UartTask.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188
  1. /****************************************************************************
  2. *
  3. * Copy right: Qx.
  4. * File name: UartTask.c
  5. * Description: 串口任务
  6. * History: 2021-03-05
  7. *
  8. * 2021-04-11:可以通过Ota线路升级Bms保护板
  9. ****************************************************************************/
  10. #include "bsp.h"
  11. #include "bsp_custom.h"
  12. #include "osasys.h"
  13. #include "ostask.h"
  14. #include "queue.h"
  15. #include "ps_event_callback.h"
  16. #include "cmisim.h"
  17. #include "cmimm.h"
  18. #include "cmips.h"
  19. #include "sockets.h"
  20. #include "psifevent.h"
  21. #include "ps_lib_api.h"
  22. #include "lwip/netdb.h"
  23. //#include <cis_def.h>
  24. #include "debug_log.h"
  25. #include "slpman_ec616.h"
  26. #include "plat_config.h"
  27. #include "ec_tcpip_api.h"
  28. #include "hal_module_adapter.h"
  29. #include "UartTask.h"
  30. #include "MainTask.h"
  31. #include <stdlib.h>
  32. #include "app.h"
  33. #include "numeric.h"
  34. #include "Fota.h"
  35. #include "signal.h"
  36. //全局变量输入区
  37. extern UINT32 Timer_count;
  38. extern volatile BOOL Sleep_flag;
  39. extern AppNVMDataType AppNVMData;
  40. extern AppDataBody AppDataInfo;
  41. extern UINT8 UDSSwitch;
  42. //全局变量输出区
  43. BOOL UartBattInfoRecvFlag = false;
  44. QueueHandle_t UartWriteCmdHandle = NULL;
  45. UINT8 BattChrgEndFlag;
  46. UINT8 Ringtimes = 0;
  47. UINT8 ret = 0x00;
  48. //
  49. extern ARM_DRIVER_USART Driver_USART1;
  50. static ARM_DRIVER_USART *USARTdrv = &Driver_USART1;
  51. volatile bool isRecvTimeout = false;
  52. volatile bool isRecvComplete = false;
  53. //线程声明区
  54. static StaticTask_t gProcess_Uart_Task_t;
  55. static UINT8 gProcess_Uart_TaskStack[PROC_UART_TASK_STACK_SIZE];
  56. static osThreadId_t UartTaskId = NULL;
  57. static process_Uart gProcess_Uart_Task = PROCESS_UART_STATE_IDLE;
  58. #define PROC_UART_STATE_SWITCH(a) (gProcess_Uart_Task = a)
  59. //函数声明区
  60. void USART_callback(uint32_t event);
  61. UINT8 Uart_DataRecv_func(Uart_Read_Msg_Type Uart_Read_Msg_Fun,UINT8* Uart_Recv_Buffer_Fun);
  62. static BOOL uartBattInfoDecode(UINT8* dataPtr);
  63. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData);
  64. UINT16 crc_chk(UINT8* data, UINT8 length);
  65. void battSOCDisplay(void);
  66. void battErrorStateDisplay(void);
  67. void battWarningStateDisplay(void);
  68. void battLockStateDisplay(UINT8 lockState);
  69. void relayControlFunc(float DutyRatio,UINT8 BuzzerPeriod);
  70. void SP_BMS_Update_Service(void);
  71. BOOL BattHeaterSwitch(UINT8* heaterSwitch,UINT8 HeatForceControl);
  72. UINT16 encryptionAlgorithm (UINT16 plainText);
  73. UINT8 decryptionAlgorithm (UINT16 cipherText);
  74. UINT8 Uart_Encrypt_Send(void);
  75. UINT8 BmsErrorDecode(UINT32 battWarningState);
  76. #ifdef SOC_TEST
  77. void Uart_Data_recv_SOC_test(void);
  78. #endif
  79. //BMS升级函数声明
  80. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len);
  81. void SP_BMS_Update_Service();
  82. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  83. updateBMSStatus MS_BMS_Update_Service();
  84. UINT16 MS_BMS_Update_CRC16(UINT8* pSendData,UINT16 len);
  85. UINT8 MS_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  86. static osThreadId_t ControlTaskId = NULL;
  87. void controlTask(void *arg);
  88. //Uart线程任务区
  89. static void UartTask(void* arg)
  90. {
  91. USARTdrv->Initialize(USART_callback);
  92. USARTdrv->PowerControl(ARM_POWER_FULL);
  93. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  94. ARM_USART_DATA_BITS_8 |
  95. ARM_USART_PARITY_NONE |
  96. ARM_USART_STOP_BITS_1 |
  97. ARM_USART_FLOW_CONTROL_NONE, 9600);
  98. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_ENCRYPT);
  99. UINT16 Reg_Num = 0;
  100. Uart_Read_Msg_Type Uart_Read_Msg;
  101. memset(&(Uart_Read_Msg),0x00,sizeof(Uart_Read_Msg_Type));
  102. Uart_Write_Data_Type UartWriteData; //Uart控制命令
  103. memset(&(UartWriteData),0x00,sizeof(Uart_Write_Data_Type));
  104. UartReadMsgType UartReadMsg;
  105. if(UartWriteCmdHandle == NULL)//Uart控制命令传输指针
  106. {
  107. UartWriteCmdHandle = osMessageQueueNew(1,sizeof(Uart_Write_Data_Type), NULL);
  108. }
  109. if(ControlTaskId == NULL)
  110. {
  111. xTaskCreate(controlTask,
  112. "ControlTaskName",
  113. 256,( void * ) NULL,
  114. osPriorityNormal6,
  115. &ControlTaskId);
  116. }
  117. //上电起始控制区域
  118. UINT8 HeatSwitch = 0;
  119. UINT8 heatErrorCounter = 0;
  120. UINT8 UartErrorCounter = 0;
  121. while (1)
  122. {
  123. switch (gProcess_Uart_Task)
  124. {
  125. case PROCESS_UART_STATE_ENCRYPT:
  126. {
  127. UINT8 EncryptFlag=0x00;
  128. UINT8 EncryptCount=0;
  129. while(EncryptFlag!=0x01&&EncryptCount<=3)
  130. {
  131. EncryptFlag = Uart_Encrypt_Send();
  132. EncryptCount++;
  133. }
  134. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  135. break;
  136. }
  137. case PROCESS_UART_STATE_IDLE:
  138. {
  139. osDelay(100);
  140. if(Sleep_flag)
  141. {
  142. Ringtimes = 0;
  143. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_SLEEP);
  144. break;
  145. }
  146. else if(Timer_count%10==0)
  147. {
  148. #ifdef USING_PRINTF1
  149. printf("[%d]AvgBattTemp :%d,UartBattInfoRecvFlag:%d,battHeatEnableState:%d \n",__LINE__,AvgBattTemp,UartBattInfoRecvFlag,battHeatEnableState);
  150. #endif
  151. if(osMessageQueueGet(UartWriteCmdHandle,&UartWriteData,0,0)==osOK && UartBattInfoRecvFlag==TRUE)
  152. {
  153. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_WRITE);
  154. break;
  155. }
  156. else
  157. {
  158. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  159. break;
  160. }
  161. }
  162. if(maxCellVol>4400&&maxCellVol<6000)//过压断开继电器
  163. {
  164. AppDataInfo.RelayControl=TRUE;
  165. }
  166. if((AvgBattTemp>=45+40)&&(battHeatEnableState==0x00)&&(MOSTemp>=70+40))//温度的判定需要加40摄氏度,如果模组最高>=45度,模组最低>=45度,mos温度>=70度,并且加热关闭,持续超过10s,则断开继电器,锁定放电mos
  167. {
  168. heatErrorCounter++;
  169. if(heatErrorCounter>100)
  170. {
  171. AppDataInfo.ErrorMsg = 20;
  172. heatErrorCounter = 0;
  173. AppDataInfo.appDataModify = TRUE;
  174. AppNVMData.appDataModify = TRUE;
  175. AppDataInfo.RelayControl=TRUE;
  176. AppNVMData.isBattLocked = TRUE;
  177. }
  178. }
  179. if(BMS_Fota_update_flag)
  180. {
  181. if(BattWorkStateDelay==0x00)
  182. {
  183. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_UPDATE);
  184. break;
  185. }
  186. }
  187. //限制充电测试
  188. if((maxCellVol>4170&&maxCellVol<6000)&&(BattWorkStateDelay ==0x02)&&(((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x02)!=0x00)&&(UartBattInfoRecvFlag==TRUE))//try to lock lock the charge
  189. {
  190. #ifdef USING_PRINTF
  191. printf("[%d]try to lock charge \n",__LINE__);
  192. #endif
  193. UartWriteData.WriteCmd = 0x01;
  194. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  195. UartWriteData.Data[1] = 0x00|((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x01);
  196. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  197. }
  198. else if((maxCellVol<4100&&maxCellVol>0)&&(((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x02)!=0x02)&&(UartBattInfoRecvFlag==TRUE))//try to unlock lock the charge
  199. {
  200. #ifdef USING_PRINTF
  201. printf("[%d]try to unlock charge \n",__LINE__);
  202. #endif
  203. UartWriteData.WriteCmd = 0x01;
  204. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  205. UartWriteData.Data[1] = 0x02|((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x01);
  206. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  207. }
  208. if((battWorkState ==0x00) && (AppNVMData.isBattLocked==TRUE) && (((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x01)!=0x00)&&(UartBattInfoRecvFlag==TRUE))//try to lock lock the discharge
  209. {
  210. #ifdef USING_PRINTF
  211. printf("[%d]try to lock discharge \n",__LINE__);
  212. #endif
  213. UartWriteData.WriteCmd = 0x01;
  214. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  215. UartWriteData.Data[1] = 0x00|((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x02);
  216. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  217. }
  218. else if (battWorkState ==0x00 && AppNVMData.isBattLocked==FALSE && (((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x01)!=0x01)&&(UartBattInfoRecvFlag==TRUE)) // try to unlock
  219. {
  220. #ifdef USING_PRINTF
  221. printf("[%d]try to unlock discharge \n",__LINE__);
  222. #endif
  223. UartWriteData.WriteCmd = 0x01;
  224. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  225. UartWriteData.Data[1] = 0x01|((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x02);
  226. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  227. }
  228. if((AppDataInfo.RelayControl==TRUE) && (((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2])&0x80)==0x00)&&(UartBattInfoRecvFlag==TRUE))//继电器断开
  229. {
  230. #ifdef USING_PRINTF
  231. printf("[%d]try to cut relay \n",__LINE__);
  232. #endif
  233. UartWriteData.WriteCmd = 0x03;
  234. UartWriteData.Data[0] = 0x80;
  235. UartWriteData.Data[1] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1]);
  236. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  237. }
  238. else if((AppDataInfo.RelayControl==FALSE) && (((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2])&0x80)==0x80)&&(UartBattInfoRecvFlag==TRUE))//继电器闭合
  239. {
  240. #ifdef USING_PRINTF
  241. printf("[%d]try to recover relay \n",__LINE__);
  242. #endif
  243. UartWriteData.WriteCmd = 0x03;
  244. UartWriteData.Data[0] = 0x00;
  245. UartWriteData.Data[1] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1]);
  246. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  247. }
  248. if(BattHeaterSwitch(&HeatSwitch,HeatForceControl)==TRUE&&(UartBattInfoRecvFlag==TRUE))
  249. {
  250. #ifdef USING_PRINTF
  251. printf("[%d]try to change heatstate \n",__LINE__);
  252. #endif
  253. UartWriteData.WriteCmd = 0x02;
  254. UartWriteData.Data[0] = 0x00;
  255. UartWriteData.Data[1] = HeatSwitch&0xFF;
  256. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,0);
  257. }
  258. break;
  259. }
  260. case PROCESS_UART_STATE_READ:
  261. {
  262. UINT16 CRC_chk_buffer;
  263. UINT16 Uart_Recv_LEN = 0;
  264. Reg_Num = 0x21+BATT_CELL_VOL_NUM+BATT_TEMP_NUM + BATT_OTHER_TEMP_NUM;//按照协议里面的0x21+X+N的结束地址
  265. Uart_Read_Msg.Bms_Address = BMS_ADDRESS_CODE;
  266. Uart_Read_Msg.Bms_Funcode = UART_READ_CODE;
  267. Uart_Read_Msg.Reg_Begin_H = 0x00;
  268. Uart_Read_Msg.Reg_Begin_L= 0x00;
  269. Uart_Read_Msg.Reg_Num_H = Reg_Num>>8;
  270. Uart_Read_Msg.Reg_Num_L = Reg_Num;
  271. memset((UINT8 *)&UartReadMsg,0x00,sizeof(UartReadMsgType));
  272. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Read_Msg,6);
  273. Uart_Read_Msg.CRC_L = CRC_chk_buffer;
  274. Uart_Read_Msg.CRC_H = CRC_chk_buffer>>8;
  275. //Uart_Recv_LEN = Uart_DataRecv_func((UINT8 *)&Uart_Read_Msg,(UINT8*)UartReadMsg.Header);
  276. Uart_Recv_LEN = Uart_DataRecv_func(Uart_Read_Msg,(UINT8 *)&UartReadMsg);
  277. if(Uart_Recv_LEN>0)
  278. {
  279. UartErrorCounter = 0;
  280. UartBattInfoRecvFlag = TRUE;
  281. uartBattInfoDecode(UartReadMsg.data);
  282. }
  283. else
  284. {
  285. UartBattInfoRecvFlag = FALSE;
  286. UartErrorCounter++;
  287. }
  288. if(UartErrorCounter>=5)
  289. {
  290. if(osOK==osMutexAcquire(Error_Mutex, 100))
