hal_module_adapter.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334
  1. #include "bsp.h"
  2. #include "osasys.h"
  3. #include "ostask.h"
  4. #include "queue.h"
  5. #include "debug_log.h"
  6. #include "slpman_ec616.h"
  7. #include "plat_config.h"
  8. #include "hal_uart.h"
  9. #include "hal_adc.h"
  10. #include "adc_ec616.h"
  11. #include "gpio_ec616.h"
  12. #include "hal_module_adapter.h"
  13. #include <stdarg.h>
  14. /*
  15. gps
  16. */
  17. static posGGACallBack gGPSDataCBfunc =NULL;
  18. // GSENSOR device addr
  19. #define GSENSOR_DEVICE_ADDR (SC7A20_IIC_ADDRESS)
  20. #define ZM01_DEVICE_ADDR (0x2a)
  21. /*
  22. i2c
  23. */
  24. #define HAL_I2C_RECV_TASK_QUEUE_CREATED (0x1)
  25. #define I2C_RECV_QUEUE_BUF_SIZE (0x10)
  26. #define I2C_RECV_TASK_STACK_SIZE (1536)
  27. /*
  28. power control
  29. */
  30. // back power
  31. #define AON_GPS_POWER1 (8)
  32. //main power
  33. #define AON_GPS_POWER2 (4)
  34. #define AON_RELAY_DRV (5)
  35. #define AON_WAKEUP (8)
  36. #define GPIO_MOS_DRV1 (14)
  37. #define GPIO_MOS_DRV2 (15)
  38. #define GPIO_POWER_LED (9)
  39. /*GPS*/
  40. #define FEM_GPS_RSTN (6)
  41. #define FEM_GPS_BLK (7)
  42. #define FEM_GPS_PPS (9)
  43. /*CAN*/
  44. #define GPIO_CAN_POWER (9)
  45. /*
  46. I2C
  47. */
  48. #define I2C_RECV_CONTROL_FLAG (0x1)
  49. static UINT32 g_halI2CInitFlag = 0;
  50. static osEventFlagsId_t g_i2CRecvFlag;
  51. static StaticQueue_t i2c_recv_queue_cb;
  52. static StaticTask_t i2c_recv_task;
  53. static UINT8 i2c_recv_task_stack[I2C_RECV_TASK_STACK_SIZE];
  54. static UINT8 i2c_recv_queue_buf[I2C_RECV_QUEUE_BUF_SIZE*sizeof(i2c_recv_msgqueue_obj_t)];
  55. // message queue id
  56. static osMessageQueueId_t i2c_recv_msgqueue;
  57. /*
  58. adc
  59. */
  60. #define GPIO_AIO3_SEL (19)
  61. #define GPIO_AIO4_SEL (18)
  62. #define ADC_TASK_STACK_SIZE (512)
  63. #define ADC_MSG_MAX_NUM (7)
  64. #define ADC_AioResDivRatioDefault (ADC_AioResDivRatio14Over16)
  65. #define REV_AioResDivRatioDefault 16/14
  66. //#define ADC_ChannelAioVbat (1200)
  67. static UINT32 ADC_ChannelAioVbat=1200;
  68. #define ADC_ChannelAioRes (15000)
  69. #define NTC_FullAioValue (1200)
  70. #define ADC_AioResDivRatioExtra (ADC_AioResDivRatio8Over16)
  71. #define REV_AioResDivRatioExtra 16/8
  72. #define NTC_REQ_UPDATE_DATA (0x01)
  73. #define ADC_MSG_TIMEOUT (1000)
  74. #define ADC_CALIBRATION_VALUE (50900)
  75. static UINT32 ADC_InsideRES=500000;
  76. #define ADC_RECV_CONTROL_FLAG (0x1)
  77. typedef struct
  78. {
  79. UINT32 request;
  80. UINT32 NTCvalue[7];
  81. }NtcResult_t;
  82. NtcResult_t gNtcDev;
  83. volatile static UINT32 vbatChannelResult = 0;
  84. volatile static UINT32 thermalChannelResult = 0;
  85. volatile static UINT32 NTCChannelResult[NTC_ChannelMax];
  86. QueueHandle_t adcMsgHandle = NULL;
  87. static osEventFlagsId_t adcEvtHandle = NULL;
  88. static osEventFlagsId_t adcTrigerHandle = NULL;
  89. static osThreadId_t adcTaskHandle = NULL;
  90. static StaticTask_t adcTask = NULL;
  91. static UINT8 adcTaskStack[ADC_TASK_STACK_SIZE];
  92. /*
  93. gps
  94. */
  95. static QueueHandle_t gpsHandle = NULL;
  96. /*
  97. can
  98. */
  99. static osMessageQueueId_t can_recv_msgqueue;
  100. static StaticQueue_t can_recv_queue_cb;
  101. #define CAN_RECV_QUEUE_BUF_SIZE (0x10)
  102. static UINT8 can_recv_queue_buf[CAN_RECV_QUEUE_BUF_SIZE];
  103. #define CAN_RECV_CONTROL_FLAG (0x1)
  104. //#define SPI_ANALOG
  105. #ifdef SPI_ANALOG
  106. #define USING_SPI0 0
  107. #endif
  108. /*spi0*/
  109. #ifdef SPI_ANALOG
  110. #if USING_SPI0
  111. #define SPI_SSN_GPIO_INSTANCE RTE_SPI0_SSN_GPIO_INSTANCE
  112. #define SPI_SSN_GPIO_INDEX RTE_SPI0_SSN_GPIO_INDEX
  113. #define SPI_SSN_GPIO_PAD_ADDR 21
  114. #define SPI_CLK_GPIO_INSTANCE 0
  115. #define SPI_CLK_GPIO_INDEX 15
  116. #define SPI_CLK_GPIO_PAD_ADDR 24
  117. #define SPI_MOSI_GPIO_INSTANCE 0
  118. #define SPI_MOSI_GPIO_INDEX 11
  119. #define SPI_MOSI_GPIO_PAD_ADDR 22
  120. #define SPI_MISO_GPIO_INSTANCE 0
  121. #define SPI_MISO_GPIO_INDEX 14
  122. #define SPI_MISO_GPIO_PAD_ADDR 23
  123. #else //SPI1
  124. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  125. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  126. #define SPI_SSN_GPIO_PAD_ADDR 13
  127. #define SPI_CLK_GPIO_INSTANCE 0
  128. #define SPI_CLK_GPIO_INDEX 5
  129. #define SPI_CLK_GPIO_PAD_ADDR 16
  130. #define SPI_MOSI_GPIO_INSTANCE 0
  131. #define SPI_MOSI_GPIO_INDEX 3
  132. #define SPI_MOSI_GPIO_PAD_ADDR 14
  133. #define SPI_MISO_GPIO_INSTANCE 0
  134. #define SPI_MISO_GPIO_INDEX 4
  135. #define SPI_MISO_GPIO_PAD_ADDR 15
  136. #endif
  137. #else
  138. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  139. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  140. #endif
  141. extern ARM_DRIVER_I2C Driver_I2C0;
  142. extern ARM_DRIVER_SPI Driver_SPI0;
  143. extern ARM_DRIVER_SPI Driver_SPI1;
  144. extern ARM_DRIVER_USART Driver_USART2;
  145. extern ARM_DRIVER_USART Driver_USART1;
  146. uint8_t gps_uart_recv_buf[GPS_DATA_RECV_BUFFER_SIZE];
  147. static ARM_DRIVER_SPI *spiMasterDrv = &CREATE_SYMBOL(Driver_SPI, 1);
  148. static ARM_DRIVER_I2C *i2cDrvInstance = &CREATE_SYMBOL(Driver_I2C, 0);
  149. static ARM_DRIVER_USART *usartHandle = &CREATE_SYMBOL(Driver_USART, 2);
  150. static ARM_DRIVER_USART *printfHandle = &CREATE_SYMBOL(Driver_USART, 1);
  151. //LED define pin index
  152. #define LED_INX_MAX (5)
  153. #define LED_PORT_0 (0)
  154. #define LED_PORT_1 (1)
  155. /*
  156. pin1~pin4 for soc display
  157. pin5 for fault display
  158. */
  159. #define LED_GPIO_PIN_1 (6)
  160. #define LED_PAD_INDEX1 (17)
  161. #define LED_GPIO_PIN_2 (7)
  162. #define LED_PAD_INDEX2 (18)
  163. #define LED_GPIO_PIN_3 (0)
  164. #define LED_PAD_INDEX3 (21)
  165. #define LED_GPIO_PIN_4 (11)
  166. #define LED_PAD_INDEX4 (22)
  167. #define LED_GPIO_PIN_5 (1)
  168. #define LED_PAD_INDEX5 (27)
  169. led_pin_config_t gLedCfg[LED_INX_MAX]={{LED_PORT_0,LED_GPIO_PIN_1,LED_PAD_INDEX1, PAD_MuxAlt0},\
  170. {LED_PORT_0,LED_GPIO_PIN_2,LED_PAD_INDEX2, PAD_MuxAlt0},\
  171. {LED_PORT_1,LED_GPIO_PIN_3,LED_PAD_INDEX3, PAD_MuxAlt0},\
  172. {LED_PORT_0,LED_GPIO_PIN_4,LED_PAD_INDEX4, PAD_MuxAlt0},\
  173. {LED_PORT_1,LED_GPIO_PIN_5,LED_PAD_INDEX5, PAD_MuxAlt0}};
  174. #ifdef BL_FILE_LOG
  175. #include <stdarg.h>
  176. static UINT8 blLogFileNux=0;
  177. //UTCת»»Îª±±¾©Ê±¼ä º¯Êý¿ÉÖ±½Óµ÷ÓÃ
  178. static void UTCToBeijing(unsigned char * bjttbuf,unsigned int UTCyear,unsigned char UTCmonth,unsigned char UTCday,unsigned int UTChour,unsigned char UTCminute,unsigned char UTCsecond)
  179. {
  180. int year=0,month=0,day=0,hour=0;
  181. int lastday = 0;// ÔµÄ×îºóÒ»ÌìÈÕÆÚ
  182. int lastlastday = 0;//ÉÏÔµÄ×îºóÒ»ÌìÈÕÆÚ
  183. year=UTCyear;
  184. month=UTCmonth;
  185. day=UTCday;
  186. hour=UTChour+8;//UTC+8ת»»Îª±±¾©Ê±¼ä
  187. if(month==1 || month==3 || month==5 || month==7 || month==8 || month==10 || month==12)
  188. {
  189. lastday = 31;
  190. if(month == 3)
  191. {
  192. if((year%400 == 0)||(year%4 == 0 && year%100 != 0))//ÅжÏÊÇ·ñΪÈòÄê
  193. lastlastday = 29;//ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  194. else
  195. lastlastday = 28;
  196. }
  197. if(month == 8)
  198. lastlastday = 31;
  199. }
  200. else
  201. if(month == 4 || month == 6 || month == 9 || month == 11)
  202. {
  203. lastday = 30;
  204. lastlastday = 31;
  205. }
  206. else
  207. {
  208. lastlastday = 31;
  209. if((year%400 == 0)||(year%4 == 0 && year%100 != 0))//ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  210. lastday = 29;
  211. else
  212. lastday = 28;
  213. }
  214. if(hour >= 24)//µ±Ëã³öµÄʱ´óÓÚ»òµÈÓÚ24£º00ʱ£¬Ó¦¼õÈ¥24£º00£¬ÈÕÆÚ¼ÓÒ»Ìì
  215. {
  216. hour -= 24;
  217. day += 1;
  218. if(day > lastday)//µ±Ëã³öµÄÈÕÆÚ´óÓÚ¸ÃÔÂ×îºóÒ»Ììʱ£¬Ó¦¼õÈ¥¸ÃÔÂ×îºóÒ»ÌìµÄÈÕÆÚ£¬Ô·ݼÓÉÏÒ»¸öÔÂ
