/* * @Author : ChenJie * @Date : 2021-12-15 10:40:06 * @Version : V3.0 * @LastEditors : ChenJie * @LastEditTime : 2022-05-17 19:27:00 * @Description : AppFunc * @FilePath : \undefinedd:\1_WorkFiles\2_Software\10_ReplaceBatteryControl\ECTEK_ToolChain\VehicleControl\VehicleControl\src\System\Vehicle\AppFunc.c */ #include "string.h" #include "stdlib.h" #include "HardwareLib.h" #include "CanVar.h" #include "math.h" #include "AppFunc.h" #include "Std_Types.h" void GetDIOState(void) { //配置高有效,底层悬空为0,触发为1,应用层输出悬空为0,触发为1 DINDrv_SetChanThres(_DIN_INDEX_X10, 0, 40950U); DINDrv_SetChanThres(_DIN_INDEX_X17, 0, 40950U); DINDrv_SetChanThres(_DIN_INDEX_X18, 0, 40950U); DINDrv_SetChanThres(_DIN_INDEX_X13, 0, 40950U); DINDrv_SetChanThres(_DIN_INDEX_X9, 0, 40950U); DINDrv_SetChanThres(_DIN_INDEX_X5, 0, 40950U); DINDrv_SetChanThres(_DIN_INDEX_X11, 0, 40950U); DINDrv_SetChanThres(_DIN_INDEX_X14, 0, 40950U); chrgModuelPwrCtlFB =DINDrv_GetChanState(_DIN_INDEX_X10); paraChrgCtlFB =DINDrv_GetChanState(_DIN_INDEX_X17); outToBaseCtlFB_A =DINDrv_GetChanState(_DIN_INDEX_X18); outToChrgCtlFB_A =DINDrv_GetChanState(_DIN_INDEX_X13); outToChrgCtlFB_B =DINDrv_GetChanState(_DIN_INDEX_X9); outToBaseCtlFB_B =DINDrv_GetChanState(_DIN_INDEX_X14); fuseActionFB_A =DINDrv_GetChanState(_DIN_INDEX_X5); fuseActionFB_B =DINDrv_GetChanState(_DIN_INDEX_X11); A_volDetect =DINDrv_GetChanState(_DIN_INDEX_X7); B_volDetect =DINDrv_GetChanState(_DIN_INDEX_X6); connectorHvlock1 =DINDrv_GetChanState(_DIN_INDEX_X22); connectorHvlock2 =DINDrv_GetChanState(_DIN_INDEX_X23); } void GetAIOValue(void) { uint16 PluginTemp1_Vol = 0; uint32 PluginTemp1_R = 0; uint16 PluginTemp2_Vol = 0; uint32 PluginTemp2_R = 0; uint16 PluginTemp3_Vol = 0; uint32 PluginTemp3_R = 0; uint16 PluginTemp4_Vol = 0; uint32 PluginTemp4_R = 0; //温度采集获取 PluginTemp1_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP1); PluginTemp2_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP2); PluginTemp3_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP3); PluginTemp4_Vol = ATDDrv_GetChanResult(_ATD_INDEX_PLUGINTEMP4); PluginTemp1_R = (uint32)((PluginTemp1_Vol / (5.0 * 4095 - PluginTemp1_Vol)) * 1000.0); PluginTemp2_R = (uint32)((PluginTemp2_Vol / (5.0 * 4095 - PluginTemp2_Vol)) * 1000.0); PluginTemp3_R = (uint32)((PluginTemp3_Vol / (5.0 * 4095 - PluginTemp3_Vol)) * 1000.0); PluginTemp4_R = (uint32)((PluginTemp4_Vol / (5.0 * 4095 - PluginTemp4_Vol)) * 1000.0); chrgGunTemp1_A = (uint8)Look1_u32u8(PluginTemp1_R, R_table, T_table, 240); chrgGunTemp2_A = (uint8)Look1_u32u8(PluginTemp2_R, R_table, T_table, 240); chrgGunTemp1_B = (uint8)Look1_u32u8(PluginTemp3_R, R_table, T_table, 240); chrgGunTemp2_B = (uint8)Look1_u32u8(PluginTemp4_R, R_table, T_table, 240); } void ctrlFunc(void) { if(chrgModulePwrCtrl==1) { PSwtDrv_Interface(_PSWT_INDEX_X36, 1); } else { PSwtDrv_Interface(_PSWT_INDEX_X36, 0); } if(chrgStartState==0&&chrgStopState==1) { if(baseSwitchCtrl==1) { PSwtDrv_Interface(_PSWT_INDEX_X32, 1); PSwtDrv_Interface(_PSWT_INDEX_X20, 