  291. {
  292. UINT8 ErrorNumTemp = 33;
  293. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  294. }
  295. osMutexRelease(Error_Mutex);
  296. UartErrorCounter = 5;
  297. uartBattInfoDecode(UartReadMsg.data);
  298. }
  299. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  300. #ifdef USING_PRINTF1
  301. printf("[%d]lock:%X,permit:%X,Mos:%x\n",__LINE__,AppNVMData.isBattLocked,(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03,((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_OTHER_TEMP_NUM)*2+1])>>1)&0x03);
  302. #endif
  303. //SOC问题测试
  304. #ifdef SOC_TEST
  305. if(bmsSwVersion==8)
  306. {
  307. Uart_Data_recv_SOC_test();
  308. }
  309. #endif
  310. break;
  311. }
  312. case PROCESS_UART_STATE_WRITE:
  313. {
  314. ret = Uart_WriteCmd_func(UartWriteData);
  315. osDelay(500);
  316. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  317. break;
  318. }
  319. case PROCESS_UART_STATE_UPDATE:
  320. UartBattInfoRecvFlag = FALSE;
  321. #if BMS_MANUFACTURE==1
  322. {
  323. SP_BMS_Update_Service();
  324. }
  325. #elif BMS_MANUFACTURE==2
  326. BmsUpdateState = MS_BMS_Update_Service();
  327. #endif
  328. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  329. BMS_Fota_update_flag = FALSE;
  330. break;
  331. case PROCESS_UART_STATE_SLEEP:
  332. {
  333. USARTdrv->PowerControl(ARM_POWER_LOW);
  334. vTaskDelete(ControlTaskId);
  335. while(TRUE)
  336. {
  337. osDelay(60000/portTICK_PERIOD_MS);
  338. }
  339. osThreadExit();
  340. break;
  341. }
  342. }
  343. }
  344. }
  345. //Uart 接收的数据解码
  346. static BOOL uartBattInfoDecode(UINT8* dataPtr)
  347. {
  348. //BattInfoType battInfo;
  349. UINT8 i,temp=0;
  350. UINT8 TEMP_NUM = BATT_TEMP_NUM + BATT_OTHER_TEMP_NUM;
  351. UINT16 Batt_current;
  352. INT8 BattCurrentNegFlag = 1;
  353. for(i=0;i<BATT_CELL_VOL_NUM;i++)
  354. {
  355. battCellU[i] = (dataPtr[(0x02+i)*2] << 8) | dataPtr[(0x02+i)*2 + 1];
  356. }
  357. battWorkState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+1])&0x03;//电池状态(原始数据),0表示静置,1表示放电,2表示充电
  358. for(i=0; i<BATT_TEMP_NUM; i++)
  359. {
  360. battCellTemp[i] = dataPtr[(0x06+BATT_CELL_VOL_NUM+i)*2+1];
  361. }
  362. MOSTemp = dataPtr[(0x06+BATT_CELL_VOL_NUM+BATT_TEMP_NUM)*2+1];
  363. packTemp = dataPtr[(0x06+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+1)*2+1];
  364. Data_Current = (dataPtr[(0x02+BATT_CELL_VOL_NUM)*2]<<8)|(dataPtr[(0x02+BATT_CELL_VOL_NUM)*2+1]);
  365. Batt_current = (dataPtr[(0x02+BATT_CELL_VOL_NUM)*2]<<8)|(dataPtr[(0x02+BATT_CELL_VOL_NUM)*2+1]);
  366. //原始数据:充电为负,放电为正
  367. if(battWorkState == 0x02) //充电过程
  368. {
  369. if(Batt_current >0x8000)// 数据为负
  370. {
  371. //求补码,结果为负
  372. Batt_current = (UINT16)((UINT16)(~(Batt_current))+1);
  373. Batt_current = Batt_current/10;
  374. BattCurrentNegFlag = -1;
  375. }
  376. else
  377. {
  378. //源码,结果为负
  379. Batt_current = Batt_current/10;
  380. BattCurrentNegFlag = -1;
  381. }
  382. }
  383. else //放电过程
  384. {
  385. if(Batt_current >0x8000)// 数据为负
  386. {
  387. //求补码,结果为正
  388. Batt_current = (UINT16)((UINT16)(~(Batt_current))+1);
  389. Batt_current = Batt_current/10;
  390. BattCurrentNegFlag = 1;
  391. }
  392. else
  393. {
  394. //源码,结果为正
  395. Batt_current = Batt_current/10;
  396. BattCurrentNegFlag = 1;
  397. }
  398. }
  399. battI = Batt_current*BattCurrentNegFlag + 0x2710;
  400. //bit0 ~ bit31 represent cell0 ~ cell31
  401. battBalanceoInfo = dataPtr[(0x06+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1] | (dataPtr[(0x06+BATT_CELL_VOL_NUM+TEMP_NUM)*2] <<8) + (dataPtr[(0x07+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]<<16) | (dataPtr[(0x07+BATT_CELL_VOL_NUM+TEMP_NUM)*2] <<24);
  402. chargerConnectState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+1]>>2)&0x01;//充电器连接状态,0表示未连接,1表示已连接
  403. bmsHwVersion = dataPtr[(0x08+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  404. bmsSwVersion = dataPtr[(0x08+BATT_CELL_VOL_NUM+TEMP_NUM)*2];
  405. temp = ((dataPtr[(0x09+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])>>1)&0x03;
  406. battMOSSwitchState = ((temp&0x01)<<1)|((temp&0x02)>>1);
  407. #ifdef USING_PRINTF1
  408. printf("[%d]battMOSSwitchState :%x\n",__LINE__,battMOSSwitchState);
  409. #endif
  410. if(AppNVMData.isBattLocked==TRUE)
  411. {
  412. battMOSSwitchState = battMOSSwitchState |(0x01<<2);
  413. }
  414. else
  415. {
  416. battMOSSwitchState = battMOSSwitchState |(0x00<<2);
  417. }
  418. battWarningState = (dataPtr[(0x09+BATT_CELL_VOL_NUM+TEMP_NUM)*2+0]<<16) | (dataPtr[(0x0A+BATT_CELL_VOL_NUM+TEMP_NUM)*2+0] << 8) |(dataPtr[(0x0A+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  419. battSOC = dataPtr[(0x0B+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  420. battSOH = dataPtr[(0x0C+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  421. Battdesigncap = (dataPtr[(0x0E+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<24|(dataPtr[(0x0E+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])<<16|(dataPtr[(0x0F+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x0F+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  422. BattRemainCap = (dataPtr[(0x12+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<24|(dataPtr[(0x12+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])<<16|(dataPtr[(0x13+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x13+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  423. battProtectState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+0]<<24) | (dataPtr[(0x04+BATT_CELL_VOL_NUM)*2+0] << 16) |(dataPtr[(0x04+BATT_CELL_VOL_NUM)*2+1]<<8) | (dataPtr[(0x05+BATT_CELL_VOL_NUM)*2+1]);
  424. battPackVol =((dataPtr[(0x18+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x18+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]))/10; //uint 100mV
  425. maxCellVol = (dataPtr[(0x19+BATT_CELL_VOL_NUM+TEMP_NUM)*2] << 8) | dataPtr[(0x19+BATT_CELL_VOL_NUM+TEMP_NUM)*2 + 1];
  426. minCellVol = (dataPtr[(0x1A+BATT_CELL_VOL_NUM+TEMP_NUM)*2] << 8) | dataPtr[(0x1A+BATT_CELL_VOL_NUM+TEMP_NUM)*2 + 1];
  427. RelayControlState = (dataPtr[(0x1B+BATT_CELL_VOL_NUM+TEMP_NUM)*2])&0x80;
  428. battHeatEnableState = dataPtr[(0x1C+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]&0x01;
  429. //SOC问题紧急修复
  430. #ifdef SOC_TEST
  431. static UINT8 Soc_change_flag = 0;//0-BMS原始值,1-计算值
  432. if((battI>10200U)||(battWorkState==2))//放电电流超过20A,使用上一时刻值,//如果有充电,使用计算值,最大不超过100
  433. {
  434. SOC1 = max((battPackVol*45-27000)/100,SOC1);
  435. SOC1 = min(100,SOC1);
  436. }
  437. else
  438. {
  439. SOC1 = min((battPackVol*45-27000)/100,SOC1);
  440. }
  441. SOC2 = battSOC;
  442. if(Soc_change_flag == 0)//使用原始值
  443. {
  444. if((SOC2 - SOC1>=10)&&(battPackVol>500)&&(battPackVol<900))
  445. {
  446. Soc_change_flag = 1;
  447. }
  448. }
  449. else
  450. {
  451. if((SOC2 - SOC1<5)||(battPackVol<500)||(battPackVol>900))
  452. {
  453. Soc_change_flag = 0;
  454. }
  455. }
  456. if(Soc_change_flag==0)
  457. {
  458. battSOC = SOC2;
  459. }
  460. else
  461. {
  462. battSOC = SOC1;
  463. if(osOK==osMutexAcquire(Error_Mutex, 100))
  464. {
  465. UINT8 ErrorNumTemp = 238;
  466. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  467. }
  468. osMutexRelease(Error_Mutex);
  469. }
  470. #endif
  471. //SOC紧急修复
  472. maxCellTemp = 0x00;
  473. minCellTemp = 0xFF;
  474. UINT16 TempBuffer = 0;
  475. for(i=0;i<BATT_TEMP_NUM;i++)
  476. {
  477. TempBuffer = battCellTemp[i] + TempBuffer;
  478. maxCellTemp = max(maxCellTemp,battCellTemp[i]);
  479. minCellTemp = min(minCellTemp,battCellTemp[i]);
  480. }
  481. AvgBattTemp = (TempBuffer-maxCellTemp-minCellTemp)/(BATT_TEMP_NUM - 2);
  482. nbSwVersion = APPSWVERSION;
  483. nbHwVersion = HWVERSION;
  484. BmsErrorDecode(battWarningState);
  485. return true;
  486. }
  487. #ifdef SOC_TEST
  488. void Uart_Data_recv_SOC_test(void)
  489. {
  490. UINT16 CRC_chk_buffer;
  491. Uart_Read_Msg_Type Uart_Read_Msg;
  492. memset(&(Uart_Read_Msg),0x00,sizeof(Uart_Read_Msg_Type));
  493. UartReadMsgType UartReadMsg;
  494. memset(&(UartReadMsg),0x00,sizeof(UartReadMsgType));
  495. UINT8 Reg = 0,Uart_Uds_LEN = 0,Uart_Recv_LEN;
  496. Reg = 0x33+BATT_CELL_VOL_NUM+BATT_TEMP_NUM + BATT_OTHER_TEMP_NUM;
  497. Uart_Read_Msg.Bms_Address = BMS_ADDRESS_CODE;
  498. Uart_Read_Msg.Bms_Funcode = UART_READ_CODE;
  499. Uart_Read_Msg.Reg_Begin_H = Reg>>8;
  500. Uart_Read_Msg.Reg_Begin_L= Reg;
  501. Uart_Read_Msg.Reg_Num_H = 0;
  502. Uart_Read_Msg.Reg_Num_L = 16;
  503. Uart_Uds_LEN = 17*2;
  504. memset(UartReadMsg.Header,0x00,Uart_Uds_LEN);
  505. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Read_Msg,6);
  506. Uart_Read_Msg.CRC_L = CRC_chk_buffer;
  507. Uart_Read_Msg.CRC_H = CRC_chk_buffer>>8;
  508. Uart_Recv_LEN = Uart_DataRecv_func(Uart_Read_Msg,(UINT8*)(UartReadMsg.Header));
  509. if(Uart_Recv_LEN>0)
  510. {
  511. Data_33 = (UartReadMsg.data[0]<<8|UartReadMsg.data[1]);
  512. Data_34 = (UartReadMsg.data[2]<<8|UartReadMsg.data[3]);
  513. Data_35 = (UartReadMsg.data[4]<<24|UartReadMsg.data[5]<<16|UartReadMsg.data[6]<<8|UartReadMsg.data[7]);
  514. Data_37 = (UartReadMsg.data[8]<<8|UartReadMsg.data[9]);
  515. Data_38 = (UartReadMsg.data[10]<<8|UartReadMsg.data[11]);
  516. Data_39 = (UartReadMsg.data[12]<<8|UartReadMsg.data[13]);
  517. Data_3A = (UartReadMsg.data[14]<<8|UartReadMsg.data[15]);
  518. Data_3B = (UartReadMsg.data[16]<<8|UartReadMsg.data[17]);
  519. Data_3C = (UartReadMsg.data[18]<<8|UartReadMsg.data[19]);
  520. Data_3D = (UartReadMsg.data[20]<<8|UartReadMsg.data[21]);
  521. Data_3E = (UartReadMsg.data[22]<<8|UartReadMsg.data[23]);
  522. Data_3F = (UartReadMsg.data[24]<<8|UartReadMsg.data[25]);
  523. Data_40 = (UartReadMsg.data[26]<<8|UartReadMsg.data[27]);
  524. Data_41 = (UartReadMsg.data[28]<<8|UartReadMsg.data[29]);
  525. Data_42 = (UartReadMsg.data[30]<<8|UartReadMsg.data[31]);
  526. Data_43 = (UartReadMsg.data[32]<<8|UartReadMsg.data[33]);
  527. }
  528. }
  529. #endif
  530. //Uart线程初始化
  531. void UartTaskInit(void *arg)
  532. {
  533. osThreadAttr_t task_attr;
  534. memset(&task_attr,0,sizeof(task_attr));
  535. memset(gProcess_Uart_TaskStack, 0xA5, PROC_UART_TASK_STACK_SIZE);
  536. task_attr.name = "Uart_Task";
  537. task_attr.stack_mem = gProcess_Uart_TaskStack;
  538. task_attr.stack_size = PROC_UART_TASK_STACK_SIZE;
  539. task_attr.priority = osPriorityBelowNormal7;
  540. task_attr.cb_mem = &gProcess_Uart_Task_t;
  541. task_attr.cb_size = sizeof(StaticTask_t);
  542. UartTaskId = osThreadNew(UartTask, NULL, &task_attr);
  543. }
  544. void UartTaskDeInit(void *arg)
  545. {
  546. osThreadTerminate(UartTaskId);
  547. UartTaskId = NULL;
  548. }
  549. //函数区
  550. //Uart回调程序
  551. void USART_callback(uint32_t event)
  552. {
  553. if(event & ARM_USART_EVENT_RX_TIMEOUT)
  554. {
  555. isRecvTimeout = true;
  556. }
  557. if(event & ARM_USART_EVENT_RECEIVE_COMPLETE)
  558. {
  559. isRecvComplete = true;
  560. }
  561. }
  562. //Uart校验程序
  563. UINT16 crc_chk(UINT8* data, UINT8 length)
  564. {
  565. UINT8 j;
  566. UINT16 reg_crc=0xFFFF;
  567. while(length--)
  568. {
  569. reg_crc ^= *data++;
  570. for(j=0;j<8;j++)
  571. {
  572. if(reg_crc & 0x01)
  573. {
  574. reg_crc=(reg_crc>>1) ^ 0xA001;
  575. }
  576. else
  577. {
  578. reg_crc=reg_crc >>1;
  579. }
