UartTask.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047
  1. /****************************************************************************
  2. *
  3. * Copy right: Qx.
  4. * File name: UartTask.c
  5. * Description: 串口任务
  6. * History: 2021-03-05
  7. *
  8. * 2021-04-11:可以通过Ota线路升级Bms保护板
  9. ****************************************************************************/
  10. #include "bsp.h"
  11. #include "bsp_custom.h"
  12. #include "osasys.h"
  13. #include "ostask.h"
  14. #include "queue.h"
  15. #include "ps_event_callback.h"
  16. #include "cmisim.h"
  17. #include "cmimm.h"
  18. #include "cmips.h"
  19. #include "sockets.h"
  20. #include "psifevent.h"
  21. #include "ps_lib_api.h"
  22. #include "lwip/netdb.h"
  23. //#include <cis_def.h>
  24. #include "debug_log.h"
  25. #include "slpman_ec616.h"
  26. #include "plat_config.h"
  27. #include "ec_tcpip_api.h"
  28. #include "hal_module_adapter.h"
  29. #include "UartTask.h"
  30. #include "MainTask.h"
  31. #include <stdlib.h>
  32. #include "app.h"
  33. #include "numeric.h"
  34. #include "Fota.h"
  35. #include "signal.h"
  36. //全局变量输入区
  37. extern UINT32 Timer_count;
  38. extern volatile BOOL Sleep_flag;
  39. extern AppNVMDataType AppNVMData;
  40. extern AppDataBody AppDataInfo;
  41. extern UINT8 WorkFlag;
  42. extern UINT8 UDSSwitch;
  43. //全局变量输出区
  44. BOOL UartBattInfoRecvFlag = false;
  45. QueueHandle_t UartWriteCmdHandle = NULL;
  46. UINT8 BattChrgEndFlag;
  47. //
  48. extern ARM_DRIVER_USART Driver_USART1;
  49. static ARM_DRIVER_USART *USARTdrv = &Driver_USART1;
  50. volatile bool isRecvTimeout = false;
  51. volatile bool isRecvComplete = false;
  52. //线程声明区
  53. static StaticTask_t gProcess_Uart_Task_t;
  54. static UINT8 gProcess_Uart_TaskStack[PROC_UART_TASK_STACK_SIZE];
  55. static osThreadId_t UartTaskId = NULL;
  56. static process_Uart gProcess_Uart_Task = PROCESS_UART_STATE_IDLE;
  57. #define PROC_UART_STATE_SWITCH(a) (gProcess_Uart_Task = a)
  58. //函数声明区
  59. void USART_callback(uint32_t event);
  60. UINT8 Uart_DataRecv_func(Uart_Read_Msg_Type Uart_Read_Msg_Fun,UINT8* Uart_Recv_Buffer_Fun);
  61. static BOOL uartBattInfoDecode(UINT8* dataPtr);
  62. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData);
  63. UINT16 crc_chk(UINT8* data, UINT8 length);
  64. void battSOCDisplay(void);
  65. void battErrorStateDisplay(void);
  66. void battWarningStateDisplay(void);
  67. void battLockStateDisplay(UINT8 lockState);
  68. void relayControlFunc(float DutyRatio,UINT8 BuzzerPeriod);
  69. void SP_BMS_Update_Service(void);
  70. BOOL BattHeaterSwitch(UINT8* heaterSwitch);
  71. UINT16 encryptionAlgorithm (UINT16 plainText);
  72. UINT8 decryptionAlgorithm (UINT16 cipherText);
  73. UINT8 Uart_Encrypt_Send(void);
  74. UINT8 BmsErrorDecode(UINT32 battWarningState);
  75. //BMS升级函数声明
  76. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len);
  77. void SP_BMS_Update_Service();
  78. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  79. updateBMSStatus MS_BMS_Update_Service();
  80. UINT16 MS_BMS_Update_CRC16(UINT8* pSendData,UINT16 len);
  81. UINT8 MS_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  82. //Uart线程任务区
  83. static void UartTask(void* arg)
  84. {
  85. USARTdrv->Initialize(USART_callback);
  86. USARTdrv->PowerControl(ARM_POWER_FULL);
  87. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  88. ARM_USART_DATA_BITS_8 |
  89. ARM_USART_PARITY_NONE |
  90. ARM_USART_STOP_BITS_1 |
  91. ARM_USART_FLOW_CONTROL_NONE, 9600);
  92. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_ENCRYPT);
  93. UINT16 Reg_Num = 0;
  94. UINT16 Uart_Uds_LEN;
  95. UINT16 Uart_Recv_LEN;
  96. UINT32 currentTimerCount=0;
  97. BOOL uartReadSuccessFlag = false;
  98. Uart_Read_Msg_Type Uart_Read_Msg;
  99. memset(&(Uart_Read_Msg),0x00,sizeof(Uart_Read_Msg_Type));
  100. Uart_Write_Data_Type UartWriteData; //Uart控制命令
  101. memset(&(UartWriteData),0x00,sizeof(Uart_Write_Data_Type));
  102. UartReadMsgType UartReadMsg;
  103. memset(&(UartReadMsg.UartFlag),0x00,sizeof(UartReadMsgType));
  104. if(UartWriteCmdHandle == NULL)//Uart控制命令传输指针
  105. {
  106. UartWriteCmdHandle = osMessageQueueNew(1,sizeof(Uart_Write_Data_Type), NULL);
  107. }
  108. //上电起始控制区域
  109. UINT8 ret = 0x00,Ringtimes = 0;
  110. UINT8 HeatSwitch = 0;
  111. while (1)
  112. {
  113. switch (gProcess_Uart_Task)
  114. {
  115. case PROCESS_UART_STATE_ENCRYPT:
  116. {
  117. UINT8 EncryptFlag=0x00;
  118. UINT8 EncryptCount=0;
  119. while(EncryptFlag!=0x01&&EncryptCount<=3)
  120. {
  121. EncryptFlag = Uart_Encrypt_Send();
  122. EncryptCount++;
  123. }
  124. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  125. break;
  126. }
  127. case PROCESS_UART_STATE_IDLE:
  128. {
  129. osDelay(100);
  130. if(Sleep_flag)
  131. {
  132. Ringtimes = 0;
  133. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_SLEEP);
  134. break;
  135. }
  136. else if(Timer_count%10==0)
  137. {
  138. #ifdef USING_PRINTF1
  139. printf("[%d]Uart Timer 1s:%d,uartReadSuccessFlag:%d\n",__LINE__,Timer_count,uartReadSuccessFlag);
  140. #endif
  141. if(osMessageQueueGet(UartWriteCmdHandle,&UartWriteData,0,0)==osOK && uartReadSuccessFlag==TRUE)
  142. {
  143. #ifdef USING_PRINTF
  144. printf("[%d]UartWriteCmdHandle :%x-%X%X\n",__LINE__,UartWriteData.WriteCmd,UartWriteData.Data[0],UartWriteData.Data[1]);
  145. #endif
  146. Ringtimes = 0;
  147. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_WRITE);
  148. break;
  149. }
  150. else
  151. {
  152. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  153. break;
  154. }
  155. }
  156. if(maxCellVol>4400&&maxCellVol<6000)//继电器测试
  157. {
  158. AppDataInfo.RelayControl=TRUE;
  159. }
  160. else if(maxCellVol<4000)
  161. {
  162. AppDataInfo.RelayControl=FALSE;
  163. }
  164. if(UartReadMsg.Header[2]>0)
  165. {
  166. uartReadSuccessFlag = true;
  167. }
  168. else
  169. {
  170. uartReadSuccessFlag = false;
  171. }
  172. if(Timer_count-currentTimerCount >= 1)
  173. {
  174. if(AppNVMData.isBattLocked != 0)
  175. {
  176. battLockStateDisplay(TRUE);
  177. }
  178. else if(uartReadSuccessFlag)
  179. {
  180. battSOCDisplay();
  181. battErrorStateDisplay();
  182. }
  183. else
  184. {
  185. battWarningStateDisplay();
  186. }
  187. if(AppNVMData.isBattLocked==FALSE && ret==0x01)
  188. {
  189. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  190. Ringtimes++;
  191. if(Ringtimes>=15)
  192. {
  193. relayControl(FALSE);
  194. ret = 0;
  195. Ringtimes = 0;
  196. }
  197. }
  198. else if (AppNVMData.isBattLocked==TRUE && ret==0x01)
  199. {
  200. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  201. Ringtimes++;
  202. if(Ringtimes>=10)
  203. {
  204. relayControl(FALSE);
  205. ret = 0;
  206. Ringtimes = 0;
  207. }
  208. }
  209. else if(UDSSwitch==1 && Ringtimes<=50)
  210. {
  211. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  212. Ringtimes++;
  213. }
  214. else if(BuzzerControl==TRUE)
  215. {
  216. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  217. }
  218. if(Ringtimes>=50)
  219. {
  220. relayControl(FALSE);
  221. }
  222. }
  223. currentTimerCount = Timer_count;
  224. if(BMS_Fota_update_flag)
  225. {
  226. if(WorkFlag==0x00)
  227. {
  228. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_UPDATE);
  229. break;
  230. }
  231. }
  232. if(battWorkState ==0x00 && AppNVMData.isBattLocked==TRUE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03)!=0x02)//try to lock lock the discharge
  233. {
  234. #ifdef USING_PRINTF
  235. printf("[%d]try to lock:%X-%X\n",__LINE__,AppNVMData.isBattLocked,(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03);
  236. #endif
  237. UartWriteData.WriteCmd = 0x01;
  238. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  239. UartWriteData.Data[1] = 0x02;
  240. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  241. }
  242. else if (battWorkState ==0x00 && AppNVMData.isBattLocked==FALSE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03)!=0x03) // try to unlock
  243. {
  244. #ifdef USING_PRINTF
  245. printf("[%d]try to unlock:%X-%X\n",__LINE__,AppNVMData.isBattLocked,(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03);
  246. #endif
  247. UartWriteData.WriteCmd = 0x01;
  248. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  249. UartWriteData.Data[1] = 0x03;
  250. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  251. }
  252. if(AppDataInfo.RelayControl==TRUE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2])&0x80)==0x00)//继电器断开
  253. {
  254. UartWriteData.WriteCmd = 0x03;
  255. UartWriteData.Data[0] = 0x80;
  256. UartWriteData.Data[1] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1]);
  257. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  258. }
  259. else if(AppDataInfo.RelayControl==FALSE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2])&0x80)==0x80)//继电器闭合
  260. {
  261. UartWriteData.WriteCmd = 0x03;
  262. UartWriteData.Data[0] = 0x00;
  263. UartWriteData.Data[1] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1]);
  264. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  265. }
  266. if(BattHeaterSwitch(&HeatSwitch)==TRUE)
  267. {
  268. UartWriteData.WriteCmd = 0x02;
  269. UartWriteData.Data[0] = 0x00;
  270. UartWriteData.Data[1] = HeatSwitch&0xFF;
  271. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  272. }
  273. break;
  274. }
  275. case PROCESS_UART_STATE_READ:
  276. {
  277. UINT16 CRC_chk_buffer;
  278. Reg_Num = 0x21+BATT_CELL_VOL_NUM+BATT_TEMP_NUM + BATT_OTHER_TEMP_NUM;//按照协议里面的0x21+X+N的结束地址
  279. Uart_Read_Msg.Bms_Address = BMS_ADDRESS_CODE;
  280. Uart_Read_Msg.Bms_Funcode = UART_READ_CODE;
  281. Uart_Read_Msg.Reg_Begin_H = 0x00;
  282. Uart_Read_Msg.Reg_Begin_L= 0x00;
  283. Uart_Read_Msg.Reg_Num_H = Reg_Num>>8;
  284. Uart_Read_Msg.Reg_Num_L = Reg_Num;
  285. Uart_Uds_LEN = Reg_Num*2;
  286. memset(UartReadMsg.Header,0x00,Uart_Uds_LEN);
  287. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Read_Msg,6);
  288. Uart_Read_Msg.CRC_L = CRC_chk_buffer;
  289. Uart_Read_Msg.CRC_H = CRC_chk_buffer>>8;
  290. //Uart_Recv_LEN = Uart_DataRecv_func((UINT8 *)&Uart_Read_Msg,(UINT8*)UartReadMsg.Header);
  291. Uart_Recv_LEN = Uart_DataRecv_func(Uart_Read_Msg,(UINT8*)(UartReadMsg.Header));
  292. if(Uart_Recv_LEN>0)
  293. {
  294. UartBattInfoRecvFlag = TRUE;
  295. uartBattInfoDecode(UartReadMsg.data);
  296. }
  297. else
  298. {
  299. UartBattInfoRecvFlag = FALSE;
  300. }
  301. UartReadMsg.len = Uart_Recv_LEN;
  302. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  303. if( battWorkState ==0x02)
  304. {
  305. BattChrgEndFlag=TRUE;
  306. }
  307. else
  308. {
  309. BattChrgEndFlag=FALSE;
  310. }
  311. #ifdef USING_PRINTF1
  312. printf("[%d]lock:%X,permit:%X,Mos:%x\n",__LINE__,AppNVMData.isBattLocked,(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03,((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_OTHER_TEMP_NUM)*2+1])>>1)&0x03);
  313. #endif
  314. break;
  315. }
  316. case PROCESS_UART_STATE_WRITE:
  317. {
  318. ret = Uart_WriteCmd_func(UartWriteData);
  319. osDelay(500);
  320. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  321. break;
  322. }