  219. {
  220. day -= lastday;
  221. month += 1;
  222. if(month > 12)//µ±Ëã³öµÄÔ·ݴóÓÚ12£¬Ó¦¼õÈ¥12£¬Äê·Ý¼ÓÉÏ1Äê
  223. {
  224. month -= 12;
  225. year += 1;
  226. }
  227. }
  228. }
  229. sprintf((char *)bjttbuf,"%04d-%02d-%02d %02d:%02d:%02d ",
  230. year,month,day,hour,UTCminute,UTCsecond); //UTCÈÕÆÚʱ·ÖÃëת»»³É±±¾©Ê±¼ä
  231. }
  232. static void bluejoy_write_logfile(UINT8 * buf)
  233. {
  234. int32_t err;
  235. UINT32 Count;
  236. OSAFILE file;
  237. while(blLogFileNux){
  238. osDelay(10/portTICK_PERIOD_MS);
  239. }
  240. blLogFileNux=1;
  241. file = OsaFopen("blLog","wb");
  242. if(file==NULL){
  243. //printf("blLog open fail!\r\n");
  244. blLogFileNux=0;
  245. return;
  246. }
  247. if(OsaFseek(file, 0, SEEK_END) != 0)
  248. {
  249. //printf("Seek file failed [%d] \r\n",__LINE__);
  250. OsaFclose(file);
  251. blLogFileNux=0;
  252. return;
  253. }
  254. Count = OsaFwrite(buf, 1, strlen(buf), file);
  255. if(Count != (strlen(buf))){
  256. //printf("blLog write fail!\r\n");
  257. }
  258. OsaFclose(file);
  259. blLogFileNux=0;
  260. }
  261. void bluejoy_read_logfile(void)
  262. {
  263. int32_t err;
  264. UINT32 Count;
  265. OSAFILE file;
  266. UINT8 rbuf[128+1]={0};
  267. UINT8 * flag_p;
  268. UINT16 pri_l;
  269. printf("%s start\r\n",__FUNCTION__);
  270. while(blLogFileNux){
  271. osDelay(10/portTICK_PERIOD_MS);
  272. }
  273. blLogFileNux=1;
  274. file = OsaFopen("blLog","rb");
  275. if(file==NULL){
  276. printf("blLog not exst!\r\n");
  277. blLogFileNux=0;
  278. return;
  279. }
  280. if(OsaFseek(file, 0, SEEK_SET) != 0)
  281. {
  282. printf("Seek file failed [%d] \r\n",__LINE__);
  283. OsaFclose(file);
  284. blLogFileNux=0;
  285. return;
  286. }
  287. do{
  288. memset(rbuf,0,128);
  289. Count = OsaFread(rbuf, 1, 128, file);
  290. printf("%s",rbuf);
  291. }while(Count==128);
  292. OsaFclose(file);
  293. blLogFileNux=0;
  294. printf("%s end! \r\n",__FUNCTION__);
  295. }
  296. void bluejoy_del_logfile(void)
  297. {
  298. UINT32 ret;
  299. //printf("%s start! \r\n",__FUNCTION__);
  300. while(blLogFileNux){
  301. osDelay(10/portTICK_PERIOD_MS);
  302. }
  303. blLogFileNux=1;
  304. OsaFremove("blLog");
  305. blLogFileNux=0;
  306. FaultDisplay(LED_TURN_OFF);
  307. osDelay(1000/portTICK_PERIOD_MS);
  308. FaultDisplay(LED_TURN_ON);
  309. osDelay(1000/portTICK_PERIOD_MS);
  310. FaultDisplay(LED_TURN_OFF);
  311. osDelay(1000/portTICK_PERIOD_MS);
  312. FaultDisplay(LED_TURN_ON);
  313. }
  314. void bluejoy_printf(BlLogLevel level, const UINT8 *format, ...)
  315. {
  316. UINT8 buf[128+1];
  317. va_list args;
  318. OsaUtcTimeTValue timeUtc;
  319. UINT16 year;
  320. UINT8 month,day,hour,minite,sec;
  321. if(level<BL_LEVEL2)
  322. return;
  323. appGetSystemTimeUtcSync(&timeUtc);
  324. year=(timeUtc.UTCtimer1&0xffff0000)>>16;
  325. month=(timeUtc.UTCtimer1&0xff00)>>8;
  326. day=timeUtc.UTCtimer1&0xff;
  327. hour=(timeUtc.UTCtimer2&0xff000000)>>24;
  328. minite=(timeUtc.UTCtimer2&0xff0000)>>16;
  329. sec=(timeUtc.UTCtimer2&0xff00)>>8;
  330. memset(buf,0,128+1);
  331. UTCToBeijing(buf,year,month,day,hour,minite,sec);
  332. va_start(args, format);
  333. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  334. va_end(args);
  335. //printf("%s", buf);
  336. bluejoy_write_logfile(buf);
  337. }
  338. #endif
  339. #if 0
  340. /**
  341. \fn void NetSocDisplay(UINT8 soc)
  342. \param[in] void
  343. \brief RSSI display on led
  344. \return
  345. */
  346. #define RSSI_LEVEL_0 (0)
  347. #define RSSI_LEVEL_10 (10)
  348. #define RSSI_LEVEL_20 (20)
  349. #define RSSI_LEVEL_25 (25)
  350. #define RSSI_LEVEL_30 (30)
  351. void NetSocDisplay(UINT8 soc)
  352. {
  353. UINT16 pinLevel[LED_INX_MAX-1] ={0};
  354. gpio_pin_config_t nGpioCfg={0};
  355. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  356. nGpioCfg.misc.initOutput = 1;
  357. for(int8_t i=0;i< LED_INX_MAX-1;i++){
  358. GPIO_PinConfig(gLedCfg[i].pinPort, gLedCfg[i].pinInx, &nGpioCfg);
  359. }
  360. if(RSSI_LEVEL_0 < soc && soc <=RSSI_LEVEL_10)
  361. {
  362. pinLevel[0]=1;
  363. pinLevel[1]=pinLevel[2]=pinLevel[3]=0;
  364. }
  365. else if(RSSI_LEVEL_10 < soc && soc <=RSSI_LEVEL_20)
  366. {
  367. pinLevel[0]=pinLevel[1]=1;
  368. pinLevel[2]=pinLevel[3]=0;
  369. }
  370. else if(RSSI_LEVEL_20 < soc && soc <=RSSI_LEVEL_25)
  371. {
  372. pinLevel[0]=pinLevel[1]=pinLevel[2]=1;
  373. pinLevel[3]=0;
  374. }
  375. else if(RSSI_LEVEL_25 < soc && soc <=RSSI_LEVEL_30)
  376. {
  377. pinLevel[0]=pinLevel[1]=pinLevel[2]=pinLevel[3]=1;
  378. }
  379. for(UINT8 i=0; i<LED_INX_MAX-1; i++)
  380. {
  381. GPIO_PinWrite(gLedCfg[i].pinPort, 1<<gLedCfg[i].pinInx, pinLevel[i]<<gLedCfg[i].pinInx);
  382. }
  383. }
  384. #endif
  385. void NetSocDisplay(ledInx_t Inx , ledStaus_t level)
  386. {
  387. UINT16 pinLevel[LED_INX_MAX-1] ={0};
  388. gpio_pin_config_t nGpioCfg={0};
  389. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  390. nGpioCfg.misc.initOutput = 1;
  391. pad_config_t padConfig;
  392. PAD_GetDefaultConfig(&padConfig);
  393. padConfig.mux = gLedCfg[Inx].padMutex;
  394. PAD_SetPinConfig(gLedCfg[Inx].padInx, &padConfig);
  395. PAD_SetPinPullConfig(gLedCfg[Inx].padInx, PAD_InternalPullDown);
  396. GPIO_PinConfig(gLedCfg[Inx].pinPort, gLedCfg[Inx].pinInx, &nGpioCfg);
  397. GPIO_PinWrite(gLedCfg[Inx].pinPort, 1<<gLedCfg[Inx].pinInx, level <<gLedCfg[Inx].pinInx);
  398. }
  399. /**
  400. \fn void FaultDisplay(ledStaus_t status)
  401. \param[in] status equal to 1 ,turn on red led ; status equal to 0 ,turn off red led
  402. \brief RSSI display on led
  403. \return
  404. */
  405. void FaultDisplay(ledStaus_t status)
  406. {
  407. gpio_pin_config_t nGpioCfg={0};
  408. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  409. nGpioCfg.misc.initOutput = 1;
  410. pad_config_t padConfig;
  411. PAD_GetDefaultConfig(&padConfig);
  412. padConfig.mux = gLedCfg[4].padMutex;
  413. PAD_SetPinConfig(gLedCfg[4].padInx, &padConfig);
  414. PAD_SetPinPullConfig(gLedCfg[4].padInx, PAD_InternalPullDown);
  415. GPIO_PinConfig(gLedCfg[4].pinPort, gLedCfg[4].pinInx, &nGpioCfg);
  416. GPIO_PinWrite(gLedCfg[4].pinPort, 1<<gLedCfg[4].pinInx, status<<gLedCfg[4].pinInx);
  417. }
  418. /**
  419. * @brief
  420. * @param
  421. * @return
  422. */
  423. void SPI_CS_High(void)
  424. {
  425. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 1 << SPI_SSN_GPIO_INDEX);
  426. }
  427. /**
  428. * @brief
  429. * @param
  430. * @return
  431. */
  432. void SPI_CS_Low(void)
  433. {
  434. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 0);
  435. }
  436. #ifdef SPI_ANALOG
  437. /**
  438. * @brief
  439. * @param
  440. * @return
  441. */
  442. void SPI_Clk_High(void)
  443. {
  444. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,1<<SPI_CLK_GPIO_INDEX);
  445. }
  446. /**
  447. * @brief
  448. * @param
  449. * @return
  450. */
  451. void SPI_Clk_Low(void)
  452. {
  453. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,0);
  454. }
  455. /**
  456. * @brief
  457. * @param
  458. * @return
  459. */
  460. void SPI_Mosi_High(void)
  461. {
  462. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,1<<SPI_MOSI_GPIO_INDEX);
  463. }
  464. /**
  465. * @brief
  466. * @param
  467. * @return
  468. */
  469. void SPI_Mosi_Low(void)
  470. {
  471. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,0);
  472. }
  473. /**
  474. * @brief
  475. * @param
  476. * @return
  477. */
  478. UINT8 SPI_MISO_Read(void)
  479. {
  480. return GPIO_PinRead(SPI_MISO_GPIO_INSTANCE,SPI_MISO_GPIO_INDEX);
  481. }
  482. #endif
  483. /**
  484. * @brief Software SPI_Flash bus driver basic function, send a single byte to MOSI,
  485. * and accept MISO data at the same time.
