0], 0) << 0); //根据上述量得到,运动状态值 if (ebcd_st_lockSensor == 0x0F) { ebcd_st_lockSucJug = 1; } else if (ebcd_st_lockSensor == 0x00) { ebcd_st_lockSucJug = 0; } else { ebcd_st_lockSucJug = 2; } if (ebcd_st_unlockSensor == 0x0F) { ebcd_st_unlockSucJug = 1; } else if (ebcd_st_unlockSensor == 0x00) { ebcd_st_unlockSucJug = 2; } else { ebcd_st_unlockSucJug = 0; } if (ebcd_st_pedstSucJug == 0x03) { ebcd_st_pedstSucJug = 1; } else if (ebcd_st_pedstSucJug == 0x00) { ebcd_st_pedstSucJug = 0; } else { ebcd_st_pedstSucJug = 2; } } /** * @brief : 获取模拟量输入值,并进行转换 * @param {*} * @return {*} */ void GetAIOValue(void) { uint16 AirPressureTemp_Vol = 0; uint16 PluginTemp1_Vol = 0; uint32 PluginTemp1_R = 0; uint16 PluginTemp2_Vol = 0; uint32 PluginTemp2_R = 0; uint16 PluginTemp3_Vol = 0; uint32 PluginTemp3_R = 0; uint16 PluginTemp4_Vol = 0; uint32 PluginTemp4_R = 0; AirPressureTemp_Vol = ATDDrv_GetChanResult(_ATD_INDEX_AIRPRESSURE); AirPressureTemp_Vol = (uint16)(AirPressureTemp_Vol * 1000 / 4095.0); Test_LockPressure = AirPressureTemp_Vol;//锁紧力测试变量 /*气压数据转换*/ AirPressureTemp_Vol = MAX(AirPressureTemp_Vol, 500); AirPressureTemp_Vol = MIN(AirPressureTemp_Vol, 4500); ebcd_P_airSensor = (uint8)((AirPressureTemp_Vol - 500) / 40); /*温度采集获取*/ PluginTemp1_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP1); PluginTemp2_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP2); PluginTemp3_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP3); PluginTemp4_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP4); PluginTemp1_R = (uint32)((PluginTemp1_Vol / (5.0 * 4095 - PluginTemp1_Vol)) * 1000.0); PluginTemp2_R = (uint32)((PluginTemp2_Vol / (5.0 * 4095 - PluginTemp2_Vol)) * 1000.0); PluginTemp3_R = (uint32)((PluginTemp3_Vol / (5.0 * 4095 - PluginTemp3_Vol)) * 1000.0); PluginTemp4_R = (uint32)((PluginTemp4_Vol / (5.0 * 4095 - PluginTemp4_Vol)) * 1000.0); ebcd_T_plugin[0] = (uint8)Look1_u32u8(PluginTemp1_R, R_table, T_table, 240); ebcd_T_plugin[1] = (uint8)Look1_u32u8(PluginTemp2_R, R_table, T_table, 240); ebcd_T_plugin[2] = (uint8)Look1_u32u8(PluginTemp3_R, R_table, T_table, 240); ebcd_T_plugin[3] = (uint8)Look1_u32u8(PluginTemp4_R, R_table, T_table, 240); } /** * @brief : lookUp Table Fun * @param {uint32} u0 x * @param {uint32} bp0 x_table * @param {uint16} table y_table * @param {uint16} maxIndex * @return {*} */ uint16 Look1_u32u8(uint32 u0, uint32 *bp0, uint8 *table, uint16 MaxLen) { uint32 bpIdx = 0; uint32 iLeft = 0; uint32 iRght = 0; uint16 y = 0; uint32 yL_0d0 = 0; uint32 yR_0d0 = 0; uint32 maxIndex = MaxLen - 1; if (u0 <= bp0[0U]) { iLeft = 0U; iRght = 0U; } else if (u0 < bp0[maxIndex]) { //对折法寻找u0的位置 bpIdx = maxIndex >> 1U; iLeft = 0U; iRght = maxIndex; while ((iRght - iLeft) > 1) { if (u0 < bp0[bpIdx]) { iRght = bpIdx; } else { iLeft = bpIdx; } bpIdx = (iRght + iLeft) >> 1U; } } else { iLeft = maxIndex; iRght = maxIndex; } //找到位置以后计算插值 if (iLeft != iRght) { //线性插值 yR_0d0 = table[iLeft + 1U]; yL_0d0 = table[iLeft]; if (yR_0d0 >= yL_0d0) { y = (uint16)(((uint32)(u0 - bp0[iLeft]) * (yR_0d0 - yL_0d0)) / (bp0[iLeft + 1] - bp0[iLeft]) + yL_0d0); } else { y = (uint16)(yL_0d0 - ((uint32)(u0 - bp0[iLeft]) * (yL_0d0 - yR_0d0)) / (bp0[iLeft + 1] - bp0[iLeft])); } } else { y = (uint16)table[iLeft]; } return y; }