  580. }
  581. }
  582. return reg_crc;
  583. }
  584. //Uart写命令函数
  585. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData)
  586. {
  587. Uart_Write_Msg_Type Uart_Write_Msg;
  588. UINT16 RegAddress = 0x0000;
  589. UINT16 CRC_chk_buffer;
  590. UINT8 timeout = 0x00;
  591. UINT8 Uart_Recv_Buffer[8];
  592. #ifdef USING_PRINTF
  593. printf("\nUart_WriteCmd_func: %x ",UartWriteData.WriteCmd);
  594. #endif
  595. switch (UartWriteData.WriteCmd)
  596. {
  597. case 0x01://是否锁定
  598. {
  599. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  600. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  601. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  602. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  603. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  604. Uart_Write_Msg.Reg_Num_H = 0x00;
  605. Uart_Write_Msg.Reg_Num_L = 0x01;
  606. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  607. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  608. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  609. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  610. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  611. break;
  612. }
  613. case 0x02://是否加热
  614. {
  615. RegAddress = 0x1C + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  616. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  617. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  618. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  619. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  620. Uart_Write_Msg.Reg_Num_H = 0x00;
  621. Uart_Write_Msg.Reg_Num_L = 0x01;
  622. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  623. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  624. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  625. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  626. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  627. break;
  628. }
  629. case 0x03://是否继电器控制
  630. {
  631. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  632. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  633. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  634. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  635. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  636. Uart_Write_Msg.Reg_Num_H = 0x00;
  637. Uart_Write_Msg.Reg_Num_L = 0x01;
  638. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  639. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  640. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  641. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  642. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  643. break;
  644. }
  645. default:
  646. {
  647. UartWriteData.WriteCmd = 0x00;
  648. return 0;
  649. break;
  650. }
  651. }
  652. USARTdrv->Send((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg));
  653. #ifdef USING_PRINTF
  654. printf("Uart_Send_buffer: ");
  655. for(int i=0;i<sizeof(Uart_Write_Msg);i++)
  656. {
  657. printf("%x ",*((UINT8 *)&Uart_Write_Msg+i));
  658. }
  659. printf("\n");
  660. #endif
  661. USARTdrv->Receive(Uart_Recv_Buffer,8);
  662. while((isRecvTimeout == false) && (isRecvComplete == false))
  663. {
  664. timeout++;
  665. osDelay(100);
  666. if (timeout>=10)
  667. {
  668. timeout =0;
  669. isRecvTimeout = true;
  670. break;
  671. }
  672. }
  673. if (isRecvComplete == true)
  674. {
  675. #ifdef USING_PRINTF
  676. printf("Uart_Rece_buffer: ");
  677. for(int i=0;i<8;i++)
  678. {
  679. printf("%x ",Uart_Recv_Buffer[i]);
  680. }
  681. printf("\n");
  682. #endif
  683. isRecvComplete = false;
  684. if(Uart_Recv_Buffer[1]==0x10)
  685. {
  686. return UartWriteData.WriteCmd;
  687. }
  688. else
  689. {
  690. return 0x00;
  691. }
  692. }
  693. else
  694. {
  695. isRecvTimeout = false;
  696. return 0x00;
  697. }
  698. }
  699. //Uart发送接收函数
  700. UINT8 Uart_DataRecv_func(Uart_Read_Msg_Type Uart_Read_Msg_Fun,UINT8* Uart_Recv_Buffer_Fun)
  701. {
  702. UINT16 CRC_Rece_buffer;
  703. UINT16 CRC_chk_buffer;
  704. UINT16 Data_Len ;
  705. UINT8 timeout = 0x00;
  706. UINT8 pSendCmd[8];
  707. memcpy(pSendCmd,(UINT8*)(&Uart_Read_Msg_Fun),8);
  708. Data_Len = ((Uart_Read_Msg_Fun.Reg_Num_H<<8)|(Uart_Read_Msg_Fun.Reg_Num_L))*2+5;
  709. USARTdrv->Send(pSendCmd,8);
  710. #ifdef USING_PRINTF1
  711. printf("Uart_Send_buffer: ");
  712. for(int i=0;i<8;i++)
  713. // {
  714. printf("%x ",pSendCmd[i]);
  715. // }
  716. printf("end\n");
  717. //printf("%x ",*(Uart_Read_Msg_Fun));
  718. //UINT8 temp = *(Uart_Read_Msg_Fun);
  719. #endif
  720. USARTdrv->Receive(Uart_Recv_Buffer_Fun,Data_Len);
  721. while(true)
  722. {
  723. timeout++;
  724. if((isRecvTimeout == true) || (isRecvComplete == true))
  725. {
  726. break;
  727. }
  728. else
  729. {
  730. osDelay(100);
  731. if (timeout>=10)
  732. {
  733. timeout =0;
  734. isRecvTimeout = true;
  735. }
  736. }
  737. }
  738. #ifdef USING_PRINTF1
  739. printf("Uart_Rece_buffer1: ");
  740. for(int j=0;j<Data_Len;j++)
  741. {
  742. printf("%x ",*(Uart_Recv_Buffer_Fun+j));
  743. }
  744. #endif
  745. if (isRecvComplete == true)
  746. {
  747. isRecvComplete = false;
  748. CRC_Rece_buffer =*(Uart_Recv_Buffer_Fun+Data_Len-1)<<8|*(Uart_Recv_Buffer_Fun+Data_Len-2);
  749. CRC_chk_buffer = crc_chk(Uart_Recv_Buffer_Fun,Data_Len-2);
  750. #ifdef USING_PRINTF1
  751. printf("Uart_Rece_buffer after Crc: ");
  752. for(int i=0;i<Data_Len;i++)
  753. {
  754. printf("%x ",*(Uart_Recv_Buffer_Fun+i));
  755. }
  756. printf("\tcrcchk:%x,%x\n ",CRC_chk_buffer,CRC_Rece_buffer);
  757. #endif
  758. if (CRC_Rece_buffer == CRC_chk_buffer)//满足校验
  759. {
  760. return Data_Len;//此处指针移位出现重启问题
  761. }
  762. else //接收数据的校验不过
  763. {
  764. USARTdrv->Uninitialize();
  765. osDelay(1000);
  766. USARTdrv->Initialize(USART_callback);
  767. USARTdrv->PowerControl(ARM_POWER_FULL);
  768. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  769. ARM_USART_DATA_BITS_8 |
  770. ARM_USART_PARITY_NONE |
  771. ARM_USART_STOP_BITS_1 |
  772. ARM_USART_FLOW_CONTROL_NONE, 9600);
  773. memset(Uart_Recv_Buffer_Fun,0x00,Data_Len);
  774. return 0;
  775. }
  776. }
  777. else
  778. {
  779. memset(Uart_Recv_Buffer_Fun,0x00,Data_Len);
  780. isRecvTimeout = false;
  781. return 0;
  782. }
  783. return 0;
  784. }
  785. /**
  786. \fn BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  787. \param[in] (UINT8*) heaterSwitch: the heater switch state
  788. \brief according to the current switch state and all the cell temp, it will turn on/off the switch
  789. \return (BOOL) isNeedtoSwitch: true: need to send cmd to turn on/off the switch
  790. false: do not need to do anything
  791. */
  792. BOOL BattHeaterSwitch(UINT8* heaterSwitch,UINT8 HeatForceControl)
  793. {
  794. BOOL isNeedtoSwitch = FALSE;
  795. UINT8 i =0;
  796. UINT8 currentSwitchState = 0;
  797. //get the current switch state and the cell temp
  798. currentSwitchState = battHeatEnableState & 0x01;
  799. if(HeatForceControl==1)//强制开启
  800. {
  801. if(currentSwitchState==0)
  802. {
  803. *heaterSwitch = 1;
  804. isNeedtoSwitch = true;
  805. }
  806. }
  807. else if(HeatForceControl==2)//强制关闭
  808. {
  809. if(currentSwitchState==1)
  810. {
  811. *heaterSwitch = 0;
  812. isNeedtoSwitch = true;
  813. }
  814. }
  815. else//不强制控制
  816. {
  817. if(currentSwitchState==0) //当前状态为关闭,判断是否应该开启
  818. {
  819. if((chargerConnectState == 1 && minCellTemp<5+40 && minCellTemp>=-29+40 && maxCellTemp<25+40)||(chargerConnectState==0 && minCellTemp<5+40 && minCellTemp>=-29+40 && battSOC>=10 && (((battProtectState>> 21)&0x01) == 0)))//温度偏移为40
  820. {
  821. *heaterSwitch = 1;
  822. isNeedtoSwitch = true;
  823. }
  824. }
  825. else //当前状态为开启,判断是否应该关闭
  826. {
  827. if((minCellTemp>=10+40 || maxCellTemp>=30+40)||(chargerConnectState == 0 && minCellTemp<5+40 && minCellTemp>=-29+40 && battSOC<5))
  828. {
  829. *heaterSwitch = 0;
  830. isNeedtoSwitch= true;
  831. }
  832. }
  833. }
  834. return isNeedtoSwitch;
  835. }
  836. void battSOCDisplay()
  837. {
  838. static UINT8 lightTimer = 0;
  839. UINT8 socLowLEDFlashPeriod = 10;//10*100 = 1000ms
  840. UINT8 chargeLEDFlashPeriod = 6;//6*100 = 600ms
  841. float dutyRatio = 0.4;
  842. UINT8 temp;
  843. if(AppNVMData.isBattLocked == TRUE)
  844. {
  845. return;
  846. }
  847. if(UartBattInfoRecvFlag == true)
  848. {
  849. lightTimer++;
  850. if(battWorkState == 0||battWorkState == 1) //静置或放电状态
  851. {
  852. if(battSOC<=10)
  853. {
  854. if(lightTimer<(UINT8)(socLowLEDFlashPeriod*dutyRatio))
  855. {
  856. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  857. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  858. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  859. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  860. }
  861. else if(lightTimer>=(UINT8)(socLowLEDFlashPeriod*dutyRatio) && lightTimer<socLowLEDFlashPeriod)
  862. {
  863. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  864. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  865. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  866. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  867. }
  868. else
  869. {
  870. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  871. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  872. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  873. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  874. lightTimer = 0;
  875. }
  876. }
  877. else if(battSOC>10&&battSOC<=25)
  878. {
  879. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  880. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  881. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  882. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  883. lightTimer = 0;
  884. }
  885. else if(battSOC>25&&battSOC<=50)
  886. {
  887. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  888. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  889. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  890. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  891. lightTimer = 0;
  892. }
  893. else if(battSOC>50&&battSOC<=75)
  894. {
  895. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  896. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  897. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  898. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  899. lightTimer = 0;
  900. }
  901. else if(battSOC>75&&battSOC<=100)
  902. {
  903. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  904. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  905. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  906. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  907. lightTimer = 0;
  908. }
  909. }
  910. else if(battWorkState == 2)
  911. {
  912. if(battSOC<=25)
  913. {
  914. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  915. {
  916. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  917. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  918. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  919. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  920. }
  921. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  922. {