  486. * @param[in] u8Data:Data sent on the MOSI data line
  487. * @return u8Out: Data received on the MISO data line
  488. */
  489. UINT8 SPI_Write_Byte(UINT8 u8Data)
  490. {
  491. UINT8 data = u8Data;
  492. #ifdef SPI_ANALOG
  493. UINT8 i=0;
  494. for(i=0;i<8;i++){
  495. SPI_Clk_Low();
  496. if((u8Data<<i)&0x80)
  497. SPI_Mosi_High();
  498. else
  499. SPI_Mosi_Low();
  500. SPI_Clk_High();
  501. }
  502. SPI_Clk_Low();
  503. #else
  504. spiMasterDrv->Transfer(&u8Data,&data,1);
  505. #endif
  506. return 0;
  507. }
  508. #ifdef SPI_ANALOG
  509. /**
  510. * @brief
  511. * @param
  512. * @return
  513. */
  514. UINT8 SPI_Read_Byte(void)
  515. {
  516. UINT8 i=0;
  517. UINT8 rByte=0;
  518. SPI_Clk_Low();
  519. for(i=0;i<8;i++){
  520. SPI_Clk_High();
  521. rByte<<=1;
  522. rByte |= SPI_MISO_Read();
  523. SPI_Clk_Low();
  524. }
  525. return rByte;
  526. }
  527. #endif
  528. /**
  529. \fn INT32 CAN_ReadReg(UINT8 addr)
  530. \param[in] addr CAN register addr
  531. \brief write can register
  532. \return
  533. */
  534. INT32 CAN_WriteReg(UINT8 addr, UINT8 value)
  535. {
  536. SPI_CS_Low();
  537. SPI_Write_Byte(CAN_WRITE);
  538. SPI_Write_Byte(addr);
  539. SPI_Write_Byte(value);
  540. SPI_CS_High();
  541. return 0;
  542. }
  543. /**
  544. \fn INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  545. \param[in] reg: can register addr
  546. \brief read can register
  547. \return
  548. */
  549. INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  550. {
  551. UINT8 i =0;
  552. UINT8 data=0;
  553. INT32 res;
  554. if(buf == NULL) return -1;
  555. SPI_CS_Low();
  556. SPI_Write_Byte(CAN_READ);
  557. SPI_Write_Byte(reg);
  558. #ifdef SPI_ANALOG
  559. for(i=0;i<len;i++){
  560. buf[i]= SPI_Read_Byte();
  561. }
  562. #else
  563. for(i=0;i<len;i++){
  564. spiMasterDrv->Transfer(&data,&buf[i],1);
  565. }
  566. #endif
  567. SPI_CS_High();
  568. return i;
  569. }
  570. /**
  571. \fn UINT8 CanTriggerEvtInit(void)
  572. \param[in]
  573. \brief generate irq,then notify app
  574. \return 1 fail; 0 ok;
  575. */
  576. UINT8 CanTriggerEvtInit(void)
  577. {
  578. /*for msg queue create*/
  579. osMessageQueueAttr_t queue_attr;
  580. memset(&queue_attr, 0, sizeof(queue_attr));
  581. queue_attr.cb_mem = &can_recv_queue_cb;
  582. queue_attr.cb_size = sizeof(can_recv_queue_cb);
  583. queue_attr.mq_mem = can_recv_queue_buf;
  584. queue_attr.mq_size = sizeof(can_recv_queue_buf);
  585. can_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE,1, &queue_attr);
  586. //printf("CanTriggerEvtInit \r\n");
  587. return 0;
  588. }
  589. /**
  590. \fn void CanWaitEvt(UINT32 timeout)
  591. \param[in]
  592. \brief
  593. \return
  594. */
  595. void CanWaitEvt(UINT32 timeout)
  596. {
  597. osStatus_t status;
  598. UINT8 msg = 0;
  599. UINT32 mask;
  600. status = osMessageQueueGet(can_recv_msgqueue, &msg, 0 , osWaitForever);
  601. //printf("msg = %#x\r\n",msg);
  602. }
  603. /**
  604. \fn void CanTiggerEvt(UINT8 cmd)
  605. \param[in]
  606. \brief
  607. \return
  608. */
  609. void CanTiggerEvt(UINT8 cmd)
  610. {
  611. osStatus_t status;
  612. UINT8 msg = cmd;
  613. status = osMessageQueuePut(can_recv_msgqueue, &msg, 0, 0);
  614. }
  615. /*******************************************************************************
  616. * o����y?? : MCP2515_Reset
  617. * ?����? : ����?��?��????��?����?t?��??MCP2515
  618. * ��?��? : ?T
  619. * ��?3? : ?T
  620. * ����???�� : ?T
  621. * ?��?�� : ???��2???��??��?��???a������?���䨬?,2��???��?t����?��?a?????�꨺?
  622. *******************************************************************************/
  623. INT32 HAL_Can_Reset(void)
  624. {
  625. SPI_CS_Low();
  626. SPI_Write_Byte(CAN_RESET);
  627. SPI_CS_High();
  628. return 0;
  629. }
  630. /*******************************************************************************
  631. * o����y?? : MCP2515_Init
  632. * ?����? : MCP25153?��??��????
  633. * ��?��? : ?T
  634. * ��?3? : ?T
  635. * ����???�� : ?T
  636. * ?��?�� : 3?��??���㨹������o����?t?��???��1�����2����??������???�������?��??��1?????�̨�?��
  637. *******************************************************************************/
  638. void HAL_Can_Init(Can_InitType param)
  639. {
  640. UINT8 temp=0,temp1=0;
  641. INT32 res = -1;
  642. gpio_pin_config_t config;
  643. config.pinDirection = GPIO_DirectionOutput;
  644. config.misc.initOutput = 1;
  645. pad_config_t padConfig;
  646. PAD_GetDefaultConfig(&padConfig);
  647. //POWER
  648. padConfig.mux = PAD_MuxAlt0;
  649. PAD_SetPinConfig(28, &padConfig);
  650. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 1 << GPIO_CAN_POWER);
  651. HAL_Can_Reset(); //¡¤¡é?¨ª?¡ä????¨¢?¨¨¨ª?t?¡ä??MCP2515
  652. osDelay(100/portTICK_PERIOD_MS);
  653. CAN_WriteReg(CANCTRL,OPMODE_CONFIG |CLKOUT_ENABLED);
  654. CAN_ReadReg(CANCTRL,1,&temp);//?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  655. #ifdef USING_PRINTF
  656. //printf("[%d] CANCTRL = %#x \r\n",__LINE__,temp);
  657. #endif
  658. CAN_WriteReg(CNF1,param.baudrate);
  659. CAN_WriteReg(CNF2,0x80|PHSEG1_3TQ|PRSEG_1TQ);
  660. CAN_WriteReg(CNF3,PHSEG2_3TQ);
  661. if(param.packType == STD_PACK){
  662. /*?����???2��??��??��*/
  663. CAN_WriteReg(TXB0SIDH,0xFF&(param.TxStdIDH));//����?��?o3??��0������?������?��?????
  664. CAN_WriteReg(TXB0SIDL,0xE0&(param.TxStdIDL));//����?��?o3??��0������?������?��?�̨�??
  665. CAN_WriteReg(RXM0SIDH,0x00);
  666. CAN_WriteReg(RXM0SIDL,0x00);
  667. CAN_WriteReg(RXM1SIDH,0x00);
  668. CAN_WriteReg(RXM1SIDL,0x00);
  669. /*?����???2��??��??��*/
  670. CAN_WriteReg(RXF0SIDH,0xFF&(param.RxStdIDH[0]));
  671. CAN_WriteReg(RXF0SIDL,0xE0&(param.RxStdIDL[0]));
  672. CAN_WriteReg(RXF1SIDH,0xFF&(param.RxStdIDH[1]));
  673. CAN_WriteReg(RXF1SIDL,0xE0&(param.RxStdIDL[1]));
  674. #if 0
  675. CAN_WriteReg(RXF2SIDH,0x00);
  676. CAN_WriteReg(RXF2SIDL,0xa0);
  677. CAN_WriteReg(RXF3SIDH,0x00);
  678. CAN_WriteReg(RXF3SIDL,0x40);
  679. CAN_WriteReg(RXF4SIDH,0x00);
  680. CAN_WriteReg(RXF4SIDL,0x60);
  681. CAN_WriteReg(RXF5SIDH,0x00);
  682. CAN_WriteReg(RXF5SIDL,0x80);
  683. #else
  684. CAN_WriteReg(RXF2SIDH,0xFF&(param.RxStdIDH[2]));
  685. CAN_WriteReg(RXF2SIDL,0xE0&(param.RxStdIDL[2]));
  686. CAN_WriteReg(RXF3SIDH,0xFF&(param.RxStdIDH[3]));
  687. CAN_WriteReg(RXF3SIDL,0xE0&(param.RxStdIDL[3]));
  688. CAN_WriteReg(RXF4SIDH,0xFF&(param.RxStdIDH[4]));
  689. CAN_WriteReg(RXF4SIDL,0xE0&(param.RxStdIDL[4]));
  690. CAN_WriteReg(RXF5SIDH,0xFF&(param.RxStdIDH[5]));
  691. CAN_WriteReg(RXF5SIDL,0xE0&(param.RxStdIDL[5]));
  692. #endif
  693. CAN_WriteReg(RXB0CTRL,RXM_RCV_ALL);
  694. CAN_WriteReg(RXB0DLC,DLC_8);
  695. CAN_WriteReg(RXB1CTRL,RXM_RCV_ALL);
  696. CAN_WriteReg(RXB1DLC,DLC_8);
  697. }
  698. else if(param.packType == EXT_PACK)
  699. {
  700. /*TXB0*/
  701. CAN_WriteReg(TXB0SIDH,0xFF&(param.TxStdIDH));
  702. CAN_WriteReg(TXB0SIDL,(0xEB&(param.TxStdIDL))|0x08);
  703. CAN_WriteReg(TXB0EID8,0xFF&(param.TxExtIDH));
  704. CAN_WriteReg(TXB0EID0,0xFF&(param.TxExtIDL));
  705. /*?����???2��??��??��*/
  706. CAN_WriteReg(RXM0SIDH,0x00); //FF->00 zhengchao
  707. CAN_WriteReg(RXM0SIDL,0x00); //E3->00 zhengchao
  708. CAN_WriteReg(RXM0EID8,0x00); //FF->00 zhengchao
  709. CAN_WriteReg(RXM0EID0,0x00); //FF->00 zhengchao
  710. /*?����???2��??��??��*/
  711. CAN_WriteReg(RXF0SIDH,0xFF&(param.RxStdIDH[0]));
  712. CAN_WriteReg(RXF0SIDL,(0xEB&(param.RxStdIDL[0]))|0x08);
  713. CAN_WriteReg(RXF0EID8,0xFF&(param.RxExtIDH[0]));
  714. CAN_WriteReg(RXF0EID8,0xFF&(param.RxExtIDL[0]));
  715. CAN_WriteReg(RXF1SIDH,0xFF&(param.RxStdIDH[1]));
  716. CAN_WriteReg(RXF1SIDL,(0xEB&(param.RxStdIDL[1]))|0x08);
  717. CAN_WriteReg(RXF1EID8,0xFF&(param.RxExtIDH[1]));
  718. CAN_WriteReg(RXF1EID8,0xFF&(param.RxExtIDL[1]));
  719. CAN_WriteReg(RXF2SIDH,0xFF&(param.RxStdIDH[2]));
  720. CAN_WriteReg(RXF2SIDL,(0xEB&(param.RxStdIDL[2]))|0x08);
  721. CAN_WriteReg(RXF2EID8,0xFF&(param.RxExtIDH[2]));
  722. CAN_WriteReg(RXF2EID8,0xFF&(param.RxExtIDL[2]));
  723. CAN_WriteReg(RXF3SIDH,0xFF&(param.RxStdIDH[3]));
  724. CAN_WriteReg(RXF3SIDL,(0xEB&(param.RxStdIDL[3]))|0x08);
  725. CAN_WriteReg(RXF3EID8,0xFF&(param.RxExtIDH[3]));
  726. CAN_WriteReg(RXF3EID8,0xFF&(param.RxExtIDL[3]));
  727. CAN_WriteReg(RXF4SIDH,0xFF&(param.RxStdIDH[4]));
  728. CAN_WriteReg(RXF4SIDL,(0xEB&(param.RxStdIDL[4]))|0x08);
  729. CAN_WriteReg(RXF4EID8,0xFF&(param.RxExtIDH[4]));
  730. CAN_WriteReg(RXF4EID8,0xFF&(param.RxExtIDL[4]));
  731. CAN_WriteReg(RXF5SIDH,0xFF&(param.RxStdIDH[5]));
  732. CAN_WriteReg(RXF5SIDL,(0xEB&(param.RxStdIDL[5]))|0x08);
  733. CAN_WriteReg(RXF5EID8,0xFF&(param.RxExtIDH[5]));
  734. CAN_WriteReg(RXF5EID8,0xFF&(param.RxExtIDL[5]));
  735. CAN_WriteReg(RXB0CTRL,RXM_VALID_EXT|BUKT_ROLLOVER);
  736. CAN_WriteReg(RXB0DLC,DLC_8);
  737. CAN_WriteReg(RXB1CTRL,RXM_VALID_EXT|FILHIT1_FLTR_2);
  738. CAN_WriteReg(RXB1DLC,DLC_8);
  739. }
  740. //CAN_WriteReg(BFPCTRL,0x0F);//zhengchao20210304 add
  741. CAN_WriteReg(CANINTE,0x43); //zhengchao20210304 0x43 -> 0x03
  742. CAN_WriteReg(CANINTF,0x00);
  743. CAN_WriteReg(CANCTRL,param.mode |CLKOUT_ENABLED);//??MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º? REQOP_NORMAL|CLKOUT_ENABLED
  744. CAN_ReadReg(CANSTAT,1,&temp);//?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  745. if(param.mode !=(temp&0xE0))//?D??MCP2515¨º?¡¤?¨°??-??¨¨??y3¡ê?¡ê¨º?