  323. case PROCESS_UART_STATE_UPDATE:
  324. UartBattInfoRecvFlag = FALSE;
  325. #if BMS_MANUFACTURE==1
  326. {
  327. SP_BMS_Update_Service();
  328. }
  329. #elif BMS_MANUFACTURE==2
  330. MS_BMS_Update_Service();
  331. #endif
  332. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  333. BMS_Fota_update_flag = FALSE;
  334. break;
  335. case PROCESS_UART_STATE_SLEEP:
  336. {
  337. USARTdrv->PowerControl(ARM_POWER_LOW);
  338. while(TRUE)
  339. {
  340. osDelay(60000/portTICK_PERIOD_MS);
  341. }
  342. osThreadExit();
  343. break;
  344. }
  345. }
  346. }
  347. }
  348. //Uart 接收的数据解码
  349. static BOOL uartBattInfoDecode(UINT8* dataPtr)
  350. {
  351. //BattInfoType battInfo;
  352. UINT8 i,temp=0;
  353. UINT8 TEMP_NUM = BATT_TEMP_NUM + BATT_OTHER_TEMP_NUM;
  354. UINT16 Batt_current;
  355. for(i=0;i<BATT_CELL_VOL_NUM;i++)
  356. {
  357. battCellU[i] = (dataPtr[(0x02+i)*2] << 8) | dataPtr[(0x02+i)*2 + 1];
  358. }
  359. battWorkState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+1])&0x03;//电池状态(原始数据),0表示静置,1表示放电,2表示充电
  360. for(i=0; i<BATT_TEMP_NUM; i++)
  361. {
  362. battCellTemp[i] = dataPtr[(0x06+BATT_CELL_VOL_NUM+i)*2+1];
  363. }
  364. MOSTemp = dataPtr[(0x06+BATT_CELL_VOL_NUM+BATT_TEMP_NUM)*2+1];
  365. packTemp = dataPtr[(0x06+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+1)*2+1];
  366. Batt_current = (dataPtr[(0x02+BATT_CELL_VOL_NUM)*2]<<8)|(dataPtr[(0x02+BATT_CELL_VOL_NUM)*2+1]);
  367. //原始数据:充电为负,放电为正
  368. if(battWorkState == 0x02) //充电过程
  369. {
  370. if(Batt_current >0x8000)// 数据为负
  371. {
  372. //求补码,结果为负
  373. Batt_current = (UINT16)((UINT16)(~(Batt_current))+1);
  374. Batt_current = Batt_current/10;
  375. AppDataInfo.BattCurrentNegFlag = -1;
  376. }
  377. else
  378. {
  379. //源码,结果为负
  380. Batt_current = Batt_current/10;
  381. AppDataInfo.BattCurrentNegFlag = -1;
  382. }
  383. }
  384. else //放电过程
  385. {
  386. if(Batt_current >0x8000)// 数据为负
  387. {
  388. //求补码,结果为正
  389. Batt_current = (UINT16)((UINT16)(~(Batt_current))+1);
  390. Batt_current = Batt_current/10;
  391. AppDataInfo.BattCurrentNegFlag = 1;
  392. }
  393. else
  394. {
  395. //源码,结果为正
  396. Batt_current = Batt_current/10;
  397. AppDataInfo.BattCurrentNegFlag = 1;
  398. }
  399. }
  400. battI = Batt_current*AppDataInfo.BattCurrentNegFlag + 0x2710;
  401. //bit0 ~ bit31 represent cell0 ~ cell31
  402. battBalanceoInfo = dataPtr[(0x06+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1] | (dataPtr[(0x06+BATT_CELL_VOL_NUM+TEMP_NUM)*2] <<8) + (dataPtr[(0x07+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]<<16) | (dataPtr[(0x07+BATT_CELL_VOL_NUM+TEMP_NUM)*2] <<24);
  403. chargerConnectState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+1]>>2)&0x01;//充电器连接状态,0表示未连接,1表示已连接
  404. bmsHwVersion = dataPtr[(0x08+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  405. bmsSwVersion = dataPtr[(0x08+BATT_CELL_VOL_NUM+TEMP_NUM)*2];
  406. temp = ((dataPtr[(0x09+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])>>1)&0x03;
  407. battMOSSwitchState = ((temp&0x01)<<1)|((temp&0x02)>>1);
  408. #ifdef USING_PRINTF1
  409. printf("[%d]battMOSSwitchState :%x\n",__LINE__,battMOSSwitchState);
  410. #endif
  411. if(AppNVMData.isBattLocked==TRUE)
  412. {
  413. battMOSSwitchState = battMOSSwitchState |(0x01<<2);
  414. }
  415. else
  416. {
  417. battMOSSwitchState = battMOSSwitchState |(0x00<<2);
  418. }
  419. battWarningState = (dataPtr[(0x09+BATT_CELL_VOL_NUM+TEMP_NUM)*2+0]<<16) | (dataPtr[(0x0A+BATT_CELL_VOL_NUM+TEMP_NUM)*2+0] << 8) |(dataPtr[(0x0A+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  420. battSOC = dataPtr[(0x0B+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  421. battSOH = dataPtr[(0x0C+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  422. Battdesigncap = (dataPtr[(0x0E+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<24|(dataPtr[(0x0E+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])<<16|(dataPtr[(0x0F+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x0F+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  423. BattRemainCap = (dataPtr[(0x12+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<24|(dataPtr[(0x12+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])<<16|(dataPtr[(0x13+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x13+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  424. battProtectState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+0]<<24) | (dataPtr[(0x04+BATT_CELL_VOL_NUM)*2+0] << 16) |(dataPtr[(0x04+BATT_CELL_VOL_NUM)*2+1]<<8) | (dataPtr[(0x05+BATT_CELL_VOL_NUM)*2+1]);
  425. battPackVol =((dataPtr[(0x18+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x18+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]))/10; //uint 100mV
  426. maxCellVol = (dataPtr[(0x19+BATT_CELL_VOL_NUM+TEMP_NUM)*2] << 8) | dataPtr[(0x19+BATT_CELL_VOL_NUM+TEMP_NUM)*2 + 1];
  427. minCellVol = (dataPtr[(0x1A+BATT_CELL_VOL_NUM+TEMP_NUM)*2] << 8) | dataPtr[(0x1A+BATT_CELL_VOL_NUM+TEMP_NUM)*2 + 1];
  428. RelayControlState = (dataPtr[(0x1B+BATT_CELL_VOL_NUM+TEMP_NUM)*2])&0x80;
  429. battHeatEnableState = dataPtr[(0x1C+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]&0x01;
  430. //SOC问题紧急修复
  431. UINT8 SOC1 = 0;
  432. static UINT8 SOC_counter=0;
  433. SOC1 = (battPackVol*45-27000)/100;
  434. if((battSOC - SOC1>10)&&(battPackVol>500)&&(battPackVol<900))
  435. {
  436. SOC_counter++;
  437. }
  438. else
  439. {
  440. SOC_counter = 0;
  441. }
  442. if(SOC_counter>=10)
  443. {
  444. if(SOC_counter>=200)
  445. {
  446. SOC_counter==10;
  447. }
  448. battSOC = SOC1;
  449. if(osOK==osMutexAcquire(Error_Mutex, 100))
  450. {
  451. UINT8 ErrorNumTemp = 238;
  452. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  453. }
  454. osMutexRelease(Error_Mutex);
  455. }
  456. maxCellTemp = 0x00;
  457. minCellTemp = 0xFF;
  458. for(i=0;i<BATT_TEMP_NUM;i++)
  459. {
  460. maxCellTemp = max(maxCellTemp,battCellTemp[i]);
  461. minCellTemp = min(minCellTemp,battCellTemp[i]);
  462. }
  463. nbSwVersion = APPSWVERSION;
  464. nbHwVersion = HWVERSION;
  465. BmsErrorDecode(battWarningState);
  466. return true;
  467. }
  468. //Uart线程初始化
  469. void UartTaskInit(void *arg)
  470. {
  471. osThreadAttr_t task_attr;
  472. memset(&task_attr,0,sizeof(task_attr));
  473. memset(gProcess_Uart_TaskStack, 0xA5, PROC_UART_TASK_STACK_SIZE);
  474. task_attr.name = "Uart_Task";
  475. task_attr.stack_mem = gProcess_Uart_TaskStack;
  476. task_attr.stack_size = PROC_UART_TASK_STACK_SIZE;
  477. task_attr.priority = osPriorityBelowNormal7;
  478. task_attr.cb_mem = &gProcess_Uart_Task_t;
  479. task_attr.cb_size = sizeof(StaticTask_t);
  480. UartTaskId = osThreadNew(UartTask, NULL, &task_attr);
  481. }
  482. void UartTaskDeInit(void *arg)
  483. {
  484. osThreadTerminate(UartTaskId);
  485. UartTaskId = NULL;
  486. }
  487. //函数区
  488. //Uart回调程序
  489. void USART_callback(uint32_t event)
  490. {
  491. if(event & ARM_USART_EVENT_RX_TIMEOUT)
  492. {
  493. isRecvTimeout = true;
  494. }
  495. if(event & ARM_USART_EVENT_RECEIVE_COMPLETE)
  496. {
  497. isRecvComplete = true;
  498. }
  499. }
  500. //Uart校验程序
  501. UINT16 crc_chk(UINT8* data, UINT8 length)
  502. {
  503. UINT8 j;
  504. UINT16 reg_crc=0xFFFF;
  505. while(length--)
  506. {
  507. reg_crc ^= *data++;
  508. for(j=0;j<8;j++)
  509. {
  510. if(reg_crc & 0x01)
  511. {
  512. reg_crc=(reg_crc>>1) ^ 0xA001;
  513. }
  514. else
  515. {
  516. reg_crc=reg_crc >>1;
  517. }
  518. }
  519. }
  520. return reg_crc;
  521. }
  522. //Uart写命令函数
  523. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData)
  524. {
  525. Uart_Write_Msg_Type Uart_Write_Msg;
  526. UINT16 RegAddress = 0x0000;
  527. UINT16 CRC_chk_buffer;
  528. UINT8 timeout = 0x00;
  529. UINT8 Uart_Recv_Buffer[8];
  530. #ifdef USING_PRINTF
  531. printf("\nUart_WriteCmd_func: %x ",UartWriteData.WriteCmd);
  532. #endif
  533. switch (UartWriteData.WriteCmd)
  534. {
  535. case 0x01://是否锁定
  536. {
  537. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  538. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  539. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  540. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  541. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  542. Uart_Write_Msg.Reg_Num_H = 0x00;
  543. Uart_Write_Msg.Reg_Num_L = 0x01;
  544. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  545. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  546. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  547. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  548. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  549. break;
  550. }
  551. case 0x02://是否加热
  552. {
  553. RegAddress = 0x1C + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  554. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  555. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  556. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  557. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  558. Uart_Write_Msg.Reg_Num_H = 0x00;
  559. Uart_Write_Msg.Reg_Num_L = 0x01;
  560. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  561. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  562. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  563. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  564. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  565. break;
  566. }
  567. case 0x03://是否继电器控制
  568. {
  569. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  570. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  571. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  572. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  573. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  574. Uart_Write_Msg.Reg_Num_H = 0x00;
  575. Uart_Write_Msg.Reg_Num_L = 0x01;
  576. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  577. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  578. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  579. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  580. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  581. break;
  582. }
  583. default:
  584. {
  585. UartWriteData.WriteCmd = 0x00;
  586. return 0;
  587. break;
  588. }
  589. }
  590. USARTdrv->Send((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg));
  591. #ifdef USING_PRINTF
  592. printf("Uart_Send_buffer: ");
  593. for(int i=0;i<sizeof(Uart_Write_Msg);i++)
  594. {
  595. printf("%x ",*((UINT8 *)&Uart_Write_Msg+i));
  596. }
  597. printf("\n");
  598. #endif
  599. USARTdrv->Receive(Uart_Recv_Buffer,8);
  600. while((isRecvTimeout == false) && (isRecvComplete == false))
  601. {
  602. timeout++;
  603. osDelay(100);
  604. if (timeout>=10)
  605. {
  606. timeout =0;
  607. isRecvTimeout = true;
  608. break;
  609. }
  610. }
  611. if (isRecvComplete == true)
  612. {
  613. #ifdef USING_PRINTF
  614. printf("Uart_Rece_buffer: ");
  615. for(int i=0;i<8;i++)
  616. {
  617. printf("%x ",Uart_Recv_Buffer[i]);
  618. }
  619. printf("\n");
  620. #endif
  621. isRecvComplete = false;
  622. if(Uart_Recv_Buffer[1]==0x10)
  623. {
  624. return UartWriteData.WriteCmd;
  625. }
  626. else
  627. {
  628. return 0x00;