  923. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  924. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  925. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  926. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  927. }
  928. else
  929. {
  930. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  931. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  932. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  933. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  934. lightTimer = 0;
  935. }
  936. }
  937. else if(battSOC>25&&battSOC<=50)
  938. {
  939. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  940. {
  941. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  942. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  943. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  944. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  945. }
  946. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  947. {
  948. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  949. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  950. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  951. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  952. }
  953. else
  954. {
  955. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  956. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  957. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  958. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  959. lightTimer = 0;
  960. }
  961. }
  962. else if(battSOC>50&&battSOC<=75)
  963. {
  964. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  965. {
  966. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  967. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  968. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  969. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  970. }
  971. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  972. {
  973. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  974. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  975. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  976. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  977. }
  978. else
  979. {
  980. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  981. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  982. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  983. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  984. lightTimer = 0;
  985. }
  986. }
  987. else if(battSOC>75&&battSOC<=97)
  988. {
  989. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  990. {
  991. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  992. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  993. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  994. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  995. }
  996. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  997. {
  998. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  999. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  1000. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  1001. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1002. }
  1003. else
  1004. {
  1005. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  1006. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  1007. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  1008. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1009. lightTimer = 0;
  1010. }
  1011. }
  1012. else if(battSOC>97&&battSOC<=100)
  1013. {
  1014. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  1015. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  1016. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  1017. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  1018. }
  1019. }
  1020. }
  1021. }
  1022. void battErrorStateDisplay()
  1023. {
  1024. static UINT8 errorLightTimer = 0;
  1025. //static UINT32 currentTimerCount=0;
  1026. UINT8 errorLEDFlashPeriod = 6;//600ms
  1027. float errorDutyRatio = 0.4;
  1028. if(AppNVMData.isBattLocked == TRUE)
  1029. {
  1030. return;
  1031. }
  1032. if(UartBattInfoRecvFlag == true)
  1033. {
  1034. errorLightTimer++;
  1035. if(battWorkState == 0x02) //充电模式下,如果只有“SOC低故障”,那么就不显示故障灯 zhengchao20210713 add
  1036. {
  1037. if((((battWarningState >> 10) & 0x01) == 0x01) && ((battWarningState & 0xFFFFFBFF) == 0x00))
  1038. return;
  1039. }
  1040. if(battWarningState != 0 )
  1041. {
  1042. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  1043. {
  1044. FaultDisplay(LED_TURN_ON);
  1045. }
  1046. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  1047. {
  1048. FaultDisplay(LED_TURN_OFF);
  1049. }
  1050. else
  1051. {
  1052. FaultDisplay(LED_TURN_OFF);
  1053. errorLightTimer = 0;
  1054. }
  1055. }
  1056. else
  1057. {
  1058. FaultDisplay(LED_TURN_OFF);
  1059. errorLightTimer = 0;
  1060. }
  1061. }
  1062. }
  1063. void battWarningStateDisplay()
  1064. {
  1065. static UINT8 warningLightTimer = 0;
  1066. //static UINT32 currentTimerCount=0;
  1067. UINT8 warningLEDFlashPeriod = 6;//600ms
  1068. float warningDutyRatio = 0.4;
  1069. if(AppNVMData.isBattLocked == TRUE)
  1070. {
  1071. return;
  1072. }
  1073. if(UartBattInfoRecvFlag == false)
  1074. {
  1075. warningLightTimer++;
  1076. //if(battWarningState != 0)
  1077. {
  1078. if(warningLightTimer<(UINT8)(warningLEDFlashPeriod*warningDutyRatio))
  1079. {
  1080. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  1081. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1082. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1083. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1084. FaultDisplay(LED_TURN_ON);
  1085. }
  1086. else if(warningLightTimer>=(UINT8)(warningLEDFlashPeriod*warningDutyRatio) && warningLightTimer<warningLEDFlashPeriod)
  1087. {
  1088. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1089. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1090. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1091. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1092. FaultDisplay(LED_TURN_OFF);
  1093. }
  1094. else
  1095. {
  1096. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1097. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1098. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1099. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1100. FaultDisplay(LED_TURN_OFF);
  1101. warningLightTimer = 0;
  1102. }
  1103. }
  1104. }
  1105. }
  1106. void battLockStateDisplay(UINT8 lockState)
  1107. {
  1108. static UINT8 currentState = 0;
  1109. static UINT8 errorLightTimer = 0;
  1110. //static UINT32 currentTimerCount=0;
  1111. UINT8 errorLEDFlashPeriod = 10;//1000ms
  1112. float errorDutyRatio = 0.4;
  1113. //printf("lockState = %d\ncurrent State = %d\n",lockState,currentState);
  1114. if(lockState==0)//no error
  1115. {
  1116. if(currentState!=lockState)
  1117. {
  1118. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1119. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1120. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1121. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1122. FaultDisplay(LED_TURN_OFF);
  1123. currentState = lockState;
  1124. errorLightTimer = 0;
  1125. }
  1126. else
  1127. {
  1128. return;
  1129. }
  1130. }
  1131. else // error occurred, errorState = 1
  1132. {
  1133. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  1134. {
  1135. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  1136. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  1137. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  1138. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  1139. FaultDisplay(LED_TURN_ON);
  1140. }
  1141. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  1142. {
  1143. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1144. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1145. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1146. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1147. FaultDisplay(LED_TURN_OFF);
  1148. }
  1149. else
  1150. {
  1151. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1152. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1153. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1154. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1155. FaultDisplay(LED_TURN_OFF);
  1156. errorLightTimer = 0;
  1157. }
  1158. }
  1159. errorLightTimer++;
  1160. }
  1161. void relayControlFunc(float DutyRatio,UINT8 BuzzerPeriod)
  1162. {
  1163. static UINT8 BuzzerTimer = 0;
  1164. BuzzerTimer++;
  1165. if(BuzzerTimer<(UINT8)(BuzzerPeriod*DutyRatio))
  1166. {
  1167. relayControl(TRUE);
  1168. }
  1169. else if(BuzzerTimer>=(UINT8)(BuzzerPeriod*DutyRatio) && BuzzerTimer<BuzzerPeriod)
  1170. {
  1171. relayControl(FALSE);
  1172. }
  1173. else
  1174. {
  1175. relayControl(FALSE);
  1176. BuzzerTimer = 0;
  1177. }
  1178. }
  1179. UINT8 decryptionAlgorithm (UINT16 cipherText)
  1180. {
  1181. UINT16 plainText = 1;
  1182. UINT16 publicKeyD = 43;
  1183. UINT16 publicKeyN = 10961;
  1184. cipherText = cipherText % publicKeyN;
  1185. while(publicKeyD >0)
  1186. {
  1187. if(publicKeyD % 2 ==1)
  1188. {
  1189. plainText = plainText * cipherText % publicKeyN;
  1190. }
  1191. publicKeyD = publicKeyD/2;
  1192. cipherText = (cipherText * cipherText) % publicKeyN;
  1193. }
  1194. return (UINT8)plainText;
  1195. }
  1196. UINT16 encryptionAlgorithm (UINT16 plainText)
  1197. {
  1198. UINT16 cipherText = 1;
  1199. UINT16 privateKeyE = 37507;
  1200. UINT16 privateKeyN = 10961;
  1201. plainText = plainText % privateKeyN;
  1202. while(privateKeyE >0)
  1203. {
  1204. if(privateKeyE % 2 ==1)
  1205. {
  1206. cipherText = ( cipherText * plainText) % privateKeyN;
  1207. }
  1208. privateKeyE = privateKeyE/2;
  1209. plainText = (plainText * plainText) % privateKeyN;
  1210. }
  1211. return cipherText;
  1212. }
  1213. UINT8 Uart_Encrypt_Send()
  1214. {
  1215. UINT8 SeedNumberArrray[4]={0x38,0x56,0xfe,0xac};
  1216. UINT16 EncodeNumberArray[4];
  1217. UINT8 UartEncryptBuffer[17];
  1218. UINT8 UartDecryptBuffer[5];
  1219. UINT16 CRC_chk_buffer;
  1220. UINT8 timeCount = 0;
  1221. UartEncryptBuffer[0] = BMS_ADDRESS_CODE;
  1222. UartEncryptBuffer[1] = UART_ENCRYPT_CODE;
  1223. UartEncryptBuffer[2] = 0x0c;
  1224. for(int i=0;i<4;i++)
  1225. {
  1226. SeedNumberArrray[i]=rand();
  1227. EncodeNumberArray[i] = encryptionAlgorithm(SeedNumberArrray[i]);
  1228. UartEncryptBuffer[i+3] = SeedNumberArrray[i];
  1229. UartEncryptBuffer[i*2+7] = EncodeNumberArray[i]>>8;
  1230. UartEncryptBuffer[i*2+8] = EncodeNumberArray[i];
  1231. }
  1232. CRC_chk_buffer = crc_chk(UartEncryptBuffer,17-2);
  1233. UartEncryptBuffer[15] = CRC_chk_buffer;
  1234. UartEncryptBuffer[16] = CRC_chk_buffer>>8;
  1235. USARTdrv->Send(UartEncryptBuffer,17);
  1236. USARTdrv->Receive(UartDecryptBuffer,5);
  1237. while((isRecvTimeout == false) && (isRecvComplete == false))
  1238. {
  1239. timeCount++;
  1240. osDelay(100);
  1241. if (timeCount>=10)
  1242. {
  1243. timeCount =0;
  1244. isRecvTimeout = true;
  1245. break;
  1246. }
  1247. }
  1248. #ifdef USING_PRINTF
  1249. printf("Uart_Rece_buffer: ");
  1250. for(int i=0;i<5;i++)
  1251. {
  1252. printf("%x ",UartDecryptBuffer[i]);
  1253. }
  1254. #endif
  1255. if (isRecvComplete == true)
  1256. {
  1257. isRecvComplete = false;
  1258. return UartDecryptBuffer[2];