  746. {
  747. CAN_WriteReg(CANCTRL,param.mode|CLKOUT_ENABLED);//?¨´¡ä???MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º?REQOP_NORMAL
  748. }
  749. }
  750. /*******************************************************************************
  751. * : HAL_Can_Sleep
  752. *
  753. *
  754. *
  755. *
  756. *
  757. *******************************************************************************/
  758. void HAL_Can_Sleep(void)
  759. {
  760. UINT8 temp=0,temp2=0,t=0;
  761. do{
  762. CAN_WriteReg(CANCTRL,OPMODE_CONFIG);
  763. CAN_WriteReg(CANINTE,WAKIE|RX0IE|RX1IE);
  764. //CAN_WriteReg(CNF3, WAKFIL);
  765. CAN_ReadReg(CANSTAT,1,&temp);
  766. CAN_WriteReg(CANCTRL,OPMODE_SLEEP |CLKOUT_DISABLED);
  767. #ifdef USING_PRINTF
  768. //printf("%s[%d] [%#x]\r\n",__FUNCTION__, __LINE__,temp);
  769. #endif
  770. if(OPMODE_SLEEP ==(temp&0xE0)){
  771. #ifdef USING_PRINTF
  772. //printf("SLEEP SUC \r\n");
  773. #endif
  774. break;
  775. }
  776. }while(t++<3);
  777. //POWER
  778. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 0);
  779. }
  780. /*******************************************************************************
  781. * o¡¥¨ºy?? : HAL_Can_Transmit
  782. * ?¨¨¨º? : CAN¡¤¡é?¨ª???¡§3¡è?¨¨¦Ì?¨ºy?Y
  783. * ¨º?¨¨? : *CAN_TX_Buf(¡äy¡¤¡é?¨ª¨ºy?Y?o3???????),len(¡äy¡¤¡é?¨ª¨ºy?Y3¡è?¨¨)
  784. * ¨º?3? : ?T
  785. * ¡¤¦Ì???¦Ì : ?T
  786. * ?¦Ì?¡Â : ?T
  787. *******************************************************************************/
  788. INT8 HAL_Can_Transmit(CAN_Msg_Type Can_TxMsg)
  789. {
  790. UINT8 tryTim,count,value,i,temp,TXBufferCase = 0;
  791. INT8 ret = 0;
  792. UINT8 TXB0CTRLvalue,TXB1CTRLvalue,TXB2CTRLvalue,CANINTFValue=0;
  793. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  794. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  795. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  796. if((TXB0CTRLvalue&TXREQ)==0)
  797. TXBufferCase = 0;
  798. else if((TXB1CTRLvalue&TXREQ)==0)
  799. TXBufferCase =1;
  800. else if((TXB2CTRLvalue&TXREQ)==0)
  801. TXBufferCase =2;
  802. switch(TXBufferCase)
  803. {
  804. case 0:
  805. {
  806. //tryTim=0;
  807. //CAN_RseadReg(TXB0CTRL,1,&value);
  808. //while((value&0x08) && (tryTim<50))//?��?��?��?3D?���䨬???��?,�̨���yTXREQ����????��?
  809. //{
  810. // CAN_ReadReg(TXB0CTRL,1,&value);
  811. // osDelay(1/portTICK_PERIOD_MS);
  812. // tryTim++;
  813. //}
  814. /*TXB0*/
  815. CAN_WriteReg(TXB0SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  816. CAN_WriteReg(TXB0SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  817. for(i=0;i<Can_TxMsg.DLC;i++)
  818. {
  819. CAN_WriteReg(TXB0D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  820. }
  821. CAN_WriteReg(TXB0DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  822. SPI_CS_Low();
  823. CAN_WriteReg(TXB0CTRL,TXREQ);//???������?������??
  824. //SPI_CS_High();
  825. ret = 0;
  826. break;
  827. }
  828. case 1:
  829. {
  830. /*TXB0*/
  831. CAN_WriteReg(TXB1SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  832. CAN_WriteReg(TXB1SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  833. for(i=0;i<Can_TxMsg.DLC;i++)
  834. {
  835. CAN_WriteReg(TXB1D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  836. }
  837. CAN_WriteReg(TXB1DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  838. SPI_CS_Low();
  839. CAN_WriteReg(TXB1CTRL,TXREQ);//???������?������??
  840. //SPI_CS_High();
  841. ret = 1;
  842. break;
  843. }
  844. case 2:
  845. {
  846. /*TXB0*/
  847. CAN_WriteReg(TXB2SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  848. CAN_WriteReg(TXB2SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  849. for(i=0;i<Can_TxMsg.DLC;i++)
  850. {
  851. CAN_WriteReg(TXB2D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  852. }
  853. CAN_WriteReg(TXB2DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  854. SPI_CS_Low();
  855. CAN_WriteReg(TXB2CTRL,TXREQ);//???������?������??
  856. //SPI_CS_High();
  857. ret = 2;
  858. break;
  859. }
  860. default:
  861. {
  862. ret = -1;
  863. break;
  864. }
  865. }
  866. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  867. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  868. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  869. tryTim = 0;
  870. while((TXB0CTRLvalue&TXREQ) && (TXB1CTRLvalue&TXREQ) && (TXB1CTRLvalue&TXREQ) && (tryTim<50))
  871. {
  872. //SPI_CS_High();
  873. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  874. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  875. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  876. osDelay(1);
  877. tryTim++;
  878. }
  879. CAN_ReadReg(CANINTF, 1, &CANINTFValue);
  880. SPI_CS_High();
  881. if((TXB0CTRLvalue&0x20)||(TXB1CTRLvalue&0x20)||(TXB2CTRLvalue&0x20)||(CANINTFValue&0x80))
  882. {
  883. ret = -1;
  884. }
  885. return ret;
  886. }
  887. /*******************************************************************************
  888. * o����y?? : HAL_Can_Receive(UINT8 *CAN_RX_Buf)
  889. * ?����? : CAN?����?��???��y?Y
  890. * ��?��? : *CAN_TX_Buf(��y?����?��y?Y?o3???????)
  891. * ��?3? : ?T
  892. * ����???�� : len(?����?��?��y?Y��?3��?��,0~8��??��)
  893. * ?��?�� : ?T
  894. *******************************************************************************/
  895. void HAL_Can_Receive(CAN_Msg_Type* CanRxMsgBuffer)
  896. {
  897. UINT8 i=0,len=0,temp=0;
  898. UINT8 SIdH,SIdL,EId8,EId0;
  899. //static UINT16 counterBuff0,counterBuff1 = 0;
  900. CAN_ReadReg(CANINTF,1,&temp);
  901. #ifdef USING_PRINTF
  902. //printf("CANINTF = 0x%x\n",temp);
  903. //USARTdrv->Send(&temp,1);
  904. #endif
  905. if(temp & 0x01) //Rx Buffer 0
  906. {
  907. /*get the id information*/
  908. CAN_ReadReg(RXB0SIDH,1,&SIdH);
  909. CAN_ReadReg(RXB0SIDL,1,&SIdL);
  910. CAN_ReadReg(RXB0EID8,1,&EId8);
  911. CAN_ReadReg(RXB0EID0,1,&EId0);
  912. CAN_ReadReg(RXB0DLC,1,&len);
  913. len = len&0x0F;
  914. CanRxMsgBuffer[0].DLC = len;
  915. if(SIdL & 0x8) // if SIdL.3 = 1, the id belongs to ExtID
  916. {
  917. (CanRxMsgBuffer[0]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  918. }
  919. else
  920. {
  921. (CanRxMsgBuffer[0]).Id = SIdH<<3 | SIdL>>5;
  922. }
  923. i = 0;
  924. while(i<len)
  925. {
  926. CAN_ReadReg(RXB0D0+i,1,&((CanRxMsgBuffer[0]).Data[i]));
  927. i++;
  928. }
  929. #ifdef USING_PRINTF1
  930. printf("buffer0 ID = %x\n",CanRxMsgBuffer[0].Id);
  931. for(i=0;i<8;i++)
  932. {
  933. printf("%x ",CanRxMsgBuffer[0].Data[i]);
  934. }
  935. printf("\n");
  936. #endif
  937. }
  938. if(temp & 0x02) //RX Buffer 1
  939. {
  940. /*get the id information*/
  941. CAN_ReadReg(RXB1SIDH,1,&SIdH);
  942. CAN_ReadReg(RXB1SIDL,1,&SIdL);
  943. CAN_ReadReg(RXB1EID8,1,&EId8);
  944. CAN_ReadReg(RXB1EID0,1,&EId0);
  945. CAN_ReadReg(RXB1DLC,1,&len);
  946. len = len & 0x0F;
  947. CanRxMsgBuffer[1].DLC = len;
  948. if(SIdL & 0x8) // SIdL.3 = 1, ExtID
  949. {
  950. (CanRxMsgBuffer[1]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  951. }
  952. else
  953. {
  954. (CanRxMsgBuffer[1]).Id = SIdH<<3 | SIdL>>5;
  955. }
  956. i = 0 ;
  957. while(i<len)
  958. {
  959. CAN_ReadReg(RXB1D0+i,1,&((CanRxMsgBuffer[1]).Data[i]));
  960. i++;
  961. }
  962. #ifdef USING_PRINTF1
  963. printf("buffer1 ID = %x\n",CanRxMsgBuffer[1].Id);
  964. for(i=0;i<8;i++)
  965. {
  966. printf("%x ",CanRxMsgBuffer[1].Data[i]);
  967. }
  968. printf("\n");
  969. #endif
  970. }
  971. CAN_WriteReg(CANINTF,0);
  972. // CAN_ReadReg(CANINTF,1,&temp);
  973. // printf("CANINTF_1 = 0x%x\n",temp);
  974. }
  975. /**
  976. \fn void CanHandleDataCallback(UINT32 event)
  977. \param[in] event spi irq event
  978. \brief base on event,handle different situation
  979. \return
  980. */
  981. void CanHandleDataCallback(UINT32 event)
  982. {
  983. if(event & ARM_SPI_EVENT_TRANSFER_COMPLETE)
  984. {
  985. }
  986. else if(event & ARM_SPI_EVENT_DATA_LOST)
  987. {
  988. }
  989. else if(event & ARM_SPI_EVENT_MODE_FAULT)
  990. {
  991. }
  992. #if 0
  993. #ifdef USING_PRINTF
  994. //printf("[%d] CanHandleDataCallback :%d\r\n",__LINE__,event);
  995. #else
  996. ECOMM_TRACE(UNILOG_PLA_APP,CAN_CB1, P_INFO, 1, "SPI event [%u] coming!",event);
  997. #endif
  998. #endif
  999. }
  1000. /**
  1001. \fn void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event)
  1002. \param[in] cb_event :