1); PSwtDrv_Interface(_PSWT_INDEX_X16, 1); PSwtDrv_Interface(_PSWT_INDEX_X12, 1); PSwtDrv_Interface(_PSWT_INDEX_X8, 1); } else { PSwtDrv_Interface(_PSWT_INDEX_X32, 0); PSwtDrv_Interface(_PSWT_INDEX_X20, 0); PSwtDrv_Interface(_PSWT_INDEX_X16, 0); PSwtDrv_Interface(_PSWT_INDEX_X12, 0); PSwtDrv_Interface(_PSWT_INDEX_X8, 0); } } chrgBoxTemp1 = temp_gf1; chrgBoxTemp2 = temp_gf2; chrgBoxGasOver1 = gashighLevel_gf1; chrgBoxGasOver2 = gashighLevel_gf2; chrgBoxFumesOver1 = fumesHigh_gf1; chrgBoxFumesOver2 = fumesHigh_gf2; ctrlFXFB1 = getbit(workMode_gf1,5); ctrlFXFB2 = getbit(workMode_gf2,5); chrgBox1Warning = warningLevel_gf1; chrgBox2Warning = warningLevel_gf2; } /* void LockAndUnlockCtrl() { static uint16 LockDelay = 0; static uint16 UnlockDelay = 0; static uint16 BleConCounter = 0; static uint16 battSwpeModeCounter = 0; if (ebcd_flg_ebcManCtrlEn) //手动控制使能 { if (ebcd_flg_ebcManCtrlMode == 1) //循环控制模式 { if (ebcd_st_lockSensor == 1) //处于锁紧状态,传感器判定一个 { LockDelay = LockDelay + 10; if (LockDelay > LockDelayTime) //锁紧状态超时就解锁 { ManuControlTimes++; LockDelay = 0; ebcd_st_SwitchCtrlFlg = Unlock; } } else if (ebcd_st_unlockSensor == 1) //处于解锁状态,传感器判定一个 { UnlockDelay = UnlockDelay + 10; if (UnlockDelay > UnlockDelayTime) { UnlockDelay = 0; ebcd_st_SwitchCtrlFlg = Lock; } } } else if (ebcd_flg_ebcManCtrlMode == 2) //控制锁紧 { ebcd_st_SwitchCtrlFlg = Lock; } else if (ebcd_flg_ebcManCtrlMode == 3) //控制解锁 { ebcd_st_SwitchCtrlFlg = Unlock; } } else //正常工作模式 { switch (ebcd_st_ebcWork) { case DriveMode: //行车状态,自动进入,默认状态 { ebcd_st_SwitchCtrlFlg = Lock; PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL, 0); //行车状态换电指示灯关闭 if (bled_flg_handShake == 1) { ebcd_st_ebcWork = CommuMode; //进入通讯状态 bled_flg_handShake = 0; break; } break; } case CommuMode: //通讯状态,握手才能进入 { BleConCounter = BleConCounter + 10; if ((BleConCounter % 1000) < 500) //换电指示灯闪烁 { PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL, 1); } else { PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL, 0); } if (BleConCounter >= 60 * 1000 || bled_flg_backToDrv == 1) { ebcd_st_ebcWork = DriveMode; //切换到行车状态 BleConCounter = 0; bled_flg_backToDrv = 0; break; } else if (BattCD_stWakeupU.B.bLogic == 0 && BattCD_stWakeupU.B.bWkpSig1 == 1) { ebcd_st_ebcWork = SwapMode; //切换到换电状态 BleConCounter = 0; break; } if (bled_st_dataTrans == 1) { BleConCounter = 0; bled_st_dataTrans = 0; } break; } case SwapMode: //换电状态 { PSwtDrv_Interface(_PSWT_INDEX_EBCLEDCONTROL, 1); //换电状态换电指示灯常亮 battSwpeModeCounter = battSwpeModeCounter + 10; if (bled_flg_swapBattDone == 1) { ebcd_Nr_swapBatt++; ebcd_Nr_swapSucBatt++; bled_flg_swapBattDone = 0; ebcd_st_ebcWork = CommuMode; //切换到通讯状态 break; } else if (battSwpeModeCounter >= 60 * 1000) { ebcd_Nr_swapBatt++; battSwpeModeCounter = DriveMode; //切换到行车状态 ebcd_st_ebcWork = 0; break; } if (bled_st_dataTrans == 1) { battSwpeModeCounter = 0; bled_st_dataTrans = 0; } if (bled_flg_unlockCmdForce) { ebcd_st_SwitchCtrlFlg = Unlock; bled_flg_unlockCmdForce = 0; } if (bled_flg_lockCmdForce) { ebcd_st_SwitchCtrlFlg = Lock; bled_flg_lockCmdForce = 0; } break; } } } //锁紧解锁执行 if (ebcd_st_SwitchCtrlFlg == Unlock) { UnlockCtrl(); } else { LockCtrl(); } } */ /** * @brief : lookUp Table Fun * @param {uint32} u0 x * @param {uint32} bp0 x_table * @param {uint16} table y_table * @param {uint16} maxIndex * @return {*} */ uint16 Look1_u32u8(uint32 u0, uint32 *bp0, uint8 *table, uint16 MaxLen) { uint32 bpIdx = 0; uint32 iLeft = 0; uint32 iRght = 0; uint16 y = 0; uint32 yL_0d0 = 0; uint32 yR_0d0 = 0; uint32 maxIndex = MaxLen - 1; if (u0 <= bp0[0U]) { iLeft = 0U; iRght = 0U; } else if (u0 < bp0[maxIndex]) { //对折法寻找u0的位置 bpIdx = maxIndex >> 1U; iLeft = 0U; iRght = maxIndex; while ((iRght - iLeft) > 1) { if (u0 < bp0[bpIdx]) { iRght = bpIdx; } else { iLeft = bpIdx; } bpIdx = (iRght + iLeft) >> 1U; } } else { iLeft = maxIndex; iRght = maxIndex; } //找到位置以后计算插值 if (iLeft != iRght) { //线性插值 yR_0d0 = table[iLeft + 1U]; yL_0d0 = table[iLeft]; if (yR_0d0 >= yL_0d0) { y = (uint16)(((uint32)(u0 - bp0[iLeft]) * (yR_0d0 - yL_0d0)) / (bp0[iLeft + 1] - bp0[iLeft]) + yL_0d0); } else { y = (uint16)(yL_0d0 - ((uint32)(u0 - bp0[iLeft]) * (yL_0d0 - yR_0d0)) / (bp0[iLeft + 1] - bp0[iLeft])); } } else { y = (uint16)table[iLeft]; } return y; } /** * @brief : 故障判断函数 * @param {BOOL} Enable 使能状态 * @param {BOOL} Input 判断输入 * @param {UINT16} *N 判断次数累计 * @param {UINT16} Thr 判断次数阈值 * @return {*} */ BOOL JudgeTimeSystem(BOOL Enable, BOOL Input, UINT16 *N, UINT16 Thr) { BOOL Flg = FALSE; if (Input && Enable) { *N = (*N + 1) > 2000 ? 2000 : (*N + 1); } else { *N = 0; } if (*N > Thr && Enable) { Flg = TRUE; } else { Flg = FALSE; } return Flg; } BOOL DiagThrSystem1(BOOL Enable, BOOL precondition, UINT16 Input, UINT16 fltThr, UINT16 recThr, UINT16 fltNumThr, UINT16 recNumThr, UINT16 *fltNum, UINT16 *recNum, UINT8 *fitFlg) { if (Enable && precondition && Input > fltThr) { *fltNum = (*fltNum + 1) > 20000 ? 20000 : (*fltNum + 1); } else { *fltNum = 0; } if (Enable && precondition && Input < recThr) { *recNum = (*recNum + 1) > 20000 ? 20000 : (*recNum + 1); } else { *recNum = 0; } if ((*fltNum > fltNumThr || (*fitFlg && *recNum < recNumThr)) && precondition) { *fitFlg = TRUE; } else { *fitFlg = FALSE; } return *fitFlg; } /** * @brief : 获取故障码函数,从故障数组中获取故障码,并将之前的故障码向前移动 * @param {UINT16} *ErrorArray * @param {UINT8} Errorlen * @return {*} */ UINT16 GetErrorNum(UINT16 *ErrorArray, UINT8 Errorlen) { UINT16 OutNum; OutNum = *(ErrorArray); for (UINT8 i = 0; i < Errorlen - 1; i++) { *(ErrorArray + i) = *(ErrorArray + i + 1); if (*(ErrorArray + i + 1) == 0) break; } return OutNum; } /** * @brief : 故障码注入函数,将故障码写入到故障数组中,如果存在则不写入,如果存在则不写入 * @param {UINT16} *ErrorArray * @param {UINT8} Errorlen * @param {UINT16} ErrorNum * @return {*} */ UINT8 PutErrorNum(UINT16 *ErrorArray, UINT8 Errorlen, UINT16 ErrorNum) { for (UINT8 i = 0; i < Errorlen; i++) { if (*(ErrorArray + i) == 0) { *(ErrorArray + i) = ErrorNum; return 0; } else { if (*(ErrorArray + i) == ErrorNum) { return 1; } else { continue; } } } return 2; }