  1259. }
  1260. else
  1261. {
  1262. isRecvTimeout = false;
  1263. return 0x03;
  1264. }
  1265. }
  1266. void controlTask(void *arg)
  1267. {
  1268. while (TRUE)
  1269. { osDelay(100);
  1270. if(AppNVMData.isBattLocked != 0)
  1271. {
  1272. battLockStateDisplay(TRUE);
  1273. }
  1274. else if(UartBattInfoRecvFlag)
  1275. {
  1276. battSOCDisplay();
  1277. battErrorStateDisplay();
  1278. }
  1279. else
  1280. {
  1281. battWarningStateDisplay();
  1282. }
  1283. if(AppNVMData.isBattLocked==FALSE && ret==0x01)
  1284. {
  1285. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  1286. Ringtimes++;
  1287. if(Ringtimes>=15)
  1288. {
  1289. relayControl(FALSE);
  1290. ret = 0;
  1291. Ringtimes = 0;
  1292. }
  1293. }
  1294. else if (AppNVMData.isBattLocked==TRUE && ret==0x01)
  1295. {
  1296. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  1297. Ringtimes++;
  1298. if(Ringtimes>=10)
  1299. {
  1300. relayControl(FALSE);
  1301. ret = 0;
  1302. Ringtimes = 0;
  1303. }
  1304. }
  1305. else if(CanMsgFlag==1 && Ringtimes<=50)
  1306. {
  1307. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  1308. Ringtimes++;
  1309. if(Ringtimes>=50)
  1310. {
  1311. Ringtimes = 51;
  1312. relayControl(FALSE);
  1313. }
  1314. }
  1315. else if(BuzzerControl==TRUE)
  1316. {
  1317. relayControlFunc(0.6,5);//表示1s响2次,占比80%
  1318. }
  1319. }
  1320. }
  1321. /*-----------------------------------------------------------------------------*/
  1322. void SP_BMS_Update_Service() //超力源BMS升级服务
  1323. {
  1324. UINT8 errorCount = 0;
  1325. UINT8 resetCount = 0;
  1326. UINT16 currentPackage = 0;
  1327. UINT32 updateDataTotalByteLen = 0;
  1328. UpdateStep updateStep = UPDATE_STEP_CHECK_VERSION;
  1329. UINT8 i,j,ret=0;
  1330. UINT8 dataLen = 0;
  1331. UINT8 pUpdateMsgSend[80];
  1332. UINT32 updateMsgSendLen = 0;
  1333. UINT32 currentPackageStartAddr = 0;
  1334. BMS_Update_Recv_Msg_Type pUpdateMsgRecv;
  1335. UINT8 bmsUpdateFlag = 1;
  1336. //BMS_Update_Recv_Msg_Type bmsMsg;
  1337. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  1338. UINT8 Cycle_conut = 0;
  1339. while(bmsUpdateFlag && Cycle_conut<2)
  1340. {
  1341. switch (updateStep)
  1342. {
  1343. case UPDATE_STEP_CHECK_VERSION:
  1344. dataLen = 0;
  1345. updateMsgSendLen = 7;
  1346. pUpdateMsgSend[0] = 0xEB; //start flag
  1347. pUpdateMsgSend[1] = 0x01; //add flag
  1348. pUpdateMsgSend[2] = 0x01; //read
  1349. pUpdateMsgSend[3] = 0x03; //data len
  1350. pUpdateMsgSend[4] = 0x90; //cmd
  1351. pUpdateMsgSend[5] = 0x93; //checksum
  1352. pUpdateMsgSend[6] = 0xF5; //end flag
  1353. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1354. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1355. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 500);
  1356. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1357. if(ret!=0)
  1358. {
  1359. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1360. {
  1361. if(pUpdateMsgRecv.cmd == 0x90)
  1362. {
  1363. if(pUpdateMsgRecv.data != 0xFF)
  1364. {
  1365. updateStep = UPDATE_STEP_REQUEST_UPDATE;
  1366. errorCount = 0;
  1367. }
  1368. else
  1369. {
  1370. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1371. errorCount = 0;
  1372. }
  1373. }
  1374. else
  1375. {
  1376. errorCount++;
  1377. }
  1378. }
  1379. else
  1380. {
  1381. errorCount++;
  1382. }
  1383. }
  1384. else
  1385. {
  1386. errorCount++;
  1387. }
  1388. #ifdef USING_PRINTF1
  1389. //printf("update step:%d\n",updateStep);
  1390. printf("query:");
  1391. for(j=0;j<updateMsgSendLen;j++)
  1392. {
  1393. printf("%x ",pUpdateMsgSend[j]);
  1394. }
  1395. printf("\nanswer:");
  1396. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1397. {
  1398. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1399. }
  1400. printf("\n");
  1401. printf("next update step:%d\n",updateStep);
  1402. #endif
  1403. if(errorCount>10)
  1404. {
  1405. updateStep = UPDATE_STEP_RESET;
  1406. errorCount = 0;
  1407. }
  1408. osDelay(50);
  1409. break;
  1410. case UPDATE_STEP_REQUEST_UPDATE:
  1411. dataLen = 1;
  1412. updateMsgSendLen = 8;
  1413. pUpdateMsgSend[0] = 0xEB; //start flag
  1414. pUpdateMsgSend[1] = 0x01; //add flag
  1415. pUpdateMsgSend[2] = 0x00; //write
  1416. pUpdateMsgSend[3] = 0x04; //data len
  1417. pUpdateMsgSend[4] = 0x80; //cmd
  1418. pUpdateMsgSend[5] = 0x22; //data
  1419. pUpdateMsgSend[6] = 0xA6; //check
  1420. pUpdateMsgSend[7] = 0xF5; //end flag
  1421. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1422. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1423. if(ret!=0)
  1424. {
  1425. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1426. {
  1427. if(pUpdateMsgRecv.cmd == 0x80)
  1428. {
  1429. if(pUpdateMsgRecv.data == 0x33)
  1430. {
  1431. updateStep = UPDATE_STEP_START_UPDATE;
  1432. errorCount = 0;
  1433. }
  1434. else
  1435. {
  1436. errorCount++;
  1437. }
  1438. }
  1439. else
  1440. {
  1441. errorCount++;
  1442. }
  1443. }
  1444. else
  1445. {
  1446. errorCount++;
  1447. }
  1448. }
  1449. else
  1450. {
  1451. errorCount++;
  1452. }
  1453. if(errorCount>10)
  1454. {
  1455. updateStep = UPDATE_STEP_RESET;
  1456. errorCount = 0;
  1457. }
  1458. #ifdef USING_PRINTF1
  1459. printf("update step:%d\n",updateStep);
  1460. printf("query:");
  1461. for(j=0;j<updateMsgSendLen;j++)
  1462. {
  1463. printf("%x ",pUpdateMsgSend[j]);
  1464. }
  1465. printf("\nanswer:");
  1466. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1467. {
  1468. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1469. }
  1470. printf("\n");
  1471. printf("next update step:%d\n",updateStep);
  1472. #endif
  1473. osDelay(50);
  1474. break;
  1475. case UPDATE_STEP_START_UPDATE:
  1476. dataLen = 1;
  1477. updateMsgSendLen = 8;
  1478. pUpdateMsgSend[0] = 0xEB; //start flag
  1479. pUpdateMsgSend[1] = 0x01; //add flag
  1480. pUpdateMsgSend[2] = 0x00; //write
  1481. pUpdateMsgSend[3] = 0x04; //data len
  1482. pUpdateMsgSend[4] = 0x80; //cmd
  1483. pUpdateMsgSend[5] = 0x55; //data
  1484. pUpdateMsgSend[6] = 0xD9; //check
  1485. pUpdateMsgSend[7] = 0xF5; //end flag
  1486. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1487. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1488. //updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1489. updateStep = UPDATE_STEP_CHECK_VERSION_AGAIN;//2021-04-09跳过波特率设置
  1490. #ifdef USING_PRINTF1
  1491. printf("query:");
  1492. for(j=0;j<updateMsgSendLen;j++)
  1493. {
  1494. printf("%x ",pUpdateMsgSend[j]);
  1495. }
  1496. printf("\nanswer:");
  1497. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1498. {
  1499. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1500. }
  1501. printf("\n");
  1502. printf("next update step:%d\n",updateStep);
  1503. #endif
  1504. break;
  1505. case UPDATE_STEP_CHECK_VERSION_AGAIN:
  1506. dataLen = 0;
  1507. updateMsgSendLen = 7;
  1508. pUpdateMsgSend[0] = 0xEB; //start flag
  1509. pUpdateMsgSend[1] = 0x01; //add flag
  1510. pUpdateMsgSend[2] = 0x01; //read
  1511. pUpdateMsgSend[3] = 0x03; //data len
  1512. pUpdateMsgSend[4] = 0x90; //cmd
  1513. pUpdateMsgSend[5] = 0x93; //checksum
  1514. pUpdateMsgSend[6] = 0xF5; //end flag
  1515. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1516. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1517. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 100);
  1518. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1519. if(ret!=0)
  1520. {
  1521. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1522. {
  1523. if(pUpdateMsgRecv.cmd == 0x90)
  1524. {
  1525. if(pUpdateMsgRecv.data != 0xFF)
  1526. {
  1527. updateStep = UPDATE_STEP_RESET;
  1528. errorCount = 0;
  1529. }
  1530. else
  1531. {
  1532. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1533. errorCount = 0;
  1534. }
  1535. }
  1536. else
  1537. {
  1538. errorCount++;
  1539. }
  1540. }
  1541. else
  1542. {
  1543. errorCount++;
  1544. }
  1545. }
  1546. else
  1547. {
  1548. errorCount++;
  1549. }
  1550. #ifdef USING_PRINTF1
  1551. //printf("update step:%d\n",updateStep);
  1552. printf("query:");
  1553. for(j=0;j<updateMsgSendLen;j++)
  1554. {
  1555. printf("%x ",pUpdateMsgSend[j]);
  1556. }
  1557. printf("\nanswer:");
  1558. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1559. {
  1560. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1561. }
  1562. printf("\n");
  1563. printf("next update step:%d\n",updateStep);
  1564. #endif
  1565. if(errorCount>10)
  1566. {
  1567. updateStep = UPDATE_STEP_RESET;
  1568. errorCount = 0;
  1569. }
  1570. osDelay(50);
  1571. break;
  1572. case UPDATE_STEP_SET_BAUD_RATE:
  1573. printf("start step %d\n",updateStep);
  1574. dataLen = 4;
  1575. updateMsgSendLen = 12;
  1576. pUpdateMsgSend[0] = 0xEB; //start flag
  1577. pUpdateMsgSend[1] = 0x01; //add flag
  1578. pUpdateMsgSend[2] = 0x00; //write
  1579. pUpdateMsgSend[3] = 0x08; //data len
  1580. pUpdateMsgSend[4] = 0x81; //cmd
  1581. pUpdateMsgSend[5] = 0x33; //data
  1582. pUpdateMsgSend[6] = 0x00; //baud rate:9600
  1583. pUpdateMsgSend[7] = 0x00;
  1584. pUpdateMsgSend[8] = 0x25;
  1585. pUpdateMsgSend[9] = 0x80;
  1586. pUpdateMsgSend[10] = 0x61; //check
  1587. pUpdateMsgSend[11] = 0xF5; //end flag
  1588. #ifdef USING_PRINTF1
  1589. printf("query:");
  1590. for(j=0;j<updateMsgSendLen;j++)
  1591. {
  1592. printf("%x ",pUpdateMsgSend[j]);
  1593. }
  1594. printf("\n");
  1595. #endif
  1596. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1597. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1598. printf("ret = %d\n",ret);
  1599. if(ret!=0)
  1600. {
  1601. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1602. {
  1603. if(pUpdateMsgRecv.cmd == 0x81)
  1604. {
  1605. if(pUpdateMsgRecv.data == 0x11)
  1606. {
  1607. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1608. errorCount = 0;
  1609. }
  1610. else
  1611. {
  1612. errorCount++;
  1613. }
  1614. }
  1615. else
  1616. {
  1617. errorCount++;
  1618. }
  1619. }
  1620. else
  1621. {
  1622. errorCount++;
  1623. }
  1624. }
  1625. else
  1626. {
  1627. errorCount++;
  1628. }
  1629. if(errorCount>10)
  1630. {
  1631. updateStep = UPDATE_STEP_RESET;
  1632. errorCount = 0;
  1633. }
  1634. #ifdef USING_PRINTF1
  1635. //printf("update step:%d\n",updateStep);
  1636. printf("query:");
  1637. for(j=0;j<updateMsgSendLen;j++)
  1638. {
  1639. printf("%x ",pUpdateMsgSend[j]);
  1640. }
  1641. printf("\nanswer:");
  1642. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1643. {
  1644. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1645. }
  1646. printf("\n");
  1647. printf("next update step:%d\n",updateStep);
  1648. #endif
  1649. osDelay(50);
  1650. break;
  1651. case UPDATE_STEP_PREPARE_SEND_DATA_LEN:
  1652. printf("start step %d\n",updateStep);
  1653. dataLen = 1;
  1654. updateMsgSendLen = 8;
  1655. pUpdateMsgSend[0] = 0xEB; //start flag
  1656. pUpdateMsgSend[1] = 0x01; //add flag
  1657. pUpdateMsgSend[2] = 0x00; //write
  1658. pUpdateMsgSend[3] = 0x04; //data len
  1659. pUpdateMsgSend[4] = 0x81; //cmd
  1660. pUpdateMsgSend[5] = 0x44; //data
  1661. pUpdateMsgSend[6] = 0xC9; //check
  1662. pUpdateMsgSend[7] = 0xF5; //end flag