  1003. \brief init spi module
  1004. \return
  1005. */
  1006. void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event,UINT8 mode,UINT8 dataBits, UINT32 spiRate )
  1007. {
  1008. #ifdef SPI_ANALOG
  1009. gpio_pin_config_t nGpioCfg={0};
  1010. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  1011. nGpioCfg.misc.initOutput = 1;
  1012. pad_config_t padConfig;
  1013. PAD_GetDefaultConfig(&padConfig);
  1014. /*cs*/
  1015. padConfig.mux = PAD_MuxAlt0;
  1016. PAD_SetPinConfig(SPI_SSN_GPIO_PAD_ADDR, &padConfig);
  1017. PAD_SetPinPullConfig(SPI_SSN_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1018. GPIO_PinConfig(SPI_SSN_GPIO_INSTANCE, SPI_SSN_GPIO_INDEX, &nGpioCfg);
  1019. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1<<SPI_SSN_GPIO_INDEX,0);
  1020. /*
  1021. clk
  1022. */
  1023. padConfig.mux = PAD_MuxAlt0;
  1024. PAD_SetPinConfig(SPI_CLK_GPIO_PAD_ADDR, &padConfig);
  1025. PAD_SetPinPullConfig(SPI_CLK_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1026. GPIO_PinConfig(SPI_CLK_GPIO_INSTANCE, SPI_CLK_GPIO_INDEX, &nGpioCfg);
  1027. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,0);
  1028. /*mosi*/
  1029. padConfig.mux = PAD_MuxAlt0;
  1030. PAD_SetPinConfig(SPI_MOSI_GPIO_PAD_ADDR, &padConfig);
  1031. PAD_SetPinPullConfig(SPI_MOSI_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1032. GPIO_PinConfig(SPI_MOSI_GPIO_INSTANCE, SPI_MOSI_GPIO_INDEX, &nGpioCfg);
  1033. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,0);
  1034. /*miso*/
  1035. nGpioCfg.pinDirection = GPIO_DirectionInput;
  1036. nGpioCfg.misc.initOutput = 0;
  1037. padConfig.mux = PAD_MuxAlt0;
  1038. padConfig.pullSelect = PAD_PullInternal;
  1039. padConfig.pullUpEnable = PAD_PullUpDisable;
  1040. padConfig.pullDownEnable = PAD_PullDownEnable;
  1041. PAD_SetPinConfig(SPI_MISO_GPIO_PAD_ADDR, &padConfig);
  1042. GPIO_PinConfig(SPI_MISO_GPIO_INSTANCE, SPI_MISO_GPIO_INDEX, &nGpioCfg);
  1043. #else
  1044. // Initialize master spi
  1045. spiMasterDrv->Initialize(NULL);
  1046. // Power on
  1047. spiMasterDrv->PowerControl(ARM_POWER_FULL);
  1048. // Configure slave spi bus
  1049. spiMasterDrv->Control(ARM_SPI_MODE_MASTER | mode | ARM_SPI_DATA_BITS(dataBits) |ARM_SPI_MSB_LSB | ARM_SPI_SS_MASTER_SW, spiRate);
  1050. #endif
  1051. }
  1052. /**
  1053. \fn INT32 ZM01RecvParam(UINT8 *param)
  1054. \param[in]
  1055. \brief read ZM01 register
  1056. \return execution_status
  1057. */
  1058. INT32 ZM01RecvParam(UINT8 *param)
  1059. {
  1060. INT32 res = 0;
  1061. UINT8 tempBuffer = 0xaa;
  1062. if(param == NULL) return -7;
  1063. res = i2cDrvInstance->MasterTransmit(ZM01_DEVICE_ADDR, &tempBuffer, 1, true);
  1064. res = i2cDrvInstance->MasterReceive(ZM01_DEVICE_ADDR, param, 1, true);
  1065. return res;
  1066. }
  1067. /**
  1068. \fn INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1069. \param[in] addr GSENSOR register addr
  1070. \brief Write to GSENSOR register
  1071. \return
  1072. */
  1073. INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1074. {
  1075. UINT8 tempBuffer[2];
  1076. INT32 res = -1;
  1077. tempBuffer[0] = addr;
  1078. tempBuffer[1] = value;
  1079. return (i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, tempBuffer, sizeof(tempBuffer), true));
  1080. }
  1081. /**
  1082. \fn INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1083. \param[in] addr GSENSOR register addr
  1084. \brief read GSENSOR register
  1085. \return register value of GSENSOR
  1086. */
  1087. INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1088. {
  1089. INT32 res = -1;
  1090. if(len > 8 || buf == NULL) return -1;
  1091. res = i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, &reg, 1, true);
  1092. res = i2cDrvInstance->MasterReceive(GSENSOR_DEVICE_ADDR, buf, len, true);
  1093. return res;
  1094. }
  1095. /**
  1096. \fn void GsensorI2CCallback(UINT32 event)
  1097. \param[in] event : i2c irq event
  1098. \brief i2c irq event ,callback function
  1099. \return
  1100. */
  1101. void GsensorI2CCallback(UINT32 event)
  1102. {
  1103. switch(event)
  1104. {
  1105. case ARM_I2C_EVENT_TRANSFER_DONE:
  1106. break;
  1107. case ARM_I2C_EVENT_TRANSFER_INCOMPLETE:
  1108. break;
  1109. case ARM_I2C_EVENT_ADDRESS_NACK:
  1110. break;
  1111. case ARM_I2C_EVENT_BUS_ERROR:
  1112. break;
  1113. case ARM_I2C_EVENT_BUS_CLEAR:
  1114. break;
  1115. default:
  1116. break;
  1117. }
  1118. }
  1119. /**
  1120. \fn void HAL_I2C_CreateRecvTaskAndQueue(uint32_t event)
  1121. \param[in]
  1122. \brief RECV data
  1123. \return
  1124. */
  1125. void HAL_I2C_RecvControl(bool on)
  1126. {
  1127. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1128. if(on == true)
  1129. {
  1130. osEventFlagsClear(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1131. }
  1132. else
  1133. {
  1134. osEventFlagsSet(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1135. }
  1136. }
  1137. void GsensorTriggerEvent(UINT32 event ,UINT32 data)
  1138. {
  1139. osStatus_t status;
  1140. i2c_recv_msgqueue_obj_t msg={0};
  1141. msg.event = event;
  1142. msg.value = data;
  1143. status = osMessageQueuePut(i2c_recv_msgqueue, &msg, 0, 0);
  1144. if(status == osErrorResource)
  1145. {
  1146. ECOMM_TRACE(UNILOG_PLA_DRIVER, GsensorTriggerEvent_0, P_WARNING, 0, "I2C recv queue error");
  1147. }
  1148. }
  1149. static INT32 I2CEvtProcess(uint32_t evt)
  1150. {
  1151. INT32 ret;
  1152. #if SL_SC7A20_16BIT_8BIT
  1153. INT16 xyzData[7];
  1154. #else
  1155. INT8 xyzData[7];
  1156. #endif
  1157. HAL_I2C_RecvControl(true);
  1158. if(evt & I2C_INT1_REQ_BITMAP)
  1159. {
  1160. }
  1161. if(evt & I2C_INT2_REQ_BITMAP)
  1162. {
  1163. SL_SC7A20_Read_XYZ_Data(xyzData);
  1164. }
  1165. return 0;
  1166. }
  1167. static void HAL_I2C_RecvTaskEntry(void)
  1168. {
  1169. while(1)
  1170. {
  1171. uint32_t flag,mask;
  1172. osStatus_t status;
  1173. i2c_recv_msgqueue_obj_t msg;
  1174. flag = osEventFlagsWait(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG, osFlagsNoClear | osFlagsWaitAll, osWaitForever);
  1175. EC_ASSERT(flag == I2C_RECV_CONTROL_FLAG, flag, 0, 0);
  1176. status = osMessageQueueGet(i2c_recv_msgqueue, &msg, 0 , osWaitForever);
  1177. if(status == osOK)
  1178. {
  1179. mask = SaveAndSetIRQMask();
  1180. //handle data
  1181. //I2CEvtProcess(msg.event);
  1182. #ifdef USING_PRINTF
  1183. //printf("[%d]i2c recv event\r\n",__LINE__);
  1184. #else
  1185. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_D, P_INFO, 0, "i2c recv event");
  1186. #endif
  1187. RestoreIRQMask(mask);
  1188. }
  1189. }
  1190. }
  1191. static void HAL_I2C_CreateRecvTaskAndQueue(void)
  1192. {
  1193. if(g_halI2CInitFlag & HAL_I2C_RECV_TASK_QUEUE_CREATED)
  1194. {
  1195. return;
  1196. }
  1197. /*
  1198. for task create
  1199. */
  1200. osThreadId_t threadId;
  1201. osThreadAttr_t task_attr;
  1202. /*for msg queue create*/
  1203. osMessageQueueAttr_t queue_attr;
  1204. g_i2CRecvFlag = osEventFlagsNew(NULL);
  1205. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1206. memset(&queue_attr, 0, sizeof(queue_attr));
  1207. queue_attr.cb_mem = &i2c_recv_queue_cb;
  1208. queue_attr.cb_size = sizeof(i2c_recv_queue_cb);
  1209. queue_attr.mq_mem = i2c_recv_queue_buf;
  1210. queue_attr.mq_size = sizeof(i2c_recv_queue_buf);
  1211. i2c_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE,sizeof(i2c_recv_msgqueue_obj_t), &queue_attr);
  1212. EC_ASSERT(i2c_recv_msgqueue, i2c_recv_msgqueue, 0, 0);
  1213. memset(& task_attr, 0, sizeof(task_attr));
  1214. memset(i2c_recv_task_stack, 0xA5, I2C_RECV_TASK_STACK_SIZE);
  1215. task_attr.name = "GsensorRecv";
  1216. task_attr.stack_size = I2C_RECV_TASK_STACK_SIZE;
  1217. task_attr.stack_mem = i2c_recv_task_stack;
  1218. task_attr.priority = osPriorityNormal;
  1219. task_attr.cb_mem = &i2c_recv_task;
  1220. task_attr.cb_size = sizeof(StaticTask_t);
  1221. threadId = osThreadNew(HAL_I2C_RecvTaskEntry, NULL, &task_attr);
  1222. EC_ASSERT(threadId, threadId, 0, 0);
  1223. g_halI2CInitFlag |= HAL_I2C_RECV_TASK_QUEUE_CREATED;
  1224. }
  1225. /**
  1226. \fn void Usart1Handler(uint8_t* strPtr, uint16_t strLen)
  1227. \param[in] PrintfSendStr for usart port;
  1228. \brief config usart port
  1229. \return
  1230. */
  1231. void PrintfSendStr(const UINT8 *format, ...)