  629. }
  630. }
  631. else
  632. {
  633. isRecvTimeout = false;
  634. return 0x00;
  635. }
  636. }
  637. //Uart发送接收函数
  638. UINT8 Uart_DataRecv_func(Uart_Read_Msg_Type Uart_Read_Msg_Fun,UINT8* Uart_Recv_Buffer_Fun)
  639. {
  640. UINT16 CRC_Rece_buffer;
  641. UINT16 CRC_chk_buffer;
  642. UINT16 Data_Len ;
  643. UINT8 timeout = 0x00;
  644. UINT8 pSendCmd[8];
  645. memcpy(pSendCmd,(UINT8*)(&Uart_Read_Msg_Fun),8);
  646. //Data_Len = (*(Uart_Read_Msg_Fun+4)|*(Uart_Read_Msg_Fun+5))*2+5;
  647. Data_Len = ((Uart_Read_Msg_Fun.Reg_Num_H<<8)|(Uart_Read_Msg_Fun.Reg_Num_L))*2+5;
  648. //USARTdrv->Send(Uart_Read_Msg_Fun,8);
  649. USARTdrv->Send(pSendCmd,8);
  650. #ifdef USING_PRINTF1
  651. printf("Uart_Send_buffer: ");
  652. for(int i=0;i<8;i++)
  653. // {
  654. printf("%x ",pSendCmd[i]);
  655. // }
  656. printf("end\n");
  657. //printf("%x ",*(Uart_Read_Msg_Fun));
  658. //UINT8 temp = *(Uart_Read_Msg_Fun);
  659. #endif
  660. USARTdrv->Receive(Uart_Recv_Buffer_Fun,Data_Len);
  661. while(true)
  662. {
  663. timeout++;
  664. if((isRecvTimeout == true) || (isRecvComplete == true))
  665. {
  666. break;
  667. }
  668. else
  669. {
  670. osDelay(100);
  671. if (timeout>=10)
  672. {
  673. // Data_Len = 0;
  674. timeout =0;
  675. isRecvTimeout = true;
  676. }
  677. }
  678. }
  679. #ifdef USING_PRINTF1
  680. printf("Uart_Rece_buffer1: ");
  681. for(int j=0;j<Data_Len;j++)
  682. {
  683. printf("%x ",*(Uart_Recv_Buffer_Fun+j));
  684. }
  685. #endif
  686. if (isRecvComplete == true)
  687. {
  688. isRecvComplete = false;
  689. CRC_Rece_buffer =*(Uart_Recv_Buffer_Fun+Data_Len-1)<<8|*(Uart_Recv_Buffer_Fun+Data_Len-2);
  690. CRC_chk_buffer = crc_chk(Uart_Recv_Buffer_Fun,Data_Len-2);
  691. #ifdef USING_PRINTF1
  692. printf("Uart_Rece_buffer after Crc: ");
  693. for(int i=0;i<Data_Len;i++)
  694. {
  695. printf("%x ",*(Uart_Recv_Buffer_Fun+i));
  696. }
  697. printf("\tcrcchk:%x,%x\n ",CRC_chk_buffer,CRC_Rece_buffer);
  698. #endif
  699. if (CRC_Rece_buffer == CRC_chk_buffer)//满足校验
  700. {
  701. return Data_Len;//此处指针移位出现重启问题
  702. }
  703. else //接收数据的校验不过
  704. {
  705. USARTdrv->Uninitialize();
  706. osDelay(1000);
  707. USARTdrv->Initialize(USART_callback);
  708. USARTdrv->PowerControl(ARM_POWER_FULL);
  709. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  710. ARM_USART_DATA_BITS_8 |
  711. ARM_USART_PARITY_NONE |
  712. ARM_USART_STOP_BITS_1 |
  713. ARM_USART_FLOW_CONTROL_NONE, 9600);
  714. memset(Uart_Recv_Buffer_Fun,0xff,Data_Len);
  715. return 0;
  716. }
  717. }
  718. else
  719. {
  720. memset(Uart_Recv_Buffer_Fun,0x00,Data_Len);
  721. isRecvTimeout = false;
  722. return 0;
  723. }
  724. return 0;
  725. }
  726. /**
  727. \fn BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  728. \param[in] (UINT8*) heaterSwitch: the heater switch state
  729. \brief according to the current switch state and all the cell temp, it will turn on/off the switch
  730. \return (BOOL) isNeedtoSwitch: true: need to send cmd to turn on/off the switch
  731. false: do not need to do anything
  732. */
  733. BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  734. {
  735. BOOL isNeedtoSwitch = FALSE;
  736. UINT8 i =0;
  737. UINT8 currentSwitchState = 0;
  738. //get the current switch state and the cell temp
  739. currentSwitchState = battHeatEnableState & 0x01;
  740. if(currentSwitchState==0) //当前状态为关闭,判断是否应该开启
  741. {
  742. if((chargerConnectState == 1 && minCellTemp<5+40 && minCellTemp>=-29+40 && maxCellTemp<25+40)||(chargerConnectState==0 && minCellTemp<5+40 && minCellTemp>=-29+40 && battSOC>=10 && (((battProtectState>> 21)&0x01) == 0)))//温度偏移为40
  743. {
  744. *heaterSwitch = 1;
  745. isNeedtoSwitch = true;
  746. }
  747. }
  748. else //当前状态为开启,判断是否应该关闭
  749. {
  750. if((minCellTemp>=10+40 || maxCellTemp>=30+40)||(chargerConnectState == 0 && minCellTemp<5+40 && minCellTemp>=-29+40 && battSOC<5))
  751. {
  752. *heaterSwitch = 0;
  753. isNeedtoSwitch= true;
  754. }
  755. }
  756. return isNeedtoSwitch;
  757. }
  758. void battSOCDisplay()
  759. {
  760. static UINT8 lightTimer = 0;
  761. UINT8 socLowLEDFlashPeriod = 10;//10*100 = 1000ms
  762. UINT8 chargeLEDFlashPeriod = 6;//6*100 = 600ms
  763. float dutyRatio = 0.4;
  764. UINT8 temp;
  765. if(AppNVMData.isBattLocked == TRUE)
  766. {
  767. return;
  768. }
  769. if(UartBattInfoRecvFlag == true)
  770. {
  771. lightTimer++;
  772. if(battWorkState == 0||battWorkState == 1) //静置或放电状态
  773. {
  774. if(battSOC<=10)
  775. {
  776. if(lightTimer<(UINT8)(socLowLEDFlashPeriod*dutyRatio))
  777. {
  778. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  779. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  780. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  781. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  782. }
  783. else if(lightTimer>=(UINT8)(socLowLEDFlashPeriod*dutyRatio) && lightTimer<socLowLEDFlashPeriod)
  784. {
  785. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  786. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  787. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  788. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  789. }
  790. else
  791. {
  792. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  793. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  794. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  795. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  796. lightTimer = 0;
  797. }
  798. }
  799. else if(battSOC>10&&battSOC<=25)
  800. {
  801. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  802. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  803. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  804. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  805. lightTimer = 0;
  806. }
  807. else if(battSOC>25&&battSOC<=50)
  808. {
  809. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  810. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  811. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  812. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  813. lightTimer = 0;
  814. }
  815. else if(battSOC>50&&battSOC<=75)
  816. {
  817. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  818. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  819. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  820. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  821. lightTimer = 0;
  822. }
  823. else if(battSOC>75&&battSOC<=100)
  824. {
  825. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  826. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  827. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  828. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  829. lightTimer = 0;
  830. }
  831. }
  832. else if(battWorkState == 2)
  833. {
  834. if(battSOC<=25)
  835. {
  836. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  837. {
  838. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  839. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  840. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  841. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  842. }
  843. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  844. {
  845. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  846. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  847. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  848. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  849. }
  850. else
  851. {
  852. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  853. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  854. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  855. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  856. lightTimer = 0;
  857. }
  858. }
  859. else if(battSOC>25&&battSOC<=50)
  860. {
  861. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  862. {
  863. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  864. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  865. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  866. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  867. }
  868. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  869. {
  870. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  871. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  872. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  873. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  874. }
  875. else
  876. {
  877. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  878. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  879. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  880. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  881. lightTimer = 0;
  882. }
  883. }
  884. else if(battSOC>50&&battSOC<=75)
  885. {
  886. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  887. {
  888. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  889. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  890. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  891. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  892. }
  893. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  894. {
  895. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  896. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  897. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  898. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  899. }
  900. else
  901. {
  902. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  903. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  904. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  905. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  906. lightTimer = 0;
  907. }
  908. }
  909. else if(battSOC>75&&battSOC<=97)
  910. {
  911. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  912. {
  913. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  914. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  915. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  916. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  917. }
  918. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  919. {
  920. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  921. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  922. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  923. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  924. }
  925. else
  926. {
  927. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  928. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  929. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  930. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  931. lightTimer = 0;
  932. }
  933. }
  934. else if(battSOC>97&&battSOC<=100)
  935. {
  936. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  937. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  938. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  939. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  940. }
  941. }
  942. }
  943. }
  944. void battErrorStateDisplay()
  945. {
  946. static UINT8 errorLightTimer = 0;
  947. //static UINT32 currentTimerCount=0;
  948. UINT8 errorLEDFlashPeriod = 6;//600ms
  949. float errorDutyRatio = 0.4;