  1663. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1664. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1665. if(ret!=0)
  1666. {
  1667. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1668. {
  1669. if(pUpdateMsgRecv.cmd == 0x81)
  1670. {
  1671. if(pUpdateMsgRecv.data == 0x11)
  1672. {
  1673. updateStep = UPDATE_STEP_SEND_DATA_LEN;
  1674. errorCount = 0;
  1675. }
  1676. else
  1677. {
  1678. errorCount++;
  1679. }
  1680. }
  1681. else
  1682. {
  1683. errorCount++;
  1684. }
  1685. }
  1686. else
  1687. {
  1688. errorCount++;
  1689. }
  1690. }
  1691. else
  1692. {
  1693. errorCount++;
  1694. }
  1695. if(errorCount>10)
  1696. {
  1697. updateStep = UPDATE_STEP_RESET;
  1698. errorCount = 0;
  1699. }
  1700. #ifdef USING_PRINTF1
  1701. //printf("update step:%d\n",updateStep);
  1702. printf("query:");
  1703. for(j=0;j<updateMsgSendLen;j++)
  1704. {
  1705. printf("%x ",pUpdateMsgSend[j]);
  1706. }
  1707. printf("\nanswer:");
  1708. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1709. {
  1710. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1711. }
  1712. printf("\n");
  1713. printf("next update step:%d\n",updateStep);
  1714. #endif
  1715. osDelay(50);
  1716. break;
  1717. case UPDATE_STEP_SEND_DATA_LEN:
  1718. dataLen = 4;
  1719. BSP_QSPI_Read_Safe(&updateDataTotalByteLen,FLASH_BMS_FOTA_START_ADDR,4);
  1720. updateDataTotalByteLen = (((updateDataTotalByteLen)&0xFF)<<24)|(((updateDataTotalByteLen>>8)&0xFF)<<16)|(((updateDataTotalByteLen>>16)&0xFF)<<8)|(((updateDataTotalByteLen>>24)&0xFF));
  1721. updateMsgSendLen = 11;
  1722. pUpdateMsgSend[0] = 0xEB; //start flag
  1723. pUpdateMsgSend[1] = 0x01; //add flag
  1724. pUpdateMsgSend[2] = 0x00; //write
  1725. pUpdateMsgSend[3] = 0x07; //data len
  1726. pUpdateMsgSend[4] = 0x82; //cmd
  1727. pUpdateMsgSend[5] = (updateDataTotalByteLen>>24)&0xFF; //data: package byte len
  1728. pUpdateMsgSend[6] = (updateDataTotalByteLen>>16)&0xFF;
  1729. pUpdateMsgSend[7] = (updateDataTotalByteLen>>8)&0xFF;
  1730. pUpdateMsgSend[8] = (updateDataTotalByteLen)&0xFF;
  1731. pUpdateMsgSend[9] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+2); //check sum
  1732. pUpdateMsgSend[10] = 0xF5; //end flag
  1733. memset((UINT8*)(&pUpdateMsgRecv),0,sizeof(BMS_Update_Recv_Msg_Type));
  1734. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1735. if(ret!=0)
  1736. {
  1737. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1738. {
  1739. if(pUpdateMsgRecv.cmd == 0x81)
  1740. {
  1741. if(pUpdateMsgRecv.data == 0x11)
  1742. {
  1743. updateStep = UPDATE_STEP_PREPARE_SEND_UPDATE_DATA;
  1744. errorCount = 0;
  1745. }
  1746. else
  1747. {
  1748. errorCount++;
  1749. }
  1750. }
  1751. else
  1752. {
  1753. errorCount++;
  1754. }
  1755. }
  1756. else
  1757. {
  1758. errorCount++;
  1759. }
  1760. }
  1761. else
  1762. {
  1763. errorCount++;
  1764. }
  1765. if(errorCount>10)
  1766. {
  1767. updateStep = UPDATE_STEP_RESET;
  1768. errorCount = 0;
  1769. }
  1770. #ifdef USING_PRINTF1
  1771. //printf("update step:%d\n",updateStep);
  1772. printf("query:");
  1773. for(j=0;j<updateMsgSendLen;j++)
  1774. {
  1775. printf("%x ",pUpdateMsgSend[j]);
  1776. }
  1777. printf("\nanswer:");
  1778. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1779. {
  1780. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1781. }
  1782. printf("\n");
  1783. printf("next update step:%d\n",updateStep);
  1784. #endif
  1785. osDelay(50);
  1786. break;
  1787. case UPDATE_STEP_PREPARE_SEND_UPDATE_DATA:
  1788. dataLen = 1;
  1789. updateMsgSendLen = 8;
  1790. pUpdateMsgSend[0] = 0xEB; //start flag
  1791. pUpdateMsgSend[1] = 0x01; //add flag
  1792. pUpdateMsgSend[2] = 0x00; //write
  1793. pUpdateMsgSend[3] = 0x04; //data len
  1794. pUpdateMsgSend[4] = 0x81; //cmd
  1795. pUpdateMsgSend[5] = 0x55; //data
  1796. pUpdateMsgSend[6] = 0xDA; //check
  1797. pUpdateMsgSend[7] = 0xF5; //end flag
  1798. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1799. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen,(UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1800. if(ret!=0)
  1801. {
  1802. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1803. {
  1804. if(pUpdateMsgRecv.cmd == 0x81)
  1805. {
  1806. if(pUpdateMsgRecv.data == 0x11)
  1807. {
  1808. updateStep = UPDATE_STEP_SEND_UPDATE_DATA;
  1809. errorCount = 0;
  1810. }
  1811. else
  1812. {
  1813. errorCount++;
  1814. }
  1815. }
  1816. else
  1817. {
  1818. errorCount++;
  1819. }
  1820. }
  1821. else
  1822. {
  1823. errorCount++;
  1824. }
  1825. }
  1826. else
  1827. {
  1828. errorCount++;
  1829. }
  1830. if(errorCount>10)
  1831. {
  1832. updateStep = UPDATE_STEP_RESET;
  1833. errorCount = 0;
  1834. }
  1835. #ifdef USING_PRINTF1
  1836. //printf("update step:%d\n",updateStep);
  1837. printf("query:");
  1838. for(j=0;j<updateMsgSendLen;j++)
  1839. {
  1840. printf("%x ",pUpdateMsgSend[j]);
  1841. }
  1842. printf("\nanswer:");
  1843. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1844. {
  1845. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1846. }
  1847. printf("\n");
  1848. printf("next update step:%d\n",updateStep);
  1849. #endif
  1850. osDelay(50);
  1851. break;
  1852. case UPDATE_STEP_SEND_UPDATE_DATA:
  1853. dataLen = 64;
  1854. updateMsgSendLen = 75;
  1855. for(currentPackage=0;currentPackage<updateDataTotalByteLen/64;currentPackage++)
  1856. {
  1857. currentPackageStartAddr = currentPackage*64;
  1858. pUpdateMsgSend[0] = 0xEB; //start flag
  1859. pUpdateMsgSend[1] = 0x01; //add flag
  1860. pUpdateMsgSend[2] = 0x00; //write
  1861. pUpdateMsgSend[3] = 0x47; //data len
  1862. pUpdateMsgSend[4] = 0x82; //cmd
  1863. pUpdateMsgSend[5] = (currentPackageStartAddr>>24)&0xFF;
  1864. pUpdateMsgSend[6] = (currentPackageStartAddr>>16)&0xFF;
  1865. pUpdateMsgSend[7] = (currentPackageStartAddr>>8)&0xFF;
  1866. pUpdateMsgSend[8] = currentPackageStartAddr&0xFF;
  1867. BSP_QSPI_Read_Safe(&pUpdateMsgSend[9], FLASH_BMS_FOTA_START_ADDR+4+currentPackage*dataLen, dataLen); //data
  1868. pUpdateMsgSend[8+dataLen+1] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+6); //check sum
  1869. pUpdateMsgSend[8+dataLen+2] = 0xF5; //end flag
  1870. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1871. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1872. if(ret!=0)
  1873. {
  1874. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1875. {
  1876. if(pUpdateMsgRecv.cmd == 0x81)
  1877. {
  1878. if(pUpdateMsgRecv.data == 0x11)
  1879. {
  1880. if(currentPackage+1 == updateDataTotalByteLen/64)
  1881. {
  1882. updateStep = UPDATE_STEP_SEND_DATA_END;
  1883. }
  1884. errorCount = 0;
  1885. }
  1886. else
  1887. {
  1888. errorCount++;
  1889. }
  1890. }
  1891. else
  1892. {
  1893. errorCount++;
  1894. }
  1895. }
  1896. else
  1897. {
  1898. errorCount++;
  1899. }
  1900. }
  1901. else
  1902. {
  1903. errorCount++;
  1904. }
  1905. if(errorCount>10)
  1906. {
  1907. updateStep = UPDATE_STEP_RESET;
  1908. errorCount = 0;
  1909. break;
  1910. }
  1911. #ifdef USING_PRINTF1
  1912. //printf("update step:%d\n",updateStep);
  1913. printf("query:");
  1914. for(j=0;j<updateMsgSendLen;j++)
  1915. {
  1916. printf("%x ",pUpdateMsgSend[j]);
  1917. }
  1918. printf("\nanswer:");
  1919. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1920. {
  1921. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1922. }
  1923. printf("\n");
  1924. printf("next update step:%d\n",updateStep);
  1925. #endif
  1926. }
  1927. osDelay(50);
  1928. break;
  1929. case UPDATE_STEP_SEND_DATA_END:
  1930. dataLen = 1;
  1931. updateMsgSendLen = 8;
  1932. pUpdateMsgSend[0] = 0xEB; //start flag
  1933. pUpdateMsgSend[1] = 0x01; //add flag
  1934. pUpdateMsgSend[2] = 0x00; //write
  1935. pUpdateMsgSend[3] = 0x04; //data len
  1936. pUpdateMsgSend[4] = 0x81; //cmd
  1937. pUpdateMsgSend[5] = 0x66; //data
  1938. pUpdateMsgSend[6] = 0xEB; //check
  1939. pUpdateMsgSend[7] = 0xF5; //end flag
  1940. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1941. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1942. if(ret!=0)
  1943. {
  1944. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1945. {
  1946. if(pUpdateMsgRecv.cmd == 0x81)
  1947. {
  1948. if(pUpdateMsgRecv.data == 0x11)
  1949. {
  1950. updateStep = UPDATE_STEP_START_INSTALL;
  1951. errorCount = 0;
  1952. }
  1953. else
  1954. {
  1955. errorCount++;
  1956. }
  1957. }
  1958. else
  1959. {
  1960. errorCount++;
  1961. }
  1962. }
  1963. else
  1964. {
  1965. errorCount++;
  1966. }
  1967. }
  1968. else
  1969. {
  1970. errorCount++;
  1971. }
  1972. if(errorCount>10)
  1973. {
  1974. updateStep = UPDATE_STEP_RESET;
  1975. errorCount = 0;
  1976. }
  1977. #ifdef USING_PRINTF1
  1978. //printf("update step:%d\n",updateStep);
  1979. printf("query:");
  1980. for(j=0;j<updateMsgSendLen;j++)
  1981. {
  1982. printf("%x ",pUpdateMsgSend[j]);
  1983. }
  1984. printf("\nanswer:");
  1985. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1986. {
  1987. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1988. }
  1989. printf("\n");
  1990. printf("next update step:%d\n",updateStep);
  1991. #endif
  1992. osDelay(50);
  1993. break;
  1994. case UPDATE_STEP_START_INSTALL:
  1995. dataLen = 1;
  1996. updateMsgSendLen = 8;
  1997. pUpdateMsgSend[0] = 0xEB; //start flag
  1998. pUpdateMsgSend[1] = 0x01; //add flag
  1999. pUpdateMsgSend[2] = 0x00; //write
  2000. pUpdateMsgSend[3] = 0x04; //data len
  2001. pUpdateMsgSend[4] = 0x81; //cmd
  2002. pUpdateMsgSend[5] = 0x99; //data
  2003. pUpdateMsgSend[6] = 0x1E; //check
  2004. pUpdateMsgSend[7] = 0xF5; //end flag
  2005. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  2006. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  2007. updateStep = UPDATE_STEP_END;
  2008. #ifdef USING_PRINTF1
  2009. //printf("update step:%d\n",updateStep);
  2010. printf("query:");
  2011. for(j=0;j<updateMsgSendLen;j++)
  2012. {
  2013. printf("%x ",pUpdateMsgSend[j]);
  2014. }
  2015. printf("\nanswer:");
  2016. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  2017. {
  2018. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  2019. }
  2020. printf("\n");
  2021. printf("next update step:%d\n",updateStep);
  2022. #endif
  2023. osDelay(50);
  2024. break;
  2025. case UPDATE_STEP_END:
  2026. updateStep = UPDATE_STEP_CHECK_VERSION;
  2027. printf("update end\n");
  2028. bmsUpdateFlag = 0;
  2029. break;
  2030. case UPDATE_STEP_RESET:
  2031. dataLen = 1;
  2032. updateMsgSendLen = 8;
  2033. pUpdateMsgSend[0] = 0xEB; //start flag
  2034. pUpdateMsgSend[1] = 0x01; //add flag
  2035. pUpdateMsgSend[2] = 0x00; //write
  2036. pUpdateMsgSend[3] = 0x04; //data len
  2037. pUpdateMsgSend[4] = 0x81; //cmd
  2038. pUpdateMsgSend[5] = 0xAA; //data
  2039. pUpdateMsgSend[6] = 0x2F; //check
  2040. pUpdateMsgSend[7] = 0xF5; //end flag
  2041. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  2042. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  2043. osDelay(50);
  2044. resetCount++;
  2045. if(resetCount>=2)
  2046. {
  2047. updateStep = UPDATE_STEP_DOWNLOAD_BREAK_OFF;
  2048. resetCount = 0;
  2049. }
  2050. else
  2051. {
  2052. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  2053. }