  1232. {
  1233. va_list args;
  1234. UINT8 buf[128+1]={0};
  1235. va_start(args, format);
  1236. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  1237. va_end(args);
  1238. HAL_UART_SendStr(PORT_USART_1,buf,strlen(buf));
  1239. }
  1240. #define PRINTF_DATA_RECV_BUFFER_SIZE (64)
  1241. uint8_t printf_uart_recv_buf[PRINTF_DATA_RECV_BUFFER_SIZE];
  1242. /**
  1243. \fn void PrintfDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1244. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1245. \ dataPtr : Point to receive data buff
  1246. \ dataLen : Received data length
  1247. \brief i2c irq event ,callback function
  1248. \return
  1249. */
  1250. void PrintfDataRecvCallback(UINT32 event, void* dataPtr, UINT32 dataLen)
  1251. {
  1252. //ECOMM_TRACE(UNILOG_PLA_APP, PrintfDataRecvCallback, P_SIG, 3, "event=%d, dataPtr=%s, dataLen=%d",event,dataPtr,dataLen);
  1253. slpManStartWaitATTimer();
  1254. }
  1255. void printfPostSendCallback(hal_uart_send_msg_type_t msgType, void* dataPtr, uint32_t dataLen){
  1256. // ECOMM_TRACE(UNILOG_PLA_APP, printfPostSendCallback, P_SIG, 3, "msgType=%d, dataPtr=%s, dataLen=%d",msgType,dataPtr,dataLen);
  1257. }
  1258. /**
  1259. \fn void Usart1Handler(UINT32 baudRate)
  1260. \param[in] baudRate for usart port;
  1261. \brief config usart port
  1262. \return
  1263. */
  1264. void Usart1Handler(UINT32 baudRate)
  1265. {
  1266. hal_uart_config_t halUartConfig = {0};
  1267. hal_uart_hardware_config_t hwConfig = {
  1268. ARM_POWER_FULL,
  1269. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1270. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1271. ARM_USART_FLOW_CONTROL_NONE,
  1272. baudRate
  1273. };
  1274. halUartConfig.uartDriverHandler = printfHandle;
  1275. halUartConfig.recv_cb = PrintfDataRecvCallback;
  1276. halUartConfig.recvBuffPtr = printf_uart_recv_buf;
  1277. halUartConfig.recvBuffSize = PRINTF_DATA_RECV_BUFFER_SIZE;
  1278. halUartConfig.post_send_cb = printfPostSendCallback;
  1279. HAL_UART_InitHandler(PORT_USART_1, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1280. HAL_UART_RecvFlowControl(false);
  1281. }
  1282. /**
  1283. \fn void GsensorI2CCallback(uint32_t event)
  1284. \param[in] event : i2c irq event
  1285. \brief i2c irq event ,callback function
  1286. \return
  1287. */
  1288. void GsensorI2CHandler(ARM_I2C_SignalEvent_t cb_event)
  1289. {
  1290. // Initialize with callback
  1291. i2cDrvInstance->Initialize(cb_event);
  1292. // Power on
  1293. i2cDrvInstance->PowerControl(ARM_POWER_FULL);
  1294. // Configure I2C bus
  1295. i2cDrvInstance->Control(ARM_I2C_BUS_SPEED, ARM_I2C_BUS_SPEED_STANDARD);
  1296. i2cDrvInstance->Control(ARM_I2C_BUS_CLEAR, 0);
  1297. HAL_I2C_CreateRecvTaskAndQueue();
  1298. #ifdef USING_PRINTF
  1299. //printf("[%d] i2c config ok\r\n",__LINE__);
  1300. #else
  1301. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_I, P_INFO, 0, "i2c config ok");
  1302. #endif
  1303. }
  1304. /**
  1305. \fn void GPSSendStr(uint8_t* strPtr, uint16_t strLen)
  1306. \param[in] strPtr for gps usart port;
  1307. \brief
  1308. \return
  1309. */
  1310. void GPSSendStr(uint8_t* strPtr, uint16_t strLen)
  1311. {
  1312. HAL_UART_SendStr(PORT_USART_2,strPtr,strLen);
  1313. }
  1314. /**
  1315. \fn void GpsDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1316. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1317. \ dataPtr : Point to receive data buff
  1318. \ dataLen : Received data length
  1319. \brief i2c irq event ,callback function
  1320. \return
  1321. */
  1322. void GpsDataRecvCallback(UINT32 event, void* dataPtr, UINT32 dataLen)
  1323. {
  1324. if((event == ARM_USART_EVENT_RX_TIMEOUT) || (event == ARM_USART_EVENT_RECEIVE_COMPLETE)){
  1325. #ifdef USING_PRINTF
  1326. // //printf("GpsDataRecvCallback [%d] %s\r\n",dataLen,dataPtr);
  1327. #endif
  1328. if(gpsHandle!=NULL && dataLen>0){
  1329. gpsReqMsg gpsInfo;
  1330. gpsInfo.dataPtr=malloc(dataLen+1);
  1331. if(gpsInfo.dataPtr){
  1332. memcpy(gpsInfo.dataPtr,dataPtr,dataLen);
  1333. gpsInfo.len=dataLen;
  1334. osMessageQueuePut(gpsHandle, &gpsInfo, 0, 2000);
  1335. }
  1336. }
  1337. }
  1338. slpManStartWaitATTimer();
  1339. }
  1340. /**
  1341. \fn void GPSUsartHandler(ARM_DRIVER_USART * uartDriverHandler, uint32_t baudRate)
  1342. \param[in] baudRate for gps usart port;
  1343. \brief config gps usart port
  1344. \return
  1345. */
  1346. void GPSUsartHandler(UINT32 baudRate)
  1347. {
  1348. hal_uart_config_t halUartConfig = {0};
  1349. hal_uart_hardware_config_t hwConfig = {
  1350. ARM_POWER_FULL,
  1351. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1352. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1353. ARM_USART_FLOW_CONTROL_NONE,
  1354. baudRate
  1355. };
  1356. halUartConfig.uartDriverHandler = usartHandle;
  1357. halUartConfig.recv_cb = GpsDataRecvCallback;
  1358. halUartConfig.recvBuffPtr = gps_uart_recv_buf;
  1359. halUartConfig.recvBuffSize = GPS_DATA_RECV_BUFFER_SIZE;
  1360. HAL_UART_InitHandler(PORT_USART_2, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1361. HAL_UART_RecvFlowControl(false);
  1362. }
  1363. /**
  1364. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1365. \param[in] req : NTCvalue
  1366. \brief
  1367. \return Resvalue
  1368. */
  1369. static INT32 AdcGetRes(UINT32 NTCvalue){
  1370. UINT32 Resvalue;
  1371. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1372. Resvalue=1000000;
  1373. else{
  1374. Resvalue=(long long)ADC_ChannelAioRes*(long long)NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1375. }
  1376. return Resvalue;
  1377. }
  1378. /**
  1379. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1380. \param[in] req : NTCvalue
  1381. \brief
  1382. \return Resvalue
  1383. */
  1384. static INT32 AdcGetResFromInres(UINT32 NTCvalue){
  1385. UINT32 Resvalue,ResvalueCount;
  1386. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1387. ResvalueCount=1000000;
  1388. else{
  1389. ResvalueCount=ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1390. }
  1391. #ifdef USING_PRINTF
  1392. //printf("%s[%d][%d][%d]\r\n",__FUNCTION__, __LINE__,ADC_InsideRES,ResvalueCount);
  1393. #endif
  1394. if(ResvalueCount>=ADC_InsideRES)
  1395. Resvalue=1000000;
  1396. else
  1397. Resvalue=(long long)ADC_InsideRES*(long long)ResvalueCount/(ADC_InsideRES-ResvalueCount);
  1398. #ifdef USING_PRINTF
  1399. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,Resvalue);
  1400. #endif
  1401. return Resvalue;
  1402. }
  1403. /**
  1404. \fn INT32 AdcVbatCali(UINT32 NTCvalue)
  1405. \param[in] req : NTCvalue
  1406. \brief
  1407. \return Resvalue
  1408. */
  1409. static INT32 AdcVbatCali(UINT32 NTCvalue){
  1410. UINT32 Resvalue;
  1411. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1412. Resvalue=1000000;
  1413. else{
  1414. Resvalue=(long long)(ADC_ChannelAioRes+ADC_CALIBRATION_VALUE)*(long long)NTCvalue/ADC_CALIBRATION_VALUE; //ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1415. }
  1416. if(Resvalue<1300&&Resvalue>1100)
  1417. ADC_ChannelAioVbat=Resvalue;
  1418. return Resvalue;
  1419. }
  1420. /**
  1421. \fn INT32 AdcInresCali(UINT32 NTCvalue)
  1422. \param[in] req : NTCvalue
  1423. \brief
  1424. \return Resvalue
  1425. */
  1426. static INT32 AdcInresCali(UINT32 NTCvalue){
  1427. UINT32 Resvalue,ResvalueCount;
  1428. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1429. ResvalueCount=1000000;
  1430. else{
  1431. ResvalueCount=ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1432. }
  1433. #ifdef USING_PRINTF
  1434. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,ResvalueCount);
  1435. #endif
  1436. if(ResvalueCount>=ADC_CALIBRATION_VALUE)
  1437. Resvalue=1000000;
  1438. else
  1439. Resvalue=(long long)ADC_CALIBRATION_VALUE*(long long)ResvalueCount/(ADC_CALIBRATION_VALUE-ResvalueCount);
  1440. if(Resvalue>=200000&&Resvalue<1000000)
  1441. ADC_InsideRES=Resvalue;
  1442. return Resvalue;
  1443. }
  1444. /**
  1445. \fn INT32 AdcSendReq(UINT32 req,UINT32 * param ,UINT32 timeout)
  1446. \param[in] req : ADC_REQ_BITMAP_VBAT ADC_REQ_BITMAP_TEMP; timeout = 0 at irq ,otherwize equal to ADC_MSG_TIMEOUT
  1447. \brief return bat value ,trigger deinit
  1448. \return 1 FAIL , 0 OK
  1449. */
  1450. INT32 AdcSendReq(UINT32 req,UINT32 * param , UINT8 len ,UINT32 timeout)
  1451. {
  1452. INT32 ret;
  1453. adcReqMsg ReqMsg;
  1454. ReqMsg.request = req;
  1455. ReqMsg.param[NTC_Channel1] = ReqMsg.param[NTC_Channel2] = ReqMsg.param[NTC_Channel30] = ReqMsg.param[NTC_Channel31] = ReqMsg.param[NTC_Channel4] = ReqMsg.param[NTC_Channel4_InresCali] =ADC_AioResDivRatioDefault ;
  1456. ret = osMessageQueuePut(adcMsgHandle, &ReqMsg, 0, timeout);
  1457. if(ret != osOK)
  1458. {
  1459. return ret;
  1460. }
  1461. else
  1462. {
  1463. ret = osEventFlagsWait(adcTrigerHandle, ADC_RECV_CONTROL_FLAG, osFlagsWaitAll, timeout);
  1464. //to do
  1465. switch(req)
  1466. {
  1467. case ADC_REQ_BITMAP_VBAT:
  1468. param[0] = gNtcDev.NTCvalue[0];
  1469. break;
  1470. case ADC_REQ_BITMAP_TEMP:
  1471. param[0] = gNtcDev.NTCvalue[1];
  1472. break;
  1473. case ADC_REQ_BITMAP_CH1:
  1474. param[0] = AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel1]);
  1475. break;
  1476. case ADC_REQ_BITMAP_CH2:
  1477. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel2]);
  1478. break;
  1479. case ADC_REQ_BITMAP_CH30:
  1480. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel30]);
  1481. break;
  1482. case ADC_REQ_BITMAP_CH31:
  1483. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel31]);
  1484. break;
  1485. case ADC_REQ_BITMAP_CH4:
  1486. param[0] = gNtcDev.NTCvalue[2+NTC_Channel4]*101+600;
  1487. break;
  1488. case ADC_REQ_BITMAP_VBAT_CALI:
  1489. param[0] = AdcVbatCali(gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]);
  1490. break;
  1491. case ADC_REQ_BITMAP_INRES_CALI:
  1492. param[0] = AdcInresCali(gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]);
  1493. break;
  1494. }
  1495. osEventFlagsClear(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  1496. return ret;
  1497. }
  1498. }
  1499. /**
  1500. \fn static void ADC_VbatChannelCallback(uint32_t result)
  1501. \param[in]
  1502. \brief return bat value ,trigger deinit
  1503. \return
  1504. */
  1505. static void ADC_VbatChannelCallback(uint32_t result)
  1506. {
  1507. vbatChannelResult = result;
  1508. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT);
  1509. }
  1510. /**
  1511. \fn static void ADC_ThermalChannelCallback(uint32_t result)