  950. if(AppNVMData.isBattLocked == TRUE)
  951. {
  952. return;
  953. }
  954. if(UartBattInfoRecvFlag == true)
  955. {
  956. errorLightTimer++;
  957. if(battWorkState == 0x02) //充电模式下,如果只有“SOC低故障”,那么就不显示故障灯 zhengchao20210713 add
  958. {
  959. if((((battWarningState >> 10) & 0x01) == 0x01) && ((battWarningState & 0xFFFFFBFF) == 0x00))
  960. return;
  961. }
  962. if(battWarningState != 0 )
  963. {
  964. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  965. {
  966. FaultDisplay(LED_TURN_ON);
  967. }
  968. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  969. {
  970. FaultDisplay(LED_TURN_OFF);
  971. }
  972. else
  973. {
  974. FaultDisplay(LED_TURN_OFF);
  975. errorLightTimer = 0;
  976. }
  977. }
  978. else
  979. {
  980. FaultDisplay(LED_TURN_OFF);
  981. errorLightTimer = 0;
  982. }
  983. }
  984. }
  985. void battWarningStateDisplay()
  986. {
  987. static UINT8 warningLightTimer = 0;
  988. //static UINT32 currentTimerCount=0;
  989. UINT8 warningLEDFlashPeriod = 6;//600ms
  990. float warningDutyRatio = 0.4;
  991. if(AppNVMData.isBattLocked == TRUE)
  992. {
  993. return;
  994. }
  995. if(UartBattInfoRecvFlag == false)
  996. {
  997. warningLightTimer++;
  998. //if(battWarningState != 0)
  999. {
  1000. if(warningLightTimer<(UINT8)(warningLEDFlashPeriod*warningDutyRatio))
  1001. {
  1002. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  1003. FaultDisplay(LED_TURN_ON);
  1004. }
  1005. else if(warningLightTimer>=(UINT8)(warningLEDFlashPeriod*warningDutyRatio) && warningLightTimer<warningLEDFlashPeriod)
  1006. {
  1007. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1008. FaultDisplay(LED_TURN_OFF);
  1009. }
  1010. else
  1011. {
  1012. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1013. FaultDisplay(LED_TURN_OFF);
  1014. warningLightTimer = 0;
  1015. }
  1016. }
  1017. }
  1018. }
  1019. void battLockStateDisplay(UINT8 lockState)
  1020. {
  1021. static UINT8 currentState = 0;
  1022. static UINT8 errorLightTimer = 0;
  1023. //static UINT32 currentTimerCount=0;
  1024. UINT8 errorLEDFlashPeriod = 10;//1000ms
  1025. float errorDutyRatio = 0.4;
  1026. //printf("lockState = %d\ncurrent State = %d\n",lockState,currentState);
  1027. if(lockState==0)//no error
  1028. {
  1029. if(currentState!=lockState)
  1030. {
  1031. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1032. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1033. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1034. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1035. FaultDisplay(LED_TURN_OFF);
  1036. currentState = lockState;
  1037. errorLightTimer = 0;
  1038. }
  1039. else
  1040. {
  1041. return;
  1042. }
  1043. }
  1044. else // error occurred, errorState = 1
  1045. {
  1046. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  1047. {
  1048. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  1049. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  1050. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  1051. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  1052. FaultDisplay(LED_TURN_ON);
  1053. }
  1054. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  1055. {
  1056. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1057. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1058. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1059. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1060. FaultDisplay(LED_TURN_OFF);
  1061. }
  1062. else
  1063. {
  1064. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1065. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1066. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1067. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1068. FaultDisplay(LED_TURN_OFF);
  1069. errorLightTimer = 0;
  1070. }
  1071. }
  1072. errorLightTimer++;
  1073. }
  1074. void relayControlFunc(float DutyRatio,UINT8 BuzzerPeriod)
  1075. {
  1076. static UINT8 BuzzerTimer = 0;
  1077. BuzzerTimer++;
  1078. if(BuzzerTimer<(UINT8)(BuzzerPeriod*DutyRatio))
  1079. {
  1080. relayControl(TRUE);
  1081. }
  1082. else if(BuzzerTimer>=(UINT8)(BuzzerPeriod*DutyRatio) && BuzzerTimer<BuzzerPeriod)
  1083. {
  1084. relayControl(FALSE);
  1085. }
  1086. else
  1087. {
  1088. relayControl(FALSE);
  1089. BuzzerTimer = 0;
  1090. }
  1091. }
  1092. UINT8 decryptionAlgorithm (UINT16 cipherText)
  1093. {
  1094. UINT16 plainText = 1;
  1095. UINT16 publicKeyD = 43;
  1096. UINT16 publicKeyN = 10961;
  1097. cipherText = cipherText % publicKeyN;
  1098. while(publicKeyD >0)
  1099. {
  1100. if(publicKeyD % 2 ==1)
  1101. {
  1102. plainText = plainText * cipherText % publicKeyN;
  1103. }
  1104. publicKeyD = publicKeyD/2;
  1105. cipherText = (cipherText * cipherText) % publicKeyN;
  1106. }
  1107. return (UINT8)plainText;
  1108. }
  1109. UINT16 encryptionAlgorithm (UINT16 plainText)
  1110. {
  1111. UINT16 cipherText = 1;
  1112. UINT16 privateKeyE = 37507;
  1113. UINT16 privateKeyN = 10961;
  1114. plainText = plainText % privateKeyN;
  1115. while(privateKeyE >0)
  1116. {
  1117. if(privateKeyE % 2 ==1)
  1118. {
  1119. cipherText = ( cipherText * plainText) % privateKeyN;
  1120. }
  1121. privateKeyE = privateKeyE/2;
  1122. plainText = (plainText * plainText) % privateKeyN;
  1123. }
  1124. return cipherText;
  1125. }
  1126. UINT8 Uart_Encrypt_Send()
  1127. {
  1128. UINT8 SeedNumberArrray[4]={0x38,0x56,0xfe,0xac};
  1129. UINT16 EncodeNumberArray[4];
  1130. UINT8 UartEncryptBuffer[17];
  1131. UINT8 UartDecryptBuffer[5];
  1132. UINT16 CRC_chk_buffer;
  1133. UINT8 timeCount = 0;
  1134. UartEncryptBuffer[0] = BMS_ADDRESS_CODE;
  1135. UartEncryptBuffer[1] = UART_ENCRYPT_CODE;
  1136. UartEncryptBuffer[2] = 0x0c;
  1137. for(int i=0;i<4;i++)
  1138. {
  1139. SeedNumberArrray[i]=rand();
  1140. EncodeNumberArray[i] = encryptionAlgorithm(SeedNumberArrray[i]);
  1141. UartEncryptBuffer[i+3] = SeedNumberArrray[i];
  1142. UartEncryptBuffer[i*2+7] = EncodeNumberArray[i]>>8;
  1143. UartEncryptBuffer[i*2+8] = EncodeNumberArray[i];
  1144. }
  1145. CRC_chk_buffer = crc_chk(UartEncryptBuffer,17-2);
  1146. UartEncryptBuffer[15] = CRC_chk_buffer;
  1147. UartEncryptBuffer[16] = CRC_chk_buffer>>8;
  1148. USARTdrv->Send(UartEncryptBuffer,17);
  1149. USARTdrv->Receive(UartDecryptBuffer,5);
  1150. while((isRecvTimeout == false) && (isRecvComplete == false))
  1151. {
  1152. timeCount++;
  1153. osDelay(100);
  1154. if (timeCount>=10)
  1155. {
  1156. timeCount =0;
  1157. isRecvTimeout = true;
  1158. break;
  1159. }
  1160. }
  1161. #ifdef USING_PRINTF
  1162. printf("Uart_Rece_buffer: ");
  1163. for(int i=0;i<5;i++)
  1164. {
  1165. printf("%x ",UartDecryptBuffer[i]);
  1166. }
  1167. #endif
  1168. if (isRecvComplete == true)
  1169. {
  1170. isRecvComplete = false;
  1171. return UartDecryptBuffer[2];
  1172. }
  1173. else
  1174. {
  1175. isRecvTimeout = false;
  1176. return 0x03;
  1177. }
  1178. }
  1179. /*-----------------------------------------------------------------------------*/
  1180. void SP_BMS_Update_Service() //超力源BMS升级服务
  1181. {
  1182. UINT8 errorCount = 0;
  1183. UINT8 resetCount = 0;
  1184. UINT16 currentPackage = 0;
  1185. UINT32 updateDataTotalByteLen = 0;
  1186. UpdateStep updateStep = UPDATE_STEP_CHECK_VERSION;
  1187. UINT8 i,j,ret=0;
  1188. UINT8 dataLen = 0;
  1189. UINT8 pUpdateMsgSend[80];
  1190. UINT32 updateMsgSendLen = 0;
  1191. UINT32 currentPackageStartAddr = 0;
  1192. BMS_Update_Recv_Msg_Type pUpdateMsgRecv;
  1193. UINT8 bmsUpdateFlag = 1;
  1194. //BMS_Update_Recv_Msg_Type bmsMsg;
  1195. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  1196. UINT8 Cycle_conut = 0;
  1197. while(bmsUpdateFlag && Cycle_conut<2)
  1198. {
  1199. switch (updateStep)
  1200. {
  1201. case UPDATE_STEP_CHECK_VERSION:
  1202. dataLen = 0;
  1203. updateMsgSendLen = 7;
  1204. pUpdateMsgSend[0] = 0xEB; //start flag
  1205. pUpdateMsgSend[1] = 0x01; //add flag
  1206. pUpdateMsgSend[2] = 0x01; //read
  1207. pUpdateMsgSend[3] = 0x03; //data len
  1208. pUpdateMsgSend[4] = 0x90; //cmd
  1209. pUpdateMsgSend[5] = 0x93; //checksum
  1210. pUpdateMsgSend[6] = 0xF5; //end flag
  1211. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1212. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1213. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 500);
  1214. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1215. if(ret!=0)
  1216. {
  1217. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1218. {
  1219. if(pUpdateMsgRecv.cmd == 0x90)
  1220. {
  1221. if(pUpdateMsgRecv.data != 0xFF)
  1222. {
  1223. updateStep = UPDATE_STEP_REQUEST_UPDATE;
  1224. errorCount = 0;
  1225. }
  1226. else
  1227. {
  1228. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1229. errorCount = 0;
  1230. }
  1231. }
  1232. else
  1233. {
  1234. errorCount++;
  1235. }
  1236. }
  1237. else
  1238. {
  1239. errorCount++;
  1240. }
  1241. }
  1242. else
  1243. {
  1244. errorCount++;
  1245. }
  1246. #ifdef USING_PRINTF1
  1247. //printf("update step:%d\n",updateStep);
  1248. printf("query:");
  1249. for(j=0;j<updateMsgSendLen;j++)
  1250. {
  1251. printf("%x ",pUpdateMsgSend[j]);
  1252. }
  1253. printf("\nanswer:");
  1254. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1255. {
  1256. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1257. }
  1258. printf("\n");
  1259. printf("next update step:%d\n",updateStep);
  1260. #endif
  1261. if(errorCount>10)
  1262. {
  1263. updateStep = UPDATE_STEP_RESET;
  1264. errorCount = 0;
  1265. }
  1266. osDelay(50);
  1267. break;
  1268. case UPDATE_STEP_REQUEST_UPDATE:
  1269. dataLen = 1;
  1270. updateMsgSendLen = 8;
  1271. pUpdateMsgSend[0] = 0xEB; //start flag
  1272. pUpdateMsgSend[1] = 0x01; //add flag
  1273. pUpdateMsgSend[2] = 0x00; //write
  1274. pUpdateMsgSend[3] = 0x04; //data len
  1275. pUpdateMsgSend[4] = 0x80; //cmd
  1276. pUpdateMsgSend[5] = 0x22; //data
  1277. pUpdateMsgSend[6] = 0xA6; //check
  1278. pUpdateMsgSend[7] = 0xF5; //end flag
  1279. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1280. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1281. if(ret!=0)
  1282. {
  1283. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1284. {
  1285. if(pUpdateMsgRecv.cmd == 0x80)
  1286. {
  1287. if(pUpdateMsgRecv.data == 0x33)
  1288. {
  1289. updateStep = UPDATE_STEP_START_UPDATE;
  1290. errorCount = 0;
  1291. }
  1292. else
  1293. {
  1294. errorCount++;
  1295. }
  1296. }
  1297. else
  1298. {
  1299. errorCount++;
  1300. }
  1301. }
  1302. else
  1303. {
  1304. errorCount++;
  1305. }
  1306. }
  1307. else
  1308. {
  1309. errorCount++;
  1310. }
  1311. if(errorCount>10)
  1312. {
  1313. updateStep = UPDATE_STEP_RESET;
  1314. errorCount = 0;
  1315. }
  1316. #ifdef USING_PRINTF1
  1317. printf("update step:%d\n",updateStep);
  1318. printf("query:");
  1319. for(j=0;j<updateMsgSendLen;j++)
  1320. {
  1321. printf("%x ",pUpdateMsgSend[j]);
  1322. }
  1323. printf("\nanswer:");
  1324. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1325. {
  1326. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1327. }
  1328. printf("\n");
  1329. printf("next update step:%d\n",updateStep);