  2054. #ifdef USING_PRINTF
  2055. printf("update error!!\n rest and start send data lenth again!!\n continue update!\n");
  2056. #endif
  2057. break;
  2058. case UPDATE_STEP_DOWNLOAD_BREAK_OFF:
  2059. dataLen = 1;
  2060. updateMsgSendLen = 8;
  2061. pUpdateMsgSend[0] = 0xEB; //start flag
  2062. pUpdateMsgSend[1] = 0x01; //add flag
  2063. pUpdateMsgSend[2] = 0x00; //write
  2064. pUpdateMsgSend[3] = 0x04; //data len
  2065. pUpdateMsgSend[4] = 0x81; //cmd
  2066. pUpdateMsgSend[5] = 0xBB; //data
  2067. pUpdateMsgSend[6] = 0x40; //check
  2068. pUpdateMsgSend[7] = 0xF5; //end flag
  2069. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  2070. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  2071. osDelay(50);
  2072. updateStep = UPDATE_STEP_CHECK_VERSION;
  2073. Cycle_conut++;
  2074. break;
  2075. case UPDATE_STEP_ERROR:
  2076. updateStep = UPDATE_STEP_CHECK_VERSION;
  2077. printf("update error end\n");
  2078. bmsUpdateFlag = 0;
  2079. break;
  2080. default:
  2081. updateStep = UPDATE_STEP_CHECK_VERSION;
  2082. printf("update default end\n");
  2083. bmsUpdateFlag = 0;
  2084. break;
  2085. }
  2086. }
  2087. }
  2088. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  2089. {
  2090. UINT8 timeCount = 0;
  2091. UINT8 j=0;
  2092. USARTdrv->Send(pSend,sendLen);
  2093. #ifdef USING_PRINTF
  2094. printf("query in:");
  2095. for(j=0;j<sendLen;j++)
  2096. {
  2097. printf("%x ",*(pSend+j));
  2098. }
  2099. printf("\n");
  2100. #endif
  2101. if(readLen>0)
  2102. {
  2103. USARTdrv->Receive(pRead,readLen);
  2104. while((isRecvTimeout == false) && (isRecvComplete == false))
  2105. {
  2106. timeCount++;
  2107. osDelay(100);
  2108. if (timeCount>=timeout/100)
  2109. {
  2110. timeCount =0;
  2111. isRecvTimeout = true;
  2112. break;
  2113. }
  2114. }
  2115. #ifdef USING_PRINTF
  2116. printf("\nanswer in:");
  2117. for(j=0;j<readLen;j++)
  2118. {
  2119. printf("%x ",*(pRead+j));
  2120. }
  2121. printf("\n");
  2122. #endif
  2123. if (isRecvComplete == true)
  2124. {
  2125. isRecvComplete = false;
  2126. if(*(pRead+0)!=0xEB)
  2127. {
  2128. USARTdrv->Uninitialize();
  2129. osDelay(100);
  2130. USARTdrv->Initialize(USART_callback);
  2131. USARTdrv->PowerControl(ARM_POWER_FULL);
  2132. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  2133. ARM_USART_DATA_BITS_8 |
  2134. ARM_USART_PARITY_NONE |
  2135. ARM_USART_STOP_BITS_1 |
  2136. ARM_USART_FLOW_CONTROL_NONE, 9600);
  2137. #ifdef USING_PRINTF
  2138. printf("\nuart reset in \n");
  2139. #endif
  2140. return 0;
  2141. }
  2142. return readLen;
  2143. }
  2144. else
  2145. {
  2146. memset(pRead,0x00,readLen);
  2147. isRecvTimeout = false;
  2148. return 0;
  2149. }
  2150. }
  2151. else
  2152. {
  2153. return 1;
  2154. }
  2155. }
  2156. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len)
  2157. {
  2158. UINT8 ret = 0;
  2159. UINT8 i=0;
  2160. for(i=0;i<len;i++)
  2161. {
  2162. ret +=*(pSendData+i);
  2163. }
  2164. return ret&0xFF;
  2165. }
  2166. //________________________________________________________________________________
  2167. updateBMSStatus MS_BMS_Update_Service() //美顺BMS升级服务
  2168. {
  2169. #ifdef USING_PRINTF
  2170. UINT8 ii = 0;
  2171. #endif
  2172. UINT8 errorCount = 0;
  2173. UINT16 currentPackage = 0;
  2174. UINT32 updateDataTotalByteLen = 0;
  2175. UINT16 updateDataPackageCount = 0;
  2176. UINT8 ReadNVMTemp[64];
  2177. UpdateStep_MS_BMS updateStep = MS_UPDATE_STEP_SEND_FIRMWARE_UPDATE_REQUEST_AND_JUMP_TO_BOOTLOADER;
  2178. UINT16 i,j=0;
  2179. UINT8 dataLen = 0;
  2180. UINT8 ret0 = 0;
  2181. updateBMSStatus ret = updateFailed;
  2182. UINT8 pUpdateMsgSend[80];
  2183. UINT32 updateMsgSendLen = 0;
  2184. UINT32 updateMsgReadLen = 0;
  2185. BOOL bmsUpdateFlag = TRUE;
  2186. UINT8 bmsAnswerMsg[8];
  2187. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  2188. UINT8 Cycle_conut = 0;
  2189. UINT16 CRCtemp = 0;
  2190. UINT8 headerLen = 5;
  2191. UINT8 checkSum = 0x00;
  2192. UINT8 checkSumCal = 0x00;
  2193. UINT8 tempLen = 0x00;
  2194. BSP_QSPI_Read_Safe(&checkSum,FLASH_BMS_FOTA_START_ADDR,1);
  2195. memset(ReadNVMTemp, 0, 64);
  2196. BSP_QSPI_Read_Safe(ReadNVMTemp, FLASH_BMS_FOTA_START_ADDR+1, 4); //data
  2197. updateDataTotalByteLen = ((ReadNVMTemp[0]<<24)&0xFF000000) | ((ReadNVMTemp[1]<<16)&0xFF0000) | ((ReadNVMTemp[2]<<8)&0xFF00) | (ReadNVMTemp[3]&0xFF) ;
  2198. updateDataPackageCount = (updateDataTotalByteLen+(64-1))/64; //进一法 e = (a+(b-1))/b
  2199. for(i=0; i<((updateDataTotalByteLen+headerLen-1)+(64-1))/64;i++)//
  2200. {
  2201. memset(ReadNVMTemp, 0, 64);
  2202. if((i+1)*64 <= (updateDataTotalByteLen+headerLen-1))
  2203. {
  2204. tempLen = 64;
  2205. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+1+i*64,64);
  2206. }
  2207. else
  2208. {
  2209. tempLen = (updateDataTotalByteLen+headerLen-1) - i*64;
  2210. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+1+i*64,tempLen);
  2211. }
  2212. for(j = 0; j< tempLen; j++)
  2213. {
  2214. checkSumCal = (checkSumCal + ReadNVMTemp[j]) & 0xFF;
  2215. }
  2216. osDelay(10);
  2217. }
  2218. if(checkSum != checkSumCal)
  2219. {
  2220. #ifdef USING_PRINTF
  2221. printf("checksum error: checksum = %x, checksumCal = %x\n",checkSum,checkSumCal);
  2222. #endif
  2223. ret = updateErrorCheckSumError;
  2224. return ret;
  2225. }
  2226. else
  2227. {
  2228. #ifdef USING_PRINTF
  2229. printf("checksum OK: checksum = %x, checksumCal = %x\n",checkSum,checkSumCal);
  2230. #endif
  2231. }
  2232. #ifdef USING_PRINTF
  2233. printf(" bmsUpdateFlag = %x, Cycle_conut = %x\n",bmsUpdateFlag,Cycle_conut);
  2234. #endif
  2235. while(bmsUpdateFlag && Cycle_conut<2)
  2236. {
  2237. #ifdef USING_PRINTF
  2238. printf("update ms bms step %d\n:",updateStep);
  2239. #endif
  2240. switch (updateStep)
  2241. {
  2242. case MS_UPDATE_STEP_SEND_FIRMWARE_UPDATE_REQUEST_AND_JUMP_TO_BOOTLOADER: //0x01
  2243. dataLen = 0x00;
  2244. updateMsgSendLen = 6+dataLen;
  2245. updateMsgReadLen = 8;
  2246. pUpdateMsgSend[0] = 0x01; //node byte
  2247. pUpdateMsgSend[1] = 0x40; //func byte
  2248. pUpdateMsgSend[2] = updateStep; //cmd byte
  2249. pUpdateMsgSend[3] = dataLen; //data len
  2250. //no data type
  2251. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2252. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2253. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2254. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2255. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 1000);
  2256. #ifdef USING_PRINTF
  2257. printf("update step 1 answer,updateMsgReadLen = %x:\n",updateMsgReadLen);
  2258. for(ii=0;ii<updateMsgReadLen;ii++)
  2259. printf("%x ",bmsAnswerMsg[ii]);
  2260. printf("\nret0 = %d",ret0);
  2261. printf("\n");
  2262. #endif
  2263. if(ret0!=0)
  2264. {
  2265. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2266. {
  2267. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_FIRMWARE_UPDATE_REQUEST_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x02, answer data len:0x02
  2268. {
  2269. if(bmsAnswerMsg[4] == 0x00) //answer data byte1
  2270. {
  2271. if(bmsAnswerMsg[5] == 0x00) //answer data byte2
  2272. {
  2273. updateStep = MS_UPDATE_STEP_SEND_FIRMWARE_INFO;
  2274. errorCount = 0;
  2275. }
  2276. }
  2277. else if(bmsAnswerMsg[4] == 0x01) //不允许升级
  2278. {
  2279. if(bmsAnswerMsg[5] == 0x01)//电量过低
  2280. {
  2281. updateStep = MS_UPDATE_STEP_ERROR;
  2282. ret = updateErrorBMSPowerLow;
  2283. }
  2284. else if(bmsAnswerMsg[5] == 0x02)//电池存在保护状态不允许升级
  2285. {
  2286. updateStep = MS_UPDATE_STEP_ERROR;
  2287. ret = updateErrorBMSWarningProtect;
  2288. }
  2289. else if(bmsAnswerMsg[5] == 0x03) //不支持升级
  2290. {
  2291. updateStep = MS_UPDATE_STEP_ERROR;
  2292. ret = updateErrorBMSNotSurport;
  2293. }
  2294. else if(bmsAnswerMsg[5] == 0x04) //当前电池处于充放电状态
  2295. {
  2296. updateStep = MS_UPDATE_STEP_ERROR;
  2297. ret = updateErrorBMSWorkState;
  2298. }
  2299. else
  2300. {
  2301. errorCount++;
  2302. }
  2303. }
  2304. }
  2305. else
  2306. {
  2307. errorCount++;
  2308. }
  2309. }
  2310. else
  2311. {
  2312. errorCount++;
  2313. }
  2314. }
  2315. else
  2316. {
  2317. errorCount++;
  2318. }
  2319. if(errorCount>10)
  2320. {
  2321. updateStep = MS_UPDATE_STEP_ERROR;
  2322. errorCount = 0;
  2323. }
  2324. osDelay(50);
  2325. printf(" step 1 ret = %d\n",ret);
  2326. break;
  2327. case MS_UPDATE_STEP_SEND_FIRMWARE_INFO: //0x03
  2328. dataLen = 52;
  2329. updateMsgSendLen = 6+dataLen;
  2330. updateMsgReadLen = 7;
  2331. pUpdateMsgSend[0] = 0x01; //node byte
  2332. pUpdateMsgSend[1] = 0x40; //func byte
  2333. pUpdateMsgSend[2] = updateStep; //cmd byte
  2334. pUpdateMsgSend[3] = dataLen; //data len
  2335. memset(ReadNVMTemp, 0, 64);
  2336. BSP_QSPI_Read_Safe(ReadNVMTemp, FLASH_BMS_FOTA_START_ADDR+headerLen, 16); //data
  2337. MEMCPY(&pUpdateMsgSend[4], ReadNVMTemp, 16); //厂家信息,未开启校验
  2338. MEMCPY(&pUpdateMsgSend[4+16], ReadNVMTemp, 16); //保护板硬件序列号,未开启校验
  2339. pUpdateMsgSend[4+16*2 + 0] = (updateDataTotalByteLen>>24)&0xFF; //固件包大小
  2340. pUpdateMsgSend[4+16*2 + 1] = (updateDataTotalByteLen>>16)&0xFF;
  2341. pUpdateMsgSend[4+16*2 + 2] = (updateDataTotalByteLen>>8)&0xFF;
  2342. pUpdateMsgSend[4+16*2 + 3] = (updateDataTotalByteLen)&0xFF;
  2343. MEMCPY(&pUpdateMsgSend[4+16*2+4], ReadNVMTemp, 16); // 固件包头信息,未开启校验
  2344. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2345. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2346. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2347. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2348. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 1000);
  2349. #ifdef USING_PRINTF
  2350. printf("update step 3 answer:\n");
  2351. for(ii=0;ii<updateMsgReadLen;ii++)
  2352. printf("%x ",bmsAnswerMsg[ii]);
  2353. printf("\nret0 = %d",ret0);
  2354. printf("\n");
  2355. #endif
  2356. if(ret0!=0)
  2357. {
  2358. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2359. {
  2360. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_FIRMWARE_INFO_CHECK_AND_UPDATE_REQEST_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x04, answer data len:0x01
  2361. {
  2362. if(bmsAnswerMsg[4] == 0x00) //answer data byte1
  2363. {
  2364. updateStep = MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST;
  2365. errorCount = 0;
  2366. }
  2367. else if(bmsAnswerMsg[4] == 0x01) //厂家信息错误
  2368. {
  2369. errorCount++;
  2370. ret = updateErrorFirmwareInfoError;
  2371. }
  2372. else if(bmsAnswerMsg[4] == 0x02) //硬件序列号不匹配
  2373. {
  2374. errorCount++;
  2375. ret = updateErrorFirmwareInfoError;
  2376. }
  2377. else if(bmsAnswerMsg[4] == 0x03) //固件大小超出范围
  2378. {
  2379. errorCount++;
  2380. ret = updateErrorFirmwareSizeError;
  2381. }
  2382. else if(bmsAnswerMsg[4] == 0x04) //固件包头信息错误
  2383. {
  2384. errorCount++;
  2385. ret = updateErrorFirmwareInfoError;
  2386. }
  2387. else
  2388. {
  2389. errorCount++;
  2390. }
  2391. }
  2392. else
  2393. {
  2394. errorCount++;
  2395. }
  2396. }
  2397. else
  2398. {
  2399. errorCount++;
  2400. }
  2401. }
  2402. else
  2403. {
  2404. errorCount++;
  2405. }
  2406. if(errorCount>10)
  2407. {
  2408. updateStep = MS_UPDATE_STEP_ERROR;
  2409. errorCount = 0;
  2410. }