  1512. \param[in]
  1513. \brief return thermal value ,trigger deinit
  1514. \return
  1515. */
  1516. static void ADC_ThermalChannelCallback(uint32_t result)
  1517. {
  1518. thermalChannelResult = result;
  1519. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_TEMP);
  1520. }
  1521. static void ADC_NTC1ChannelCallback(uint32_t result)
  1522. {
  1523. NTCChannelResult[NTC_Channel1] = result;
  1524. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH1);
  1525. }
  1526. static void ADC_NTC2ChannelCallback(uint32_t result)
  1527. {
  1528. NTCChannelResult[NTC_Channel2] = result;
  1529. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH2);
  1530. }
  1531. static void ADC_NTC30ChannelCallback(uint32_t result)
  1532. {
  1533. NTCChannelResult[NTC_Channel30] = result;
  1534. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH30);
  1535. }
  1536. static void ADC_NTC31ChannelCallback(uint32_t result)
  1537. {
  1538. NTCChannelResult[NTC_Channel31] = result;
  1539. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH31);
  1540. }
  1541. static void ADC_NTC4ChannelCallback(uint32_t result)
  1542. {
  1543. NTCChannelResult[NTC_Channel4] = result;
  1544. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH4);
  1545. }
  1546. static void ADC_NTCVbatCaliChannelCallback(uint32_t result)
  1547. {
  1548. NTCChannelResult[NTC_Channel4_VbatCali] = result;
  1549. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT_CALI);
  1550. }
  1551. static void ADC_NTCInresCaliChannelCallback(uint32_t result)
  1552. {
  1553. NTCChannelResult[NTC_Channel4_InresCali] = result;
  1554. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_INRES_CALI);
  1555. }
  1556. /**
  1557. \fn void AdcProcess(void* arg)
  1558. \param[in]
  1559. \brief handle adc init ,deinit and convert process
  1560. \return
  1561. */
  1562. static void AdcProcess(void* arg)
  1563. {
  1564. adcReqMsg regMsg;
  1565. INT32 ret;
  1566. while(1)
  1567. {
  1568. /*
  1569. */
  1570. osMessageQueueGet(adcMsgHandle, &regMsg, 0, osWaitForever);
  1571. /*
  1572. handle event
  1573. */
  1574. adc_config_t adcConfig;
  1575. INT8 times=1;
  1576. ADC_GetDefaultConfig(&adcConfig);
  1577. osEventFlagsClear(adcEvtHandle, regMsg.request);
  1578. retry:
  1579. if(regMsg.request & ADC_REQ_BITMAP_VBAT)
  1580. {
  1581. adcConfig.channelConfig.vbatResDiv = ADC_VbatResDivRatio3Over16;
  1582. ADC_ChannelInit(ADC_ChannelVbat, ADC_UserAPP, &adcConfig, ADC_VbatChannelCallback);
  1583. //delay_us(1000*1000);
  1584. ADC_StartConversion(ADC_ChannelVbat, ADC_UserAPP);
  1585. }
  1586. else if(regMsg.request & ADC_REQ_BITMAP_TEMP)
  1587. {
  1588. adcConfig.channelConfig.thermalInput = ADC_ThermalInputVbat;
  1589. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_ThermalChannelCallback);
  1590. //delay_us(1000*1000);
  1591. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1592. }
  1593. else if(regMsg.request & ADC_REQ_BITMAP_CH1)
  1594. {
  1595. if(regMsg.param[NTC_Channel1]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel1]<=ADC_AioResDivRatio1Over16){
  1596. #ifdef USING_PRINTF
  1597. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1598. #endif
  1599. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel1];
  1600. }else{
  1601. #ifdef USING_PRINTF
  1602. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1603. #endif
  1604. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1605. }
  1606. ADC_ChannelInit(ADC_ChannelAio1, ADC_UserAPP, &adcConfig, ADC_NTC1ChannelCallback);
  1607. //delay_us(1000*1000);
  1608. ADC_StartConversion(ADC_ChannelAio1, ADC_UserAPP);
  1609. }
  1610. else if(regMsg.request & ADC_REQ_BITMAP_CH2)
  1611. {
  1612. if(regMsg.param[NTC_Channel2]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel2]<=ADC_AioResDivRatio1Over16){
  1613. #ifdef USING_PRINTF
  1614. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1615. #endif
  1616. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel2];
  1617. }else{
  1618. #ifdef USING_PRINTF
  1619. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1620. #endif
  1621. }
  1622. ADC_ChannelInit(ADC_ChannelAio2, ADC_UserAPP, &adcConfig, ADC_NTC2ChannelCallback);
  1623. //delay_us(1000*1000);
  1624. ADC_StartConversion(ADC_ChannelAio2, ADC_UserAPP);
  1625. }
  1626. else if(regMsg.request & ADC_REQ_BITMAP_CH30)
  1627. {
  1628. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  1629. if(regMsg.param[NTC_Channel30]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel30]<=ADC_AioResDivRatio1Over16){
  1630. #ifdef USING_PRINTF
  1631. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1632. #endif
  1633. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel30];
  1634. }else{
  1635. #ifdef USING_PRINTF
  1636. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1637. #endif
  1638. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1639. }
  1640. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC30ChannelCallback);
  1641. //osDelay(2000/portTICK_PERIOD_MS);
  1642. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1643. }
  1644. else if(regMsg.request & ADC_REQ_BITMAP_CH31)
  1645. {
  1646. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 1<<(GPIO_AIO3_SEL%16));
  1647. if(regMsg.param[NTC_Channel31]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel31]<=ADC_AioResDivRatio1Over16){
  1648. #ifdef USING_PRINTF
  1649. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1650. #endif
  1651. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel31];
  1652. }else{
  1653. #ifdef USING_PRINTF
  1654. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1655. #endif
  1656. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1657. }
  1658. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC31ChannelCallback);
  1659. //osDelay(2000/portTICK_PERIOD_MS);
  1660. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1661. }
  1662. else if(regMsg.request & ADC_REQ_BITMAP_CH4)
  1663. {
  1664. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1665. ADC_GetDefaultConfig(&adcConfig);
  1666. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1667. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTC4ChannelCallback);
  1668. osDelay(100/portTICK_PERIOD_MS); //zhengchao 20210312
  1669. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1670. }
  1671. else if(regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  1672. {
  1673. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1674. ADC_GetDefaultConfig(&adcConfig);
  1675. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1676. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTCVbatCaliChannelCallback);
  1677. //osDelay(2000/portTICK_PERIOD_MS);
  1678. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1679. }
  1680. else if(regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  1681. {
  1682. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1683. if(regMsg.param[NTC_Channel4_InresCali]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel4_InresCali]<=ADC_AioResDivRatio1Over16){
  1684. #ifdef USING_PRINTF
  1685. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1686. #endif
  1687. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel4_InresCali];
  1688. }else{
  1689. #ifdef USING_PRINTF
  1690. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1691. #endif
  1692. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1693. }
  1694. ADC_ChannelInit(ADC_ChannelAio4, ADC_UserAPP, &adcConfig, ADC_NTCInresCaliChannelCallback);
  1695. //osDelay(2000/portTICK_PERIOD_MS);
  1696. ADC_StartConversion(ADC_ChannelAio4, ADC_UserAPP);
  1697. }
  1698. ret = osEventFlagsWait(adcEvtHandle, regMsg.request, osFlagsWaitAll, ADC_GET_RESULT_TIMOUT);
  1699. if(regMsg.request & ADC_REQ_BITMAP_VBAT)
  1700. {
  1701. ADC_ChannelDeInit(ADC_ChannelVbat, ADC_UserAPP);
  1702. gNtcDev.NTCvalue[0] = HAL_ADC_CalibrateRawCode(vbatChannelResult) * 16 / 3;
  1703. }
  1704. else if(regMsg.request & ADC_REQ_BITMAP_TEMP)
  1705. {
  1706. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1707. gNtcDev.NTCvalue[1] = HAL_ADC_ConvertThermalRawCodeToTemperature(thermalChannelResult);
  1708. }
  1709. else if(regMsg.request & ADC_REQ_BITMAP_CH1)
  1710. {
  1711. ADC_ChannelDeInit(ADC_ChannelAio1, ADC_UserAPP);
  1712. if(times==1){
  1713. gNtcDev.NTCvalue[2+NTC_Channel1]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1])*REV_AioResDivRatioDefault;
  1714. #ifdef USING_PRINTF
  1715. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel1]);
  1716. #endif
  1717. if(gNtcDev.NTCvalue[2+NTC_Channel1]>(NTC_FullAioValue-10)){
  1718. regMsg.param[NTC_Channel1]=ADC_AioResDivRatioExtra;
  1719. times++;
  1720. goto retry;
  1721. }
  1722. }else{
  1723. gNtcDev.NTCvalue[2+NTC_Channel1]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1])*REV_AioResDivRatioExtra;
  1724. }
  1725. }
  1726. else if(regMsg.request & ADC_REQ_BITMAP_CH2)
  1727. {
  1728. ADC_ChannelDeInit(ADC_ChannelAio2, ADC_UserAPP);
  1729. if(times==1){
  1730. gNtcDev.NTCvalue[2+NTC_Channel2]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2])*REV_AioResDivRatioDefault;
  1731. #ifdef USING_PRINTF
  1732. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel2]);
  1733. #endif
  1734. if(gNtcDev.NTCvalue[2+NTC_Channel2]>(NTC_FullAioValue-10)){
  1735. regMsg.param[NTC_Channel2]=ADC_AioResDivRatioExtra;
  1736. times++;
  1737. goto retry;
  1738. }
  1739. }else{
  1740. gNtcDev.NTCvalue[2+NTC_Channel2]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2])*REV_AioResDivRatioExtra;
  1741. }
  1742. }
  1743. else if(regMsg.request & ADC_REQ_BITMAP_CH30)
  1744. {
  1745. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 1<<(GPIO_AIO3_SEL%16));
  1746. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1747. if(times==1){
  1748. gNtcDev.NTCvalue[2+NTC_Channel30]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30])*REV_AioResDivRatioDefault;
  1749. #ifdef USING_PRINTF
  1750. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel30]);
  1751. #endif
  1752. if(gNtcDev.NTCvalue[2+NTC_Channel30]>(NTC_FullAioValue-10)){
  1753. regMsg.param[NTC_Channel30]=ADC_AioResDivRatioExtra;
  1754. times++;
  1755. goto retry;
  1756. }
  1757. }else{
  1758. gNtcDev.NTCvalue[2+NTC_Channel30]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30])*REV_AioResDivRatioExtra;
  1759. }
  1760. }
  1761. else if(regMsg.request & ADC_REQ_BITMAP_CH31)
  1762. {
  1763. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  1764. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1765. if(times==1){