  1330. #endif
  1331. osDelay(50);
  1332. break;
  1333. case UPDATE_STEP_START_UPDATE:
  1334. dataLen = 1;
  1335. updateMsgSendLen = 8;
  1336. pUpdateMsgSend[0] = 0xEB; //start flag
  1337. pUpdateMsgSend[1] = 0x01; //add flag
  1338. pUpdateMsgSend[2] = 0x00; //write
  1339. pUpdateMsgSend[3] = 0x04; //data len
  1340. pUpdateMsgSend[4] = 0x80; //cmd
  1341. pUpdateMsgSend[5] = 0x55; //data
  1342. pUpdateMsgSend[6] = 0xD9; //check
  1343. pUpdateMsgSend[7] = 0xF5; //end flag
  1344. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1345. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1346. //updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1347. updateStep = UPDATE_STEP_CHECK_VERSION_AGAIN;//2021-04-09跳过波特率设置
  1348. #ifdef USING_PRINTF1
  1349. printf("query:");
  1350. for(j=0;j<updateMsgSendLen;j++)
  1351. {
  1352. printf("%x ",pUpdateMsgSend[j]);
  1353. }
  1354. printf("\nanswer:");
  1355. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1356. {
  1357. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1358. }
  1359. printf("\n");
  1360. printf("next update step:%d\n",updateStep);
  1361. #endif
  1362. break;
  1363. case UPDATE_STEP_CHECK_VERSION_AGAIN:
  1364. dataLen = 0;
  1365. updateMsgSendLen = 7;
  1366. pUpdateMsgSend[0] = 0xEB; //start flag
  1367. pUpdateMsgSend[1] = 0x01; //add flag
  1368. pUpdateMsgSend[2] = 0x01; //read
  1369. pUpdateMsgSend[3] = 0x03; //data len
  1370. pUpdateMsgSend[4] = 0x90; //cmd
  1371. pUpdateMsgSend[5] = 0x93; //checksum
  1372. pUpdateMsgSend[6] = 0xF5; //end flag
  1373. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1374. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1375. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 100);
  1376. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1377. if(ret!=0)
  1378. {
  1379. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1380. {
  1381. if(pUpdateMsgRecv.cmd == 0x90)
  1382. {
  1383. if(pUpdateMsgRecv.data != 0xFF)
  1384. {
  1385. updateStep = UPDATE_STEP_RESET;
  1386. errorCount = 0;
  1387. }
  1388. else
  1389. {
  1390. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1391. errorCount = 0;
  1392. }
  1393. }
  1394. else
  1395. {
  1396. errorCount++;
  1397. }
  1398. }
  1399. else
  1400. {
  1401. errorCount++;
  1402. }
  1403. }
  1404. else
  1405. {
  1406. errorCount++;
  1407. }
  1408. #ifdef USING_PRINTF1
  1409. //printf("update step:%d\n",updateStep);
  1410. printf("query:");
  1411. for(j=0;j<updateMsgSendLen;j++)
  1412. {
  1413. printf("%x ",pUpdateMsgSend[j]);
  1414. }
  1415. printf("\nanswer:");
  1416. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1417. {
  1418. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1419. }
  1420. printf("\n");
  1421. printf("next update step:%d\n",updateStep);
  1422. #endif
  1423. if(errorCount>10)
  1424. {
  1425. updateStep = UPDATE_STEP_RESET;
  1426. errorCount = 0;
  1427. }
  1428. osDelay(50);
  1429. break;
  1430. case UPDATE_STEP_SET_BAUD_RATE:
  1431. printf("start step %d\n",updateStep);
  1432. dataLen = 4;
  1433. updateMsgSendLen = 12;
  1434. pUpdateMsgSend[0] = 0xEB; //start flag
  1435. pUpdateMsgSend[1] = 0x01; //add flag
  1436. pUpdateMsgSend[2] = 0x00; //write
  1437. pUpdateMsgSend[3] = 0x08; //data len
  1438. pUpdateMsgSend[4] = 0x81; //cmd
  1439. pUpdateMsgSend[5] = 0x33; //data
  1440. pUpdateMsgSend[6] = 0x00; //baud rate:9600
  1441. pUpdateMsgSend[7] = 0x00;
  1442. pUpdateMsgSend[8] = 0x25;
  1443. pUpdateMsgSend[9] = 0x80;
  1444. pUpdateMsgSend[10] = 0x61; //check
  1445. pUpdateMsgSend[11] = 0xF5; //end flag
  1446. #ifdef USING_PRINTF1
  1447. printf("query:");
  1448. for(j=0;j<updateMsgSendLen;j++)
  1449. {
  1450. printf("%x ",pUpdateMsgSend[j]);
  1451. }
  1452. printf("\n");
  1453. #endif
  1454. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1455. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1456. printf("ret = %d\n",ret);
  1457. if(ret!=0)
  1458. {
  1459. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1460. {
  1461. if(pUpdateMsgRecv.cmd == 0x81)
  1462. {
  1463. if(pUpdateMsgRecv.data == 0x11)
  1464. {
  1465. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1466. errorCount = 0;
  1467. }
  1468. else
  1469. {
  1470. errorCount++;
  1471. }
  1472. }
  1473. else
  1474. {
  1475. errorCount++;
  1476. }
  1477. }
  1478. else
  1479. {
  1480. errorCount++;
  1481. }
  1482. }
  1483. else
  1484. {
  1485. errorCount++;
  1486. }
  1487. if(errorCount>10)
  1488. {
  1489. updateStep = UPDATE_STEP_RESET;
  1490. errorCount = 0;
  1491. }
  1492. #ifdef USING_PRINTF1
  1493. //printf("update step:%d\n",updateStep);
  1494. printf("query:");
  1495. for(j=0;j<updateMsgSendLen;j++)
  1496. {
  1497. printf("%x ",pUpdateMsgSend[j]);
  1498. }
  1499. printf("\nanswer:");
  1500. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1501. {
  1502. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1503. }
  1504. printf("\n");
  1505. printf("next update step:%d\n",updateStep);
  1506. #endif
  1507. osDelay(50);
  1508. break;
  1509. case UPDATE_STEP_PREPARE_SEND_DATA_LEN:
  1510. printf("start step %d\n",updateStep);
  1511. dataLen = 1;
  1512. updateMsgSendLen = 8;
  1513. pUpdateMsgSend[0] = 0xEB; //start flag
  1514. pUpdateMsgSend[1] = 0x01; //add flag
  1515. pUpdateMsgSend[2] = 0x00; //write
  1516. pUpdateMsgSend[3] = 0x04; //data len
  1517. pUpdateMsgSend[4] = 0x81; //cmd
  1518. pUpdateMsgSend[5] = 0x44; //data
  1519. pUpdateMsgSend[6] = 0xC9; //check
  1520. pUpdateMsgSend[7] = 0xF5; //end flag
  1521. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1522. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1523. if(ret!=0)
  1524. {
  1525. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1526. {
  1527. if(pUpdateMsgRecv.cmd == 0x81)
  1528. {
  1529. if(pUpdateMsgRecv.data == 0x11)
  1530. {
  1531. updateStep = UPDATE_STEP_SEND_DATA_LEN;
  1532. errorCount = 0;
  1533. }
  1534. else
  1535. {
  1536. errorCount++;
  1537. }
  1538. }
  1539. else
  1540. {
  1541. errorCount++;
  1542. }
  1543. }
  1544. else
  1545. {
  1546. errorCount++;
  1547. }
  1548. }
  1549. else
  1550. {
  1551. errorCount++;
  1552. }
  1553. if(errorCount>10)
  1554. {
  1555. updateStep = UPDATE_STEP_RESET;
  1556. errorCount = 0;
  1557. }
  1558. #ifdef USING_PRINTF1
  1559. //printf("update step:%d\n",updateStep);
  1560. printf("query:");
  1561. for(j=0;j<updateMsgSendLen;j++)
  1562. {
  1563. printf("%x ",pUpdateMsgSend[j]);
  1564. }
  1565. printf("\nanswer:");
  1566. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1567. {
  1568. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1569. }
  1570. printf("\n");
  1571. printf("next update step:%d\n",updateStep);
  1572. #endif
  1573. osDelay(50);
  1574. break;
  1575. case UPDATE_STEP_SEND_DATA_LEN:
  1576. dataLen = 4;
  1577. BSP_QSPI_Read_Safe(&updateDataTotalByteLen,FLASH_BMS_FOTA_START_ADDR,4);
  1578. updateDataTotalByteLen = (((updateDataTotalByteLen)&0xFF)<<24)|(((updateDataTotalByteLen>>8)&0xFF)<<16)|(((updateDataTotalByteLen>>16)&0xFF)<<8)|(((updateDataTotalByteLen>>24)&0xFF));
  1579. updateMsgSendLen = 11;
  1580. pUpdateMsgSend[0] = 0xEB; //start flag
  1581. pUpdateMsgSend[1] = 0x01; //add flag
  1582. pUpdateMsgSend[2] = 0x00; //write
  1583. pUpdateMsgSend[3] = 0x07; //data len
  1584. pUpdateMsgSend[4] = 0x82; //cmd
  1585. pUpdateMsgSend[5] = (updateDataTotalByteLen>>24)&0xFF; //data: package byte len
  1586. pUpdateMsgSend[6] = (updateDataTotalByteLen>>16)&0xFF;
  1587. pUpdateMsgSend[7] = (updateDataTotalByteLen>>8)&0xFF;
  1588. pUpdateMsgSend[8] = (updateDataTotalByteLen)&0xFF;
  1589. pUpdateMsgSend[9] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+2); //check sum
  1590. pUpdateMsgSend[10] = 0xF5; //end flag
  1591. memset((UINT8*)(&pUpdateMsgRecv),0,sizeof(BMS_Update_Recv_Msg_Type));
  1592. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1593. if(ret!=0)
  1594. {
  1595. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1596. {
  1597. if(pUpdateMsgRecv.cmd == 0x81)
  1598. {
  1599. if(pUpdateMsgRecv.data == 0x11)
  1600. {
  1601. updateStep = UPDATE_STEP_PREPARE_SEND_UPDATE_DATA;
  1602. errorCount = 0;
  1603. }
  1604. else
  1605. {
  1606. errorCount++;
  1607. }
  1608. }
  1609. else
  1610. {
  1611. errorCount++;
  1612. }
  1613. }
  1614. else
  1615. {
  1616. errorCount++;
  1617. }
  1618. }
  1619. else
  1620. {
  1621. errorCount++;
  1622. }
  1623. if(errorCount>10)
  1624. {
  1625. updateStep = UPDATE_STEP_RESET;
  1626. errorCount = 0;
  1627. }
  1628. #ifdef USING_PRINTF1
  1629. //printf("update step:%d\n",updateStep);
  1630. printf("query:");
  1631. for(j=0;j<updateMsgSendLen;j++)
  1632. {
  1633. printf("%x ",pUpdateMsgSend[j]);
  1634. }
  1635. printf("\nanswer:");
  1636. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1637. {
  1638. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1639. }
  1640. printf("\n");
  1641. printf("next update step:%d\n",updateStep);
  1642. #endif
  1643. osDelay(50);
  1644. break;
  1645. case UPDATE_STEP_PREPARE_SEND_UPDATE_DATA:
  1646. dataLen = 1;
  1647. updateMsgSendLen = 8;
  1648. pUpdateMsgSend[0] = 0xEB; //start flag
  1649. pUpdateMsgSend[1] = 0x01; //add flag
  1650. pUpdateMsgSend[2] = 0x00; //write
  1651. pUpdateMsgSend[3] = 0x04; //data len
  1652. pUpdateMsgSend[4] = 0x81; //cmd
  1653. pUpdateMsgSend[5] = 0x55; //data
  1654. pUpdateMsgSend[6] = 0xDA; //check
  1655. pUpdateMsgSend[7] = 0xF5; //end flag
  1656. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1657. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen,(UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1658. if(ret!=0)
  1659. {
  1660. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1661. {
  1662. if(pUpdateMsgRecv.cmd == 0x81)
  1663. {
  1664. if(pUpdateMsgRecv.data == 0x11)
  1665. {
  1666. updateStep = UPDATE_STEP_SEND_UPDATE_DATA;
  1667. errorCount = 0;
  1668. }
  1669. else
  1670. {
  1671. errorCount++;
  1672. }
  1673. }
  1674. else
  1675. {
  1676. errorCount++;
  1677. }
  1678. }
  1679. else
  1680. {
  1681. errorCount++;
  1682. }
  1683. }
  1684. else
  1685. {
  1686. errorCount++;
  1687. }
  1688. if(errorCount>10)
  1689. {
  1690. updateStep = UPDATE_STEP_RESET;
  1691. errorCount = 0;
  1692. }
  1693. #ifdef USING_PRINTF1
  1694. //printf("update step:%d\n",updateStep);
  1695. printf("query:");
  1696. for(j=0;j<updateMsgSendLen;j++)
  1697. {
  1698. printf("%x ",pUpdateMsgSend[j]);
  1699. }
  1700. printf("\nanswer:");
  1701. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1702. {
  1703. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1704. }
  1705. printf("\n");
  1706. printf("next update step:%d\n",updateStep);
  1707. #endif
  1708. osDelay(50);
  1709. break;
  1710. case UPDATE_STEP_SEND_UPDATE_DATA:
  1711. dataLen = 64;
  1712. updateMsgSendLen = 75;
  1713. for(currentPackage=0;currentPackage<updateDataTotalByteLen/64;currentPackage++)
  1714. {
  1715. currentPackageStartAddr = currentPackage*64;
  1716. pUpdateMsgSend[0] = 0xEB; //start flag
  1717. pUpdateMsgSend[1] = 0x01; //add flag
  1718. pUpdateMsgSend[2] = 0x00; //write
  1719. pUpdateMsgSend[3] = 0x47; //data len
  1720. pUpdateMsgSend[4] = 0x82; //cmd
  1721. pUpdateMsgSend[5] = (currentPackageStartAddr>>24)&0xFF;
  1722. pUpdateMsgSend[6] = (currentPackageStartAddr>>16)&0xFF;
  1723. pUpdateMsgSend[7] = (currentPackageStartAddr>>8)&0xFF;
  1724. pUpdateMsgSend[8] = currentPackageStartAddr&0xFF;
  1725. BSP_QSPI_Read_Safe(&pUpdateMsgSend[9], FLASH_BMS_FOTA_START_ADDR+4+currentPackage*dataLen, dataLen); //data
  1726. pUpdateMsgSend[8+dataLen+1] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+6); //check sum
  1727. pUpdateMsgSend[8+dataLen+2] = 0xF5; //end flag
  1728. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1729. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1730. if(ret!=0)
  1731. {
  1732. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1733. {
  1734. if(pUpdateMsgRecv.cmd == 0x81)
  1735. {
  1736. if(pUpdateMsgRecv.data == 0x11)
  1737. {
  1738. if(currentPackage+1 == updateDataTotalByteLen/64)
  1739. {
  1740. updateStep = UPDATE_STEP_SEND_DATA_END;
  1741. }
  1742. errorCount = 0;
  1743. }
  1744. else
  1745. {
  1746. errorCount++;
  1747. }
  1748. }
  1749. else
  1750. {
  1751. errorCount++;
  1752. }
  1753. }
  1754. else
  1755. {
  1756. errorCount++;
  1757. }
  1758. }
  1759. else
  1760. {
  1761. errorCount++;
  1762. }
  1763. if(errorCount>10)
  1764. {
  1765. updateStep = UPDATE_STEP_RESET;
  1766. errorCount = 0;
  1767. break;
  1768. }
  1769. #ifdef USING_PRINTF1
  1770. //printf("update step:%d\n",updateStep);
  1771. printf("query:");
  1772. for(j=0;j<updateMsgSendLen;j++)
  1773. {
  1774. printf("%x ",pUpdateMsgSend[j]);
  1775. }
  1776. printf("\nanswer:");
  1777. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1778. {
  1779. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1780. }
  1781. printf("\n");
  1782. printf("next update step:%d\n",updateStep);
  1783. #endif
  1784. }
  1785. osDelay(50);
  1786. break;
  1787. case UPDATE_STEP_SEND_DATA_END:
  1788. dataLen = 1;
  1789. updateMsgSendLen = 8;
  1790. pUpdateMsgSend[0] = 0xEB; //start flag
  1791. pUpdateMsgSend[1] = 0x01; //add flag
  1792. pUpdateMsgSend[2] = 0x00; //write
  1793. pUpdateMsgSend[3] = 0x04; //data len
  1794. pUpdateMsgSend[4] = 0x81; //cmd
  1795. pUpdateMsgSend[5] = 0x66; //data
  1796. pUpdateMsgSend[6] = 0xEB; //check
  1797. pUpdateMsgSend[7] = 0xF5; //end flag
  1798. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1799. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1800. if(ret!=0)
  1801. {
  1802. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1803. {
  1804. if(pUpdateMsgRecv.cmd == 0x81)
  1805. {
  1806. if(pUpdateMsgRecv.data == 0x11)
  1807. {
  1808. updateStep = UPDATE_STEP_START_INSTALL;
  1809. errorCount = 0;
  1810. }
  1811. else
  1812. {
  1813. errorCount++;
  1814. }
  1815. }
  1816. else
  1817. {
  1818. errorCount++;
  1819. }
  1820. }
  1821. else
  1822. {
  1823. errorCount++;
  1824. }
  1825. }
  1826. else
  1827. {
  1828. errorCount++;
  1829. }
  1830. if(errorCount>10)
  1831. {
  1832. updateStep = UPDATE_STEP_RESET;
  1833. errorCount = 0;
  1834. }
  1835. #ifdef USING_PRINTF1
  1836. //printf("update step:%d\n",updateStep);
  1837. printf("query:");
  1838. for(j=0;j<updateMsgSendLen;j++)
  1839. {
  1840. printf("%x ",pUpdateMsgSend[j]);
  1841. }
  1842. printf("\nanswer:");
  1843. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1844. {
  1845. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1846. }
  1847. printf("\n");
  1848. printf("next update step:%d\n",updateStep);
  1849. #endif
  1850. osDelay(50);
  1851. break;
  1852. case UPDATE_STEP_START_INSTALL:
  1853. dataLen = 1;
  1854. updateMsgSendLen = 8;
  1855. pUpdateMsgSend[0] = 0xEB; //start flag
  1856. pUpdateMsgSend[1] = 0x01; //add flag
  1857. pUpdateMsgSend[2] = 0x00; //write
  1858. pUpdateMsgSend[3] = 0x04; //data len
  1859. pUpdateMsgSend[4] = 0x81; //cmd
  1860. pUpdateMsgSend[5] = 0x99; //data
  1861. pUpdateMsgSend[6] = 0x1E; //check
  1862. pUpdateMsgSend[7] = 0xF5; //end flag
  1863. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1864. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1865. updateStep = UPDATE_STEP_END;
  1866. #ifdef USING_PRINTF1
  1867. //printf("update step:%d\n",updateStep);
  1868. printf("query:");
  1869. for(j=0;j<updateMsgSendLen;j++)
  1870. {
  1871. printf("%x ",pUpdateMsgSend[j]);
  1872. }
  1873. printf("\nanswer:");
  1874. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1875. {
  1876. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1877. }
  1878. printf("\n");
  1879. printf("next update step:%d\n",updateStep);
  1880. #endif
  1881. osDelay(50);
  1882. break;
  1883. case UPDATE_STEP_END:
  1884. updateStep = UPDATE_STEP_CHECK_VERSION;
  1885. printf("update end\n");
  1886. bmsUpdateFlag = 0;
  1887. break;
  1888. case UPDATE_STEP_RESET:
  1889. dataLen = 1;
  1890. updateMsgSendLen = 8;
  1891. pUpdateMsgSend[0] = 0xEB; //start flag
  1892. pUpdateMsgSend[1] = 0x01; //add flag
  1893. pUpdateMsgSend[2] = 0x00; //write
  1894. pUpdateMsgSend[3] = 0x04; //data len
  1895. pUpdateMsgSend[4] = 0x81; //cmd
  1896. pUpdateMsgSend[5] = 0xAA; //data
  1897. pUpdateMsgSend[6] = 0x2F; //check
  1898. pUpdateMsgSend[7] = 0xF5; //end flag
  1899. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1900. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1901. osDelay(50);
  1902. resetCount++;
  1903. if(resetCount>=2)
  1904. {
  1905. updateStep = UPDATE_STEP_DOWNLOAD_BREAK_OFF;
  1906. resetCount = 0;
  1907. }
  1908. else
  1909. {
  1910. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1911. }
  1912. #ifdef USING_PRINTF
  1913. printf("update error!!\n rest and start send data lenth again!!\n continue update!\n");
  1914. #endif
  1915. break;
  1916. case UPDATE_STEP_DOWNLOAD_BREAK_OFF:
  1917. dataLen = 1;
  1918. updateMsgSendLen = 8;
  1919. pUpdateMsgSend[0] = 0xEB; //start flag
  1920. pUpdateMsgSend[1] = 0x01; //add flag
  1921. pUpdateMsgSend[2] = 0x00; //write
  1922. pUpdateMsgSend[3] = 0x04; //data len
  1923. pUpdateMsgSend[4] = 0x81; //cmd
  1924. pUpdateMsgSend[5] = 0xBB; //data
  1925. pUpdateMsgSend[6] = 0x40; //check
  1926. pUpdateMsgSend[7] = 0xF5; //end flag
  1927. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1928. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1929. osDelay(50);
  1930. updateStep = UPDATE_STEP_CHECK_VERSION;
  1931. Cycle_conut++;
  1932. break;
  1933. case UPDATE_STEP_ERROR:
  1934. updateStep = UPDATE_STEP_CHECK_VERSION;
  1935. printf("update error end\n");
  1936. bmsUpdateFlag = 0;
  1937. break;
  1938. default:
  1939. updateStep = UPDATE_STEP_CHECK_VERSION;
  1940. printf("update default end\n");
  1941. bmsUpdateFlag = 0;
  1942. break;
  1943. }
  1944. }
  1945. }
  1946. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  1947. {
  1948. UINT8 timeCount = 0;
  1949. UINT8 j=0;
  1950. USARTdrv->Send(pSend,sendLen);
  1951. #ifdef USING_PRINTF
  1952. printf("query in:");
  1953. for(j=0;j<sendLen;j++)
  1954. {
  1955. printf("%x ",*(pSend+j));
  1956. }
  1957. printf("\n");
  1958. #endif
  1959. if(readLen>0)
  1960. {
  1961. USARTdrv->Receive(pRead,readLen);
  1962. while((isRecvTimeout == false) && (isRecvComplete == false))
  1963. {
  1964. timeCount++;
  1965. osDelay(100);
  1966. if (timeCount>=timeout/100)
  1967. {
  1968. timeCount =0;
  1969. isRecvTimeout = true;
  1970. break;
  1971. }
  1972. }
  1973. #ifdef USING_PRINTF
  1974. printf("\nanswer in:");
  1975. for(j=0;j<readLen;j++)
  1976. {
  1977. printf("%x ",*(pRead+j));
  1978. }
  1979. printf("\n");
  1980. #endif
  1981. if (isRecvComplete == true)
  1982. {
  1983. isRecvComplete = false;
  1984. if(*(pRead+0)!=0xEB)
  1985. {
  1986. USARTdrv->Uninitialize();
  1987. osDelay(100);
  1988. USARTdrv->Initialize(USART_callback);
  1989. USARTdrv->PowerControl(ARM_POWER_FULL);
  1990. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  1991. ARM_USART_DATA_BITS_8 |
  1992. ARM_USART_PARITY_NONE |
  1993. ARM_USART_STOP_BITS_1 |
  1994. ARM_USART_FLOW_CONTROL_NONE, 9600);
  1995. #ifdef USING_PRINTF
  1996. printf("\nuart reset in \n");
  1997. #endif
  1998. return 0;
  1999. }
  2000. return readLen;
  2001. }
  2002. else
  2003. {
  2004. memset(pRead,0x00,readLen);
  2005. isRecvTimeout = false;
  2006. return 0;
  2007. }
  2008. }
  2009. else
  2010. {
  2011. return 1;
  2012. }
  2013. }
  2014. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len)
  2015. {
  2016. UINT8 ret = 0;
  2017. UINT8 i=0;
  2018. for(i=0;i<len;i++)
  2019. {
  2020. ret +=*(pSendData+i);
  2021. }
  2022. return ret&0xFF;
  2023. }
  2024. //________________________________________________________________________________
  2025. updateBMSStatus MS_BMS_Update_Service() //美顺BMS升级服务
  2026. {
  2027. #ifdef USING_PRINTF
  2028. UINT8 ii = 0;
  2029. #endif
  2030. UINT8 errorCount = 0;
  2031. UINT16 currentPackage = 0;
  2032. UINT32 updateDataTotalByteLen = 0;
  2033. UINT16 updateDataPackageCount = 0;
  2034. UINT8 ReadNVMTemp[64];
  2035. UpdateStep_MS_BMS updateStep = MS_UPDATE_STEP_SEND_FIRMWARE_UPDATE_REQUEST_AND_JUMP_TO_BOOTLOADER;
  2036. UINT16 i,j=0;
  2037. UINT8 dataLen = 0;
  2038. UINT8 ret0 = 0;
  2039. updateBMSStatus ret = updateFailed;
  2040. UINT8 pUpdateMsgSend[80];
  2041. UINT32 updateMsgSendLen = 0;
  2042. UINT32 updateMsgReadLen = 0;
  2043. BOOL bmsUpdateFlag = TRUE;
  2044. UINT8 bmsAnswerMsg[8];
  2045. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  2046. UINT8 Cycle_conut = 0;
  2047. UINT16 CRCtemp = 0;
  2048. UINT8 headerLen = 5;
  2049. UINT8 checkSum = 0x00;
  2050. UINT8 checkSumCal = 0x00;
  2051. UINT8 tempLen = 0x00;
  2052. BSP_QSPI_Read_Safe(&checkSum,FLASH_BMS_FOTA_START_ADDR,1);
  2053. memset(ReadNVMTemp, 0, 64);
  2054. BSP_QSPI_Read_Safe(ReadNVMTemp, FLASH_BMS_FOTA_START_ADDR+1, 4); //data
  2055. updateDataTotalByteLen = ((ReadNVMTemp[0]<<24)&0xFF000000) | ((ReadNVMTemp[1]<<16)&0xFF0000) | ((ReadNVMTemp[2]<<8)&0xFF00) | (ReadNVMTemp[3]&0xFF) ;
  2056. updateDataPackageCount = (updateDataTotalByteLen+(64-1))/64; //进一法 e = (a+(b-1))/b
  2057. for(i=0; i<((updateDataTotalByteLen+4)+(64-1))/64;i++)
  2058. {
  2059. memset(ReadNVMTemp, 0, 64);
  2060. if((i+1)*64 < (updateDataTotalByteLen+4))
  2061. {
  2062. tempLen = 64;
  2063. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+1+i*64,64);
  2064. }
  2065. else
  2066. {
  2067. tempLen = (updateDataTotalByteLen+4) - i*64;
  2068. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+1+i*64,tempLen);
  2069. }
  2070. for(j = 0; j< tempLen; j++)
  2071. {
  2072. checkSumCal = (checkSumCal + ReadNVMTemp[j]) & 0xFF;
  2073. }
  2074. //osDelay(10);
  2075. }
  2076. if(checkSum != checkSumCal)
  2077. {
  2078. #ifdef USING_PRINTF
  2079. printf("checksum error: checksum = %x, checksumCal = %x\n",checkSum,checkSumCal);
  2080. #endif
  2081. ret = updateErrorCheckSumError;
  2082. return ret;
  2083. }
  2084. else
  2085. {
  2086. #ifdef USING_PRINTF
  2087. printf("checksum OK: checksum = %x, checksumCal = %x\n",checkSum,checkSumCal);
  2088. #endif
  2089. }
  2090. #ifdef USING_PRINTF