  1766. gNtcDev.NTCvalue[2+NTC_Channel31]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31])*REV_AioResDivRatioDefault;
  1767. #ifdef USING_PRINTF
  1768. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel31]);
  1769. #endif
  1770. if(gNtcDev.NTCvalue[2+NTC_Channel31]>(NTC_FullAioValue-10)){
  1771. regMsg.param[NTC_Channel31]=ADC_AioResDivRatioExtra;
  1772. times++;
  1773. goto retry;
  1774. }
  1775. }else{
  1776. gNtcDev.NTCvalue[2+NTC_Channel31]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31])*REV_AioResDivRatioExtra;
  1777. }
  1778. }
  1779. else if(regMsg.request & ADC_REQ_BITMAP_CH4)
  1780. {
  1781. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1782. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1783. gNtcDev.NTCvalue[2+NTC_Channel4]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4]);
  1784. }
  1785. else if(regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  1786. {
  1787. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1788. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1789. if(times==1){
  1790. gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  1791. #ifdef USING_PRINTF
  1792. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]);
  1793. #endif
  1794. if(gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]>(NTC_FullAioValue-10)){
  1795. regMsg.param[NTC_Channel4_VbatCali]=ADC_AioResDivRatioExtra;
  1796. times++;
  1797. goto retry;
  1798. }
  1799. }else{
  1800. gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  1801. }
  1802. }
  1803. else if(regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  1804. {
  1805. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1806. ADC_ChannelDeInit(ADC_ChannelAio4, ADC_UserAPP);
  1807. if(times==1){
  1808. gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali])*REV_AioResDivRatioDefault;
  1809. #ifdef USING_PRINTF
  1810. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]);
  1811. #endif
  1812. if(gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]>(NTC_FullAioValue-10)){
  1813. regMsg.param[NTC_Channel4_InresCali]=ADC_AioResDivRatioExtra;
  1814. times++;
  1815. goto retry;
  1816. }
  1817. }else{
  1818. gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali])*REV_AioResDivRatioExtra;
  1819. }
  1820. }
  1821. osEventFlagsSet(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  1822. }
  1823. }
  1824. /**
  1825. \fn INT32 AdcTaskInit(void)
  1826. \param[in]
  1827. \brief create task for checking bat level
  1828. \return
  1829. */
  1830. INT32 AdcTaskInit(void)
  1831. {
  1832. gpio_pin_config_t config;
  1833. config.pinDirection = GPIO_DirectionOutput;
  1834. config.misc.initOutput = 1;
  1835. pad_config_t padConfig;
  1836. PAD_GetDefaultConfig(&padConfig);
  1837. //power
  1838. padConfig.mux = PAD_MuxAlt0;
  1839. PAD_SetPinConfig(11, &padConfig);
  1840. GPIO_PinConfig(0, 0, &config);
  1841. GPIO_PinWrite(0, 1, 1);
  1842. padConfig.mux = PAD_MuxAlt7;
  1843. PAD_SetPinConfig(9, &padConfig);
  1844. PAD_SetPinConfig(10, &padConfig);
  1845. GPIO_PinConfig(GPIO_AIO3_SEL/16, GPIO_AIO3_SEL%16, &config);
  1846. GPIO_PinConfig(GPIO_AIO4_SEL/16, GPIO_AIO4_SEL%16, &config);
  1847. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  1848. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1849. memset(&gNtcDev , 0 ,sizeof(NtcResult_t));
  1850. if(adcMsgHandle == NULL)
  1851. {
  1852. adcMsgHandle = osMessageQueueNew(ADC_MSG_MAX_NUM,sizeof(adcReqMsg), NULL);
  1853. if(adcMsgHandle == NULL)
  1854. return 1;
  1855. }
  1856. if(adcTrigerHandle == NULL)
  1857. {
  1858. adcTrigerHandle = osEventFlagsNew(NULL);
  1859. if(adcTrigerHandle == NULL)
  1860. return 1;
  1861. }
  1862. if(adcEvtHandle == NULL)
  1863. {
  1864. adcEvtHandle = osEventFlagsNew(NULL);
  1865. if(adcEvtHandle == NULL)
  1866. return 1;
  1867. }
  1868. if(adcTaskHandle == NULL)
  1869. {
  1870. osThreadAttr_t task_attr;
  1871. memset(&task_attr , 0 , sizeof(task_attr));
  1872. task_attr.name = "batAdc";
  1873. task_attr.priority = osPriorityNormal;
  1874. task_attr.cb_mem = &adcTask;
  1875. task_attr.cb_size = sizeof(StaticTask_t);
  1876. task_attr.stack_mem = adcTaskStack;
  1877. task_attr.stack_size =ADC_TASK_STACK_SIZE;
  1878. memset(& adcTaskStack, 0xa5, ADC_TASK_STACK_SIZE);
  1879. adcTaskHandle = osThreadNew(AdcProcess , NULL,&task_attr);
  1880. if(adcTaskHandle == NULL)
  1881. return 1;
  1882. }
  1883. return 0;
  1884. }
  1885. /**
  1886. \fn void PowerPinConfig(IOType iotype)
  1887. \param[in]
  1888. \brief config PWR pin to gpiol
  1889. \return
  1890. */
  1891. void PowerPinConfig(IOType iotype)
  1892. {
  1893. gpio_pin_config_t config;
  1894. config.pinDirection = GPIO_DirectionOutput;
  1895. config.misc.initOutput = 1;
  1896. pad_config_t padConfig;
  1897. PAD_GetDefaultConfig(&padConfig);
  1898. if(iotype == AON_IO)
  1899. {
  1900. padConfig.mux = PAD_MuxAlt0;
  1901. PAD_SetPinConfig(35, &padConfig);
  1902. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  1903. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  1904. PAD_SetPinConfig(31, &padConfig);
  1905. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  1906. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1 << AON_GPS_POWER2);
  1907. PAD_SetPinConfig(32, &padConfig);
  1908. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  1909. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 1 << AON_RELAY_DRV);
  1910. PAD_SetPinConfig(35, &padConfig);
  1911. GPIO_PinConfig(1, AON_WAKEUP, &config);
  1912. GPIO_PinWrite(1, 1 << AON_WAKEUP, 1 << AON_WAKEUP);
  1913. padConfig.mux = PAD_MuxAlt7;
  1914. PAD_SetPinConfig(5, &padConfig);
  1915. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  1916. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  1917. #if 1
  1918. padConfig.mux = PAD_MuxAlt7;
  1919. padConfig.pullSelect = PAD_PullInternal;
  1920. padConfig.pullUpEnable = PAD_PullUpEnable;
  1921. padConfig.pullDownEnable = PAD_PullDownDisable;
  1922. PAD_SetPinConfig(8, &padConfig);
  1923. config.pinDirection = GPIO_DirectionInput;
  1924. config.misc.initOutput = 0;
  1925. GPIO_PinConfig(1, FEM_GPS_PPS, &config);
  1926. #else
  1927. padConfig.mux = PAD_MuxAlt7;
  1928. PAD_SetPinConfig(8, &padConfig);
  1929. GPIO_PinWrite(1, 1 << FEM_GPS_PPS, 1 << FEM_GPS_PPS);
  1930. #endif
  1931. }
  1932. else
  1933. {
  1934. /*Normal IO*/
  1935. #if 0
  1936. GPIO_PinConfig(0, GPIO_MOS_DRV1, &config);
  1937. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV1, 1 << GPIO_MOS_DRV1);
  1938. GPIO_PinConfig(0, GPIO_MOS_DRV2, &config);
  1939. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV2, 1 << GPIO_MOS_DRV2);
  1940. #endif
  1941. padConfig.mux = PAD_MuxAlt0;
  1942. PAD_SetPinConfig(28, &padConfig);
  1943. GPIO_PinConfig(0, GPIO_POWER_LED, &config);
  1944. GPIO_PinWrite(0, 1 << GPIO_POWER_LED, 1 << GPIO_POWER_LED);
  1945. }
  1946. }
  1947. /**
  1948. \fn void relayConfigInit(void)
  1949. \param[in]
  1950. \brief init the relay, while switch on default
  1951. \return
  1952. */
  1953. void relayConfigInit()
  1954. {
  1955. gpio_pin_config_t config;
  1956. config.pinDirection = GPIO_DirectionOutput;
  1957. config.misc.initOutput = 1;
  1958. pad_config_t padConfig;
  1959. PAD_GetDefaultConfig(&padConfig);
  1960. PAD_SetPinConfig(32, &padConfig);
  1961. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  1962. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //the relay default is off(disconnected)
  1963. printf("switch off\n");
  1964. }
  1965. /**
  1966. \fn void relayControl(BOOL onOrOff)
  1967. \param[in] onOrOff
  1968. \brief switch the relay on or off
  1969. \return
  1970. */
  1971. void relayControl(BOOL onOrOff)
  1972. {
  1973. if(onOrOff == TRUE)
  1974. {
  1975. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 1 << AON_RELAY_DRV); //switch on
  1976. printf("switcht on\n");
  1977. }
  1978. else
  1979. {
  1980. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //switch off
  1981. printf("switch off\n");
  1982. }
  1983. }
  1984. /**
  1985. \fn void posGGAReset(void)
  1986. \param[in]
  1987. \brief reset gps
  1988. \return
  1989. */
  1990. void posGGAReset(void)
  1991. {
  1992. gpio_pin_config_t config;
  1993. config.pinDirection = GPIO_DirectionOutput;
  1994. config.misc.initOutput = 1;
  1995. pad_config_t padConfig;
  1996. PAD_GetDefaultConfig(&padConfig);
  1997. padConfig.mux = PAD_MuxAlt7;
  1998. PAD_SetPinConfig(5, &padConfig);
  1999. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2000. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 0);
  2001. osDelay(1000/portTICK_PERIOD_MS);
  2002. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2003. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  2004. config.pinDirection = GPIO_DirectionInput;
  2005. config.misc.initOutput = 0;
  2006. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2007. }
  2008. /**
  2009. \fn void GPSPowerCtr(bool )
  2010. \param[in]
  2011. \brief reset gps
  2012. \return
  2013. */
  2014. void GPSPowerCtr(bool on)
  2015. {
  2016. gpio_pin_config_t config;
  2017. config.pinDirection = GPIO_DirectionOutput;
  2018. config.misc.initOutput = 1;
  2019. pad_config_t padConfig;
  2020. PAD_GetDefaultConfig(&padConfig);
  2021. padConfig.mux = PAD_MuxAlt0;
  2022. PAD_SetPinConfig(35, &padConfig);
  2023. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  2024. PAD_SetPinConfig(31, &padConfig);
  2025. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  2026. if(on){
  2027. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 0);
  2028. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 1 << AON_GPS_POWER1);
  2029. }else{
  2030. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1<<AON_GPS_POWER2);
  2031. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  2032. }
  2033. }
  2034. /**
  2035. \fn void posGGAServiceStart(QueueHandle_t handle)
  2036. \param[in]
  2037. \brief powr on gps
  2038. \return
  2039. */
  2040. INT32 posGGAServiceStart(QueueHandle_t handle)
  2041. {
  2042. if(handle == NULL){
  2043. return -1;
  2044. }else{
  2045. GPSPowerCtr(true);
  2046. gpsHandle = handle;
  2047. return 0;
  2048. }
  2049. }
  2050. /**
  2051. \fn void posGGAServiceStop(void )
  2052. \param[in]
  2053. \brief stop gps
  2054. \return
  2055. */
  2056. void posGGAServiceStop( void)
  2057. {
  2058. GPSPowerCtr(false);
  2059. gpsHandle = NULL;
  2060. }