  2091. printf(" bmsUpdateFlag = %x, Cycle_conut = %x\n",bmsUpdateFlag,Cycle_conut);
  2092. #endif
  2093. while(bmsUpdateFlag && Cycle_conut<2)
  2094. {
  2095. #ifdef USING_PRINTF
  2096. printf("update ms bms step %d\n:",updateStep);
  2097. #endif
  2098. switch (updateStep)
  2099. {
  2100. case MS_UPDATE_STEP_SEND_FIRMWARE_UPDATE_REQUEST_AND_JUMP_TO_BOOTLOADER: //0x01
  2101. dataLen = 0x00;
  2102. updateMsgSendLen = 6+dataLen;
  2103. updateMsgReadLen = 8;
  2104. pUpdateMsgSend[0] = 0x01; //node byte
  2105. pUpdateMsgSend[1] = 0x40; //func byte
  2106. pUpdateMsgSend[2] = updateStep; //cmd byte
  2107. pUpdateMsgSend[3] = dataLen; //data len
  2108. //no data type
  2109. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2110. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2111. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2112. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2113. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2114. #ifdef USING_PRINTF
  2115. printf("update step 1 answer,updateMsgReadLen = %x:\n",updateMsgReadLen);
  2116. for(ii=0;ii<updateMsgReadLen;ii++)
  2117. printf("%x ",bmsAnswerMsg[ii]);
  2118. printf("\nret0 = %d",ret0);
  2119. printf("\n");
  2120. #endif
  2121. if(ret0!=0)
  2122. {
  2123. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2124. {
  2125. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_FIRMWARE_UPDATE_REQUEST_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x02, answer data len:0x02
  2126. {
  2127. if(bmsAnswerMsg[4] == 0x00) //answer data byte1
  2128. {
  2129. if(bmsAnswerMsg[5] == 0x00) //answer data byte2
  2130. {
  2131. updateStep = MS_UPDATE_STEP_SEND_FIRMWARE_INFO;
  2132. errorCount = 0;
  2133. }
  2134. }
  2135. else if(bmsAnswerMsg[4] == 0x01) //不允许升级
  2136. {
  2137. if(bmsAnswerMsg[5] == 0x01)//电量过低
  2138. {
  2139. updateStep = MS_UPDATE_STEP_ERROR;
  2140. ret = updateErrorBMSPowerLow;
  2141. }
  2142. else if(bmsAnswerMsg[5] == 0x02)//电池存在保护状态不允许升级
  2143. {
  2144. updateStep = MS_UPDATE_STEP_ERROR;
  2145. ret = updateErrorBMSWarningProtect;
  2146. }
  2147. else if(bmsAnswerMsg[5] == 0x03) //不支持升级
  2148. {
  2149. updateStep = MS_UPDATE_STEP_ERROR;
  2150. ret = updateErrorBMSNotSurport;
  2151. }
  2152. else if(bmsAnswerMsg[5] == 0x04) //当前电池处于充放电状态
  2153. {
  2154. updateStep = MS_UPDATE_STEP_ERROR;
  2155. ret = updateErrorBMSWorkState;
  2156. }
  2157. else
  2158. {
  2159. errorCount++;
  2160. }
  2161. }
  2162. }
  2163. else
  2164. {
  2165. errorCount++;
  2166. }
  2167. }
  2168. else
  2169. {
  2170. errorCount++;
  2171. }
  2172. }
  2173. else
  2174. {
  2175. errorCount++;
  2176. }
  2177. if(errorCount>10)
  2178. {
  2179. updateStep = MS_UPDATE_STEP_ERROR;
  2180. errorCount = 0;
  2181. }
  2182. osDelay(50);
  2183. printf(" step 1 ret = %d\n",ret);
  2184. break;
  2185. case MS_UPDATE_STEP_SEND_FIRMWARE_INFO: //0x03
  2186. dataLen = 52;
  2187. updateMsgSendLen = 6+dataLen;
  2188. updateMsgReadLen = 7;
  2189. pUpdateMsgSend[0] = 0x01; //node byte
  2190. pUpdateMsgSend[1] = 0x40; //func byte
  2191. pUpdateMsgSend[2] = updateStep; //cmd byte
  2192. pUpdateMsgSend[3] = dataLen; //data len
  2193. memset(ReadNVMTemp, 0, 64);
  2194. BSP_QSPI_Read_Safe(ReadNVMTemp, FLASH_BMS_FOTA_START_ADDR+headerLen, 16); //data
  2195. MEMCPY(&pUpdateMsgSend[4], ReadNVMTemp, 16); //厂家信息,未开启校验
  2196. MEMCPY(&pUpdateMsgSend[4+16], ReadNVMTemp, 16); //保护板硬件序列号,未开启校验
  2197. pUpdateMsgSend[4+16*2 + 0] = (updateDataTotalByteLen>>24)&0xFF; //固件包大小
  2198. pUpdateMsgSend[4+16*2 + 1] = (updateDataTotalByteLen>>16)&0xFF;
  2199. pUpdateMsgSend[4+16*2 + 2] = (updateDataTotalByteLen>>8)&0xFF;
  2200. pUpdateMsgSend[4+16*2 + 3] = (updateDataTotalByteLen)&0xFF;
  2201. MEMCPY(&pUpdateMsgSend[4+16*2+4], ReadNVMTemp, 16); // 固件包头信息,未开启校验
  2202. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2203. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2204. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2205. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2206. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2207. #ifdef USING_PRINTF
  2208. printf("update step 3 answer:\n");
  2209. for(ii=0;ii<updateMsgReadLen;ii++)
  2210. printf("%x ",bmsAnswerMsg[ii]);
  2211. printf("\nret0 = %d",ret0);
  2212. printf("\n");
  2213. #endif
  2214. if(ret0!=0)
  2215. {
  2216. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2217. {
  2218. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_FIRMWARE_INFO_CHECK_AND_UPDATE_REQEST_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x04, answer data len:0x01
  2219. {
  2220. if(bmsAnswerMsg[4] == 0x00) //answer data byte1
  2221. {
  2222. updateStep = MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST;
  2223. errorCount = 0;
  2224. }
  2225. else if(bmsAnswerMsg[4] == 0x01) //厂家信息错误
  2226. {
  2227. errorCount++;
  2228. ret = updateErrorFirmwareInfoError;
  2229. }
  2230. else if(bmsAnswerMsg[4] == 0x02) //硬件序列号不匹配
  2231. {
  2232. errorCount++;
  2233. ret = updateErrorFirmwareInfoError;
  2234. }
  2235. else if(bmsAnswerMsg[4] == 0x03) //固件大小超出范围
  2236. {
  2237. errorCount++;
  2238. ret = updateErrorFirmwareSizeError;
  2239. }
  2240. else if(bmsAnswerMsg[4] == 0x04) //固件包头信息错误
  2241. {
  2242. errorCount++;
  2243. ret = updateErrorFirmwareInfoError;
  2244. }
  2245. else
  2246. {
  2247. errorCount++;
  2248. }
  2249. }
  2250. else
  2251. {
  2252. errorCount++;
  2253. }
  2254. }
  2255. else
  2256. {
  2257. errorCount++;
  2258. }
  2259. }
  2260. else
  2261. {
  2262. errorCount++;
  2263. }
  2264. if(errorCount>10)
  2265. {
  2266. updateStep = MS_UPDATE_STEP_ERROR;
  2267. errorCount = 0;
  2268. }
  2269. printf(" step 3 ret = %d\n",ret);
  2270. osDelay(50);
  2271. break;
  2272. case MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST: //0x05
  2273. dataLen = 0;
  2274. updateMsgSendLen = 6+dataLen;
  2275. updateMsgReadLen = 8;
  2276. pUpdateMsgSend[0] = 0x01; //node byte
  2277. pUpdateMsgSend[1] = 0x40; //func byte
  2278. pUpdateMsgSend[2] = updateStep; //cmd byte
  2279. pUpdateMsgSend[3] = dataLen; //data len
  2280. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2281. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2282. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2283. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2284. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2285. #ifdef USING_PRINTF
  2286. printf("update step 5 answer:\n");
  2287. for(ii=0;ii<updateMsgReadLen;ii++)
  2288. printf("%x ",bmsAnswerMsg[ii]);
  2289. printf("\nret0 = %d",ret0);
  2290. printf("\n");
  2291. #endif
  2292. if(ret0!=0)
  2293. {
  2294. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2295. {
  2296. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_EREASE_FLASH_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x06, answer data len:0x02
  2297. {
  2298. if(bmsAnswerMsg[4] == 0x00) //answer data byte1, erease successed
  2299. {
  2300. updateStep = MS_UPDATE_STEP_SEND_UPDATE_DATA; //0x07
  2301. errorCount = 0;
  2302. }
  2303. else if(bmsAnswerMsg[4] == 0x01) //擦除失败
  2304. {
  2305. errorCount++;
  2306. ret = updateErrorAppErease;
  2307. }
  2308. else
  2309. {
  2310. errorCount++;
  2311. }
  2312. }
  2313. else
  2314. {
  2315. errorCount++;
  2316. }
  2317. }
  2318. else
  2319. {
  2320. errorCount++;
  2321. }
  2322. }
  2323. else
  2324. {
  2325. errorCount++;
  2326. }
  2327. if(errorCount>10)
  2328. {
  2329. updateStep = MS_UPDATE_STEP_ERROR;
  2330. errorCount = 0;
  2331. }
  2332. osDelay(50);
  2333. break;
  2334. case MS_UPDATE_STEP_SEND_UPDATE_DATA: //0x07
  2335. updateMsgReadLen = 7;
  2336. pUpdateMsgSend[0] = 0x01; //node byte
  2337. pUpdateMsgSend[1] = 0x40; //func byte
  2338. pUpdateMsgSend[2] = updateStep; //cmd byte
  2339. for(i = 0; i < updateDataPackageCount ; i++ )
  2340. {
  2341. memset(ReadNVMTemp, 0, 64);
  2342. if((i+1)*64 < (updateDataTotalByteLen))
  2343. {
  2344. tempLen = 64;
  2345. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+headerLen+i*64,64);
  2346. }
  2347. else
  2348. {
  2349. tempLen = (updateDataTotalByteLen+4) - i*64;
  2350. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+headerLen+i*64,tempLen);
  2351. }
  2352. CRCtemp = MS_BMS_Update_CRC16(ReadNVMTemp, tempLen);
  2353. dataLen = tempLen+6; //data len =count(2+2 byte) + crc(2byte) + update data len
  2354. updateMsgSendLen = 6+dataLen; // updateMsgSendLen = data len + header len(6byte)
  2355. pUpdateMsgSend[3] = dataLen; //data len
  2356. pUpdateMsgSend[4] = ((i+1)>>8)&0xFF; //当前包序号,大端模式
  2357. pUpdateMsgSend[5] = (i+1)&0xFF;
  2358. pUpdateMsgSend[6] = (updateDataPackageCount>>8)&0xFF;
  2359. pUpdateMsgSend[7] = updateDataPackageCount&0xFF;
  2360. pUpdateMsgSend[8] = (CRCtemp>>8)&0xFF; // data CRC High
  2361. pUpdateMsgSend[9] = CRCtemp&0xFF; //data CRC Low
  2362. MEMCPY(&pUpdateMsgSend[4+6], ReadNVMTemp, 64); //升级数据,64字节
  2363. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2364. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2365. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2366. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2367. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2368. #ifdef USING_PRINTF
  2369. printf("update step 7 answer:\n");
  2370. for(ii=0;ii<updateMsgReadLen;ii++)
  2371. printf("%x ",bmsAnswerMsg[ii]);
  2372. printf("\nret0 = %d",ret0);
  2373. printf("\n");
  2374. #endif
  2375. if(ret0!=0)
  2376. {
  2377. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2378. {
  2379. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_UPDATE_DATA_WRITE_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x04, answer data len:0x01
  2380. {
  2381. if(bmsAnswerMsg[4] == 0x00) //answer data byte1,接收并操作成功
  2382. {
  2383. updateStep = MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST;
  2384. errorCount = 0;
  2385. }
  2386. else if(bmsAnswerMsg[4] == 0x01) //固件块校验失败
  2387. {
  2388. errorCount=10;
  2389. ret = updateErrorPackageCRC;
  2390. }
  2391. else if(bmsAnswerMsg[4] == 0x02) //烧写失败
  2392. {
  2393. errorCount=10;
  2394. ret = updateErrorPackageWrite;
  2395. }
  2396. else if(bmsAnswerMsg[4] == 0x03) //固件块编号异常
  2397. {
  2398. errorCount=10;
  2399. ret = updateErrorPackageNo;
  2400. }
  2401. else
  2402. {
  2403. errorCount=10;
  2404. }
  2405. }
  2406. else
  2407. {
  2408. errorCount=10;
  2409. }
  2410. }
  2411. else
  2412. {
  2413. errorCount=10;
  2414. }
  2415. }
  2416. else
  2417. {
  2418. errorCount=10;
  2419. }
  2420. if(errorCount>=10)
  2421. {
  2422. updateStep = MS_UPDATE_STEP_ERROR;
  2423. errorCount = 0;
  2424. i--;
  2425. break;
  2426. }
  2427. osDelay(50);
  2428. }
  2429. if(i == updateDataPackageCount)
  2430. {
  2431. updateStep = MS_UPDATE_STEP_SEND_UPDATE_DATA_END_AND_JUMP_TO_APP;
  2432. }
  2433. break;
  2434. case MS_UPDATE_STEP_SEND_UPDATE_DATA_END_AND_JUMP_TO_APP: //0x09
  2435. dataLen = 0x00;
  2436. updateMsgSendLen = 6+dataLen;
  2437. updateMsgReadLen = 7;
  2438. pUpdateMsgSend[0] = 0x01; //node byte
  2439. pUpdateMsgSend[1] = 0x40; //func byte
  2440. pUpdateMsgSend[2] = updateStep; //cmd byte
  2441. pUpdateMsgSend[3] = dataLen; //data len
  2442. //no data type
  2443. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2444. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2445. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2446. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2447. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2448. #ifdef USING_PRINTF
  2449. printf("update step 9 answer:\n");
  2450. for(ii=0;ii<updateMsgReadLen;ii++)
  2451. printf("%x ",bmsAnswerMsg[ii]);
  2452. printf("\nret0 = %d",ret0);
  2453. printf("\n");
  2454. #endif
  2455. if(ret0!=0)
  2456. {
  2457. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2458. {
  2459. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_JUMP_TO_APP_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x0A, answer data len:0x01
  2460. {
  2461. if(bmsAnswerMsg[4] == 0x00) //answer data byte1, update succeed
  2462. {
  2463. errorCount = 0;
  2464. updateStep = MS_UPDATE_STEP_READ_CURRENT_RUNNING_MODE; //0x0B
  2465. }
  2466. else if(bmsAnswerMsg[4] == 0x01) //升级失败
  2467. {
  2468. errorCount = 10;
  2469. ret = updateFailed;
  2470. }
  2471. }
  2472. else
  2473. {
  2474. errorCount++;
  2475. }
  2476. }
  2477. else
  2478. {
  2479. errorCount++;
  2480. }
  2481. }
  2482. else
  2483. {
  2484. errorCount++;
  2485. }
  2486. if(errorCount>=10)
  2487. {
  2488. updateStep = MS_UPDATE_STEP_ERROR;
  2489. errorCount = 0;
  2490. }
  2491. osDelay(50);
  2492. break;
  2493. case MS_UPDATE_STEP_READ_CURRENT_RUNNING_MODE: //0x0B
  2494. dataLen = 0x00;
  2495. updateMsgSendLen = 6+dataLen;
  2496. updateMsgReadLen = 8;
  2497. pUpdateMsgSend[0] = 0x01; //node byte
  2498. pUpdateMsgSend[1] = 0x40; //func byte
  2499. pUpdateMsgSend[2] = updateStep; //cmd byte
  2500. pUpdateMsgSend[3] = dataLen; //data len
  2501. //no data type
  2502. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2503. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2504. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2505. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2506. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2507. #ifdef USING_PRINTF
  2508. printf("update step A answer:\n");
  2509. for(ii=0;ii<updateMsgReadLen;ii++)
  2510. printf("%x ",bmsAnswerMsg[ii]);
  2511. printf("\nret0 = %d",ret0);
  2512. printf("\n");
  2513. #endif
  2514. if(ret0!=0)
  2515. {
  2516. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2517. {
  2518. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_CURRENT_RUNNING_MODE_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x0C, answer data len:0x02
  2519. {
  2520. if(bmsAnswerMsg[4] == 0x01) //answer data byte1, update succeed, app is running
  2521. {
  2522. errorCount = 0;
  2523. updateStep = MS_UPDATE_STEP_END;
  2524. }
  2525. else if(bmsAnswerMsg[4] == 0x00) //update failed , boot is running,error
  2526. {
  2527. errorCount = 10;
  2528. }
  2529. }
  2530. else
  2531. {
  2532. errorCount++;
  2533. }
  2534. }
  2535. else
  2536. {
  2537. errorCount++;
  2538. }
  2539. }
  2540. else
  2541. {
  2542. errorCount++;
  2543. }
  2544. if(errorCount>=3)
  2545. {
  2546. updateStep = MS_UPDATE_STEP_ERROR;
  2547. errorCount = 0;
  2548. }
  2549. osDelay(50);
  2550. break;
  2551. case MS_UPDATE_STEP_END: //0x0D
  2552. errorCount = 0;
  2553. bmsUpdateFlag = FALSE;
  2554. ret = updateOK;
  2555. break;
  2556. case MS_UPDATE_STEP_ERROR: //0x0E
  2557. errorCount = 0;
  2558. bmsUpdateFlag = true;
  2559. Cycle_conut++;
  2560. if(Cycle_conut>2)
  2561. {
  2562. ret = updateErrorTimeout;
  2563. bmsUpdateFlag = FALSE;
  2564. }
  2565. break;
  2566. default:
  2567. bmsUpdateFlag = FALSE;
  2568. break;
  2569. }
  2570. }
  2571. #ifdef USING_PRINTF
  2572. printf("last ret = %x\n",ret);
  2573. #endif
  2574. return ret;
  2575. }
  2576. UINT8 MS_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  2577. {
  2578. UINT8 timeCount = 0;
  2579. UINT8 j=0;
  2580. USARTdrv->Send(pSend,sendLen);
  2581. #ifdef USING_PRINTF
  2582. printf("query in:");
  2583. for(j=0;j<sendLen;j++)
  2584. {
  2585. printf("%x ",*(pSend+j));
  2586. }
  2587. printf("\n");
  2588. #endif
  2589. if(readLen>0)
  2590. {
  2591. USARTdrv->Receive(pRead,readLen);
  2592. while((isRecvTimeout == false) && (isRecvComplete == false))
  2593. {
  2594. timeCount++;
  2595. osDelay(100);
  2596. if (timeCount>=timeout/100)
  2597. {
  2598. timeCount =0;
  2599. isRecvTimeout = true;
  2600. break;
  2601. }
  2602. }
  2603. #ifdef USING_PRINTF
  2604. printf("\nanswer in:");
  2605. for(j=0;j<readLen;j++)
  2606. {
  2607. printf("%x ",*(pRead+j));
  2608. }
  2609. printf("\n");
  2610. #endif
  2611. if (isRecvComplete == true)
  2612. {
  2613. isRecvComplete = false;
  2614. if(*(pRead+0)!=0x01)
  2615. {
  2616. USARTdrv->Uninitialize();
  2617. osDelay(100);
  2618. USARTdrv->Initialize(USART_callback);
  2619. USARTdrv->PowerControl(ARM_POWER_FULL);
  2620. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  2621. ARM_USART_DATA_BITS_8 |
  2622. ARM_USART_PARITY_NONE |
  2623. ARM_USART_STOP_BITS_1 |
  2624. ARM_USART_FLOW_CONTROL_NONE, 9600);
  2625. #ifdef USING_PRINTF
  2626. printf("\nuart reset in \n");
  2627. #endif
  2628. return 0;
  2629. }
  2630. return readLen;
  2631. }
  2632. else
  2633. {
  2634. memset(pRead,0x00,readLen);
  2635. isRecvTimeout = false;
  2636. return 0;
  2637. }
  2638. }
  2639. else
  2640. {
  2641. return 1;
  2642. }
  2643. }
  2644. static void __invert_uint8(UINT8* dBuf, UINT8* srcBuf)
  2645. {
  2646. int i;
  2647. UINT8 tmp[4];
  2648. tmp[0] = 0;
  2649. for (i = 0;i < 8;i++)
  2650. {
  2651. if(srcBuf[0] & (1 << i))
  2652. {
  2653. tmp[0] |= 1<<(7-i);
  2654. }
  2655. }
  2656. dBuf[0] = tmp[0];
  2657. }
  2658. static void __invert_uint16(UINT16* dBuf, UINT16* srcBuf)
  2659. {
  2660. int i;
  2661. UINT16 tmp[4];
  2662. tmp[0] = 0;
  2663. for (i = 0;i < 16;i++)
  2664. {
  2665. if(srcBuf[0] & (1 << i))
  2666. {
  2667. tmp[0] |= 1 << (15 - i);
  2668. }
  2669. }
  2670. dBuf[0] = tmp[0];
  2671. }
  2672. UINT16 MS_BMS_Update_CRC16(UINT8* pSendData,UINT16 len)
  2673. {
  2674. UINT16 wCRCin = 0xFFFF;
  2675. UINT16 wCPoly = 0x8005;
  2676. UINT8 wChar = 0;
  2677. UINT16 crc_rslt = 0;
  2678. int i;
  2679. while (len--)
  2680. {
  2681. wChar = *(pSendData++);
  2682. __invert_uint8(&wChar, &wChar);
  2683. wCRCin ^= (wChar << 8);
  2684. for (i = 0;i < 8;i++)
  2685. {
  2686. if(wCRCin & 0x8000)
  2687. {
  2688. wCRCin = (wCRCin << 1) ^ wCPoly;
  2689. }
  2690. else
  2691. {
  2692. wCRCin = wCRCin << 1;
  2693. }
  2694. }
  2695. }
  2696. __invert_uint16(&wCRCin, &wCRCin);
  2697. crc_rslt = ((wCRCin << 8) & 0xFF00) | ((wCRCin >> 8) & 0x00FF);
  2698. return (crc_rslt);
  2699. }
  2700. UINT8 BmsErrorDecode(UINT32 battWarningState)
  2701. {
  2702. UINT16 ErrorNumTemp;
  2703. UINT8 ret;
  2704. if(battWarningState==0)
  2705. {
  2706. return 0;
  2707. }
  2708. else
  2709. {
  2710. if(osOK==osMutexAcquire(Error_Mutex, 100))
  2711. {
  2712. ret = ((battWarningState) & 0x01) == 1 ;
  2713. if (ret)
  2714. {
  2715. ErrorNumTemp = 7;
  2716. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2717. //str += "ERROR:存在电芯过放告警故障!!\n";单体电压过低
  2718. }
  2719. ret = ((battWarningState >> 1) & 0x01) == 1 ;
  2720. if (ret)
  2721. {
  2722. ErrorNumTemp = 10;
  2723. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2724. //str += "ERROR:存在总电压过放告警故障!!\n";总电压过低
  2725. }
  2726. ret = ((battWarningState >> 2) & 0x01) == 1 ;
  2727. if (ret)
  2728. {
  2729. ErrorNumTemp = 8;
  2730. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2731. //str += "ERROR:存在电芯过压告警故障!!\n";
  2732. }
  2733. ret = ((battWarningState >> 3) & 0x01) == 1 ;
  2734. if (ret)
  2735. {
  2736. ErrorNumTemp = 11;
  2737. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2738. //str += "ERROR:存在总电压过压告警故障!!\n";
  2739. }
  2740. ret = ((battWarningState >> 4) & 0x01) == 1 ;
  2741. if (ret)
  2742. {
  2743. ErrorNumTemp = 12;
  2744. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2745. //str += "ERROR:存在放电过流告警故障!!\n";
  2746. }
  2747. ret = ((battWarningState >> 5) & 0x01) == 1 ;
  2748. if (ret)
  2749. {
  2750. ErrorNumTemp = 13;
  2751. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2752. //str += "ERROR:存在充电过流告警故障!!\n";
  2753. }
  2754. ret = ((battWarningState >> 6) & 0x01) == 1 ;
  2755. if (ret)
  2756. {
  2757. ErrorNumTemp = 2;
  2758. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2759. //str += "ERROR:存在放电过温告警故障!!\n";
  2760. }
  2761. ret = ((battWarningState >> 7) & 0x01) == 1 ;
  2762. if (ret)
  2763. {
  2764. ErrorNumTemp = 2;
  2765. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2766. //str += "ERROR:存在充电过温告警故障!!\n";
  2767. }
  2768. ret = ((battWarningState >> 8) & 0x01) == 1 ;
  2769. if (ret)
  2770. {
  2771. //str += "ERROR:存在环境高温告警故障!!\n";
  2772. }
  2773. ret = ((battWarningState >> 9) & 0x01) == 1 ;
  2774. if (ret)
  2775. {
  2776. //str += "ERROR:存在环境低温告警故障!!\n";
  2777. }
  2778. ret = ((battWarningState >> 10) & 0x01) == 1 ;
  2779. if (ret)
  2780. {
  2781. ErrorNumTemp = 27;
  2782. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2783. //str += "ERROR:存在battSOC低告警故障!!\n";
  2784. }
  2785. ret = ((battWarningState >> 11) & 0x01) == 1 ;
  2786. if (ret)
  2787. {
  2788. ErrorNumTemp = 3;
  2789. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2790. //str += "ERROR:存在MOS高温告警故障!!\n";
  2791. }
  2792. ret = ((battWarningState >> 16) & 0x01) == 1;
  2793. if (ret)
  2794. {
  2795. ErrorNumTemp = 18;
  2796. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2797. //str += "ERROR:存在温度采集失效/传感器故障!!\n";
  2798. }
  2799. ret = ((battWarningState >> 17) & 0x01) == 1;
  2800. if (ret)
  2801. {
  2802. ErrorNumTemp = 19;
  2803. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2804. //str += "ERROR:存在电压采集失效/断线故障!!\n";
  2805. }
  2806. ret = ((battWarningState >> 18) & 0x01) == 1;
  2807. if (ret)
  2808. {
  2809. ErrorNumTemp = 17;
  2810. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2811. //str += "ERROR:存在放电MOS失效故障!!\n";
  2812. }
  2813. ret = ((battWarningState >> 19) & 0x01) == 1;
  2814. if (ret)
  2815. {
  2816. ErrorNumTemp = 16;
  2817. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2818. //str += "ERROR:存在充电MOS失效故障!!\n";
  2819. }
  2820. ret = ((battWarningState >> 20) & 0x01) == 1;
  2821. if (ret)
  2822. {
  2823. ErrorNumTemp = 22;
  2824. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2825. //str += "ERROR:存在电芯不均衡告警!!\n";
  2826. }
  2827. ret = ((battWarningState >> 22) & 0x01) == 1;
  2828. if (ret)
  2829. {
  2830. ErrorNumTemp = 1;
  2831. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2832. //str += "ERROR:存在放电低温告警故障!!\n";
  2833. }
  2834. ret = ((battWarningState >> 23) & 0x01) == 1 ;
  2835. if (ret)
  2836. {
  2837. ErrorNumTemp = 1;
  2838. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2839. //str += "ERROR:存在充电低温告警故障!!\n";
  2840. }
  2841. }
  2842. else
  2843. {
  2844. #ifdef USING_PRINTF
  2845. printf("get Muxtex error\n");
  2846. #endif
  2847. }
  2848. osMutexRelease(Error_Mutex);
  2849. }
  2850. return 1;
  2851. }