  2411. printf(" step 3 ret = %d\n",ret);
  2412. osDelay(50);
  2413. break;
  2414. case MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST: //0x05
  2415. dataLen = 0;
  2416. updateMsgSendLen = 6+dataLen;
  2417. updateMsgReadLen = 8;
  2418. pUpdateMsgSend[0] = 0x01; //node byte
  2419. pUpdateMsgSend[1] = 0x40; //func byte
  2420. pUpdateMsgSend[2] = updateStep; //cmd byte
  2421. pUpdateMsgSend[3] = dataLen; //data len
  2422. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2423. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2424. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2425. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2426. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 1000);
  2427. #ifdef USING_PRINTF
  2428. printf("update step 5 answer:\n");
  2429. for(ii=0;ii<updateMsgReadLen;ii++)
  2430. printf("%x ",bmsAnswerMsg[ii]);
  2431. printf("\nret0 = %d",ret0);
  2432. printf("\n");
  2433. #endif
  2434. if(ret0!=0)
  2435. {
  2436. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2437. {
  2438. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_EREASE_FLASH_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x06, answer data len:0x02
  2439. {
  2440. if(bmsAnswerMsg[4] == 0x00) //answer data byte1, erease successed
  2441. {
  2442. updateStep = MS_UPDATE_STEP_SEND_UPDATE_DATA; //0x07
  2443. errorCount = 0;
  2444. }
  2445. else if(bmsAnswerMsg[4] == 0x01) //擦除失败
  2446. {
  2447. errorCount++;
  2448. ret = updateErrorAppErease;
  2449. }
  2450. else
  2451. {
  2452. errorCount++;
  2453. }
  2454. }
  2455. else
  2456. {
  2457. errorCount++;
  2458. }
  2459. }
  2460. else
  2461. {
  2462. errorCount++;
  2463. }
  2464. }
  2465. else
  2466. {
  2467. errorCount++;
  2468. }
  2469. if(errorCount>10)
  2470. {
  2471. updateStep = MS_UPDATE_STEP_ERROR;
  2472. errorCount = 0;
  2473. }
  2474. osDelay(50);
  2475. break;
  2476. case MS_UPDATE_STEP_SEND_UPDATE_DATA: //0x07
  2477. updateMsgReadLen = 7;
  2478. pUpdateMsgSend[0] = 0x01; //node byte
  2479. pUpdateMsgSend[1] = 0x40; //func byte
  2480. pUpdateMsgSend[2] = updateStep; //cmd byte
  2481. for(i = 0; i < updateDataPackageCount ; i++ )
  2482. {
  2483. memset(ReadNVMTemp, 0, 64);
  2484. if((i+1)*64 <= (updateDataTotalByteLen))
  2485. {
  2486. tempLen = 64;
  2487. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+headerLen+i*64,64);
  2488. }
  2489. else
  2490. {
  2491. tempLen = (updateDataTotalByteLen) - i*64;//
  2492. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+headerLen+i*64,tempLen);
  2493. }
  2494. CRCtemp = MS_BMS_Update_CRC16(ReadNVMTemp, tempLen);
  2495. dataLen = tempLen+6; //data len =count(2+2 byte) + crc(2byte) + update data len
  2496. updateMsgSendLen = 6+dataLen; // updateMsgSendLen = data len + header len(6byte)
  2497. pUpdateMsgSend[3] = dataLen; //data len
  2498. pUpdateMsgSend[4] = ((i+1)>>8)&0xFF; //当前包序号,大端模式
  2499. pUpdateMsgSend[5] = (i+1)&0xFF;
  2500. pUpdateMsgSend[6] = (updateDataPackageCount>>8)&0xFF;
  2501. pUpdateMsgSend[7] = updateDataPackageCount&0xFF;
  2502. pUpdateMsgSend[8] = (CRCtemp>>8)&0xFF; // data CRC High
  2503. pUpdateMsgSend[9] = CRCtemp&0xFF; //data CRC Low
  2504. MEMCPY(&pUpdateMsgSend[4+6], ReadNVMTemp, 64); //升级数据,64字节
  2505. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2506. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2507. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2508. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2509. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 1000);
  2510. #ifdef USING_PRINTF
  2511. printf("update step 7 answer:\n");
  2512. for(ii=0;ii<updateMsgReadLen;ii++)
  2513. printf("%x ",bmsAnswerMsg[ii]);
  2514. printf("\nret0 = %d",ret0);
  2515. printf("\n");
  2516. #endif
  2517. if(ret0!=0)
  2518. {
  2519. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2520. {
  2521. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_UPDATE_DATA_WRITE_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x04, answer data len:0x01
  2522. {
  2523. if(bmsAnswerMsg[4] == 0x00) //answer data byte1,接收并操作成功
  2524. {
  2525. updateStep = MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST;
  2526. errorCount = 0;
  2527. }
  2528. else if(bmsAnswerMsg[4] == 0x01) //固件块校验失败
  2529. {
  2530. errorCount=10;
  2531. ret = updateErrorPackageCRC;
  2532. }
  2533. else if(bmsAnswerMsg[4] == 0x02) //烧写失败
  2534. {
  2535. errorCount=10;
  2536. ret = updateErrorPackageWrite;
  2537. }
  2538. else if(bmsAnswerMsg[4] == 0x03) //固件块编号异常
  2539. {
  2540. errorCount=10;
  2541. ret = updateErrorPackageNo;
  2542. }
  2543. else
  2544. {
  2545. errorCount=10;
  2546. }
  2547. }
  2548. else
  2549. {
  2550. errorCount=10;
  2551. }
  2552. }
  2553. else
  2554. {
  2555. errorCount=10;
  2556. }
  2557. }
  2558. else
  2559. {
  2560. errorCount=10;
  2561. }
  2562. if(errorCount>=10)
  2563. {
  2564. updateStep = MS_UPDATE_STEP_ERROR;
  2565. errorCount = 0;
  2566. i--;
  2567. break;
  2568. }
  2569. osDelay(50);
  2570. }
  2571. if(i == updateDataPackageCount)
  2572. {
  2573. updateStep = MS_UPDATE_STEP_SEND_UPDATE_DATA_END_AND_JUMP_TO_APP;
  2574. }
  2575. break;
  2576. case MS_UPDATE_STEP_SEND_UPDATE_DATA_END_AND_JUMP_TO_APP: //0x09
  2577. dataLen = 0x00;
  2578. updateMsgSendLen = 6+dataLen;
  2579. updateMsgReadLen = 7;
  2580. pUpdateMsgSend[0] = 0x01; //node byte
  2581. pUpdateMsgSend[1] = 0x40; //func byte
  2582. pUpdateMsgSend[2] = updateStep; //cmd byte
  2583. pUpdateMsgSend[3] = dataLen; //data len
  2584. //no data type
  2585. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2586. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2587. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2588. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2589. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 1000);
  2590. #ifdef USING_PRINTF
  2591. printf("update step 9 answer:\n");
  2592. for(ii=0;ii<updateMsgReadLen;ii++)
  2593. printf("%x ",bmsAnswerMsg[ii]);
  2594. printf("\nret0 = %d",ret0);
  2595. printf("\n");
  2596. #endif
  2597. if(ret0!=0)
  2598. {
  2599. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2600. {
  2601. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_JUMP_TO_APP_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x0A, answer data len:0x01
  2602. {
  2603. if(bmsAnswerMsg[4] == 0x00) //answer data byte1, update succeed
  2604. {
  2605. errorCount = 0;
  2606. updateStep = MS_UPDATE_STEP_READ_CURRENT_RUNNING_MODE; //0x0B
  2607. }
  2608. else if(bmsAnswerMsg[4] == 0x01) //升级失败
  2609. {
  2610. errorCount = 10;
  2611. ret = updateFailed;
  2612. }
  2613. }
  2614. else
  2615. {
  2616. errorCount++;
  2617. }
  2618. }
  2619. else
  2620. {
  2621. errorCount++;
  2622. }
  2623. }
  2624. else
  2625. {
  2626. errorCount++;
  2627. }
  2628. if(errorCount>=10)
  2629. {
  2630. updateStep = MS_UPDATE_STEP_ERROR;
  2631. errorCount = 0;
  2632. }
  2633. osDelay(50);
  2634. break;
  2635. case MS_UPDATE_STEP_READ_CURRENT_RUNNING_MODE: //0x0B
  2636. dataLen = 0x00;
  2637. updateMsgSendLen = 6+dataLen;
  2638. updateMsgReadLen = 8;
  2639. pUpdateMsgSend[0] = 0x01; //node byte
  2640. pUpdateMsgSend[1] = 0x40; //func byte
  2641. pUpdateMsgSend[2] = updateStep; //cmd byte
  2642. pUpdateMsgSend[3] = dataLen; //data len
  2643. //no data type
  2644. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2645. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2646. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2647. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2648. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 1000);
  2649. #ifdef USING_PRINTF
  2650. printf("update step A answer:\n");
  2651. for(ii=0;ii<updateMsgReadLen;ii++)
  2652. printf("%x ",bmsAnswerMsg[ii]);
  2653. printf("\nret0 = %d",ret0);
  2654. printf("\n");
  2655. #endif
  2656. if(ret0!=0)
  2657. {
  2658. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2659. {
  2660. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_CURRENT_RUNNING_MODE_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x0C, answer data len:0x02
  2661. {
  2662. if(bmsAnswerMsg[4] == 0x01) //answer data byte1, update succeed, app is running
  2663. {
  2664. errorCount = 0;
  2665. updateStep = MS_UPDATE_STEP_END;
  2666. }
  2667. else if(bmsAnswerMsg[4] == 0x00) //update failed , boot is running,error
  2668. {
  2669. errorCount = 10;
  2670. }
  2671. }
  2672. else
  2673. {
  2674. errorCount++;
  2675. }
  2676. }
  2677. else
  2678. {
  2679. errorCount++;
  2680. }
  2681. }
  2682. else
  2683. {
  2684. errorCount++;
  2685. }
  2686. if(errorCount>=3)
  2687. {
  2688. updateStep = MS_UPDATE_STEP_ERROR;
  2689. errorCount = 0;
  2690. }
  2691. osDelay(50);
  2692. break;
  2693. case MS_UPDATE_STEP_END: //0x0D
  2694. errorCount = 0;
  2695. bmsUpdateFlag = FALSE;
  2696. ret = updateOK;
  2697. break;
  2698. case MS_UPDATE_STEP_ERROR: //0x0E
  2699. errorCount = 0;
  2700. bmsUpdateFlag = true;
  2701. Cycle_conut++;
  2702. if(Cycle_conut>2)
  2703. {
  2704. ret = updateErrorTimeout;
  2705. bmsUpdateFlag = FALSE;
  2706. }
  2707. break;
  2708. default:
  2709. bmsUpdateFlag = FALSE;
  2710. break;
  2711. }
  2712. }
  2713. #ifdef USING_PRINTF
  2714. printf("last ret = %x\n",ret);
  2715. #endif
  2716. return ret;
  2717. }
  2718. UINT8 MS_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  2719. {
  2720. UINT8 timeCount = 0;
  2721. UINT8 j=0;
  2722. USARTdrv->Send(pSend,sendLen);
  2723. #ifdef USING_PRINTF
  2724. printf("query in:");
  2725. for(j=0;j<sendLen;j++)
  2726. {
  2727. printf("%x ",*(pSend+j));
  2728. }
  2729. printf("\n");
  2730. #endif
  2731. if(readLen>0)
  2732. {
  2733. USARTdrv->Receive(pRead,readLen);
  2734. while((isRecvTimeout == false) && (isRecvComplete == false))
  2735. {
  2736. timeCount++;
  2737. osDelay(100);
  2738. if (timeCount>=timeout/100)
  2739. {
  2740. timeCount =0;
  2741. isRecvTimeout = true;
  2742. break;
  2743. }
  2744. }
  2745. #ifdef USING_PRINTF
  2746. printf("\nanswer in:");
  2747. for(j=0;j<readLen;j++)
  2748. {
  2749. printf("%x ",*(pRead+j));
  2750. }
  2751. printf("\n");
  2752. #endif
  2753. if (isRecvComplete == true)
  2754. {
  2755. isRecvComplete = false;
  2756. if(*(pRead+0)!=0x01)
  2757. {
  2758. USARTdrv->Uninitialize();
  2759. osDelay(100);
  2760. USARTdrv->Initialize(USART_callback);
  2761. USARTdrv->PowerControl(ARM_POWER_FULL);
  2762. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  2763. ARM_USART_DATA_BITS_8 |
  2764. ARM_USART_PARITY_NONE |
  2765. ARM_USART_STOP_BITS_1 |
  2766. ARM_USART_FLOW_CONTROL_NONE, 9600);
  2767. #ifdef USING_PRINTF
  2768. printf("\nuart reset in \n");
  2769. #endif
  2770. return 0;
  2771. }
  2772. return readLen;
  2773. }
  2774. else
  2775. {
  2776. memset(pRead,0x00,readLen);
  2777. isRecvTimeout = false;
  2778. return 0;
  2779. }
  2780. }
  2781. else
  2782. {
  2783. return 1;
  2784. }
  2785. }
  2786. static void __invert_uint8(UINT8* dBuf, UINT8* srcBuf)
  2787. {
  2788. int i;
  2789. UINT8 tmp[4];
  2790. tmp[0] = 0;
  2791. for (i = 0;i < 8;i++)
  2792. {
  2793. if(srcBuf[0] & (1 << i))
  2794. {
  2795. tmp[0] |= 1<<(7-i);
  2796. }
  2797. }
  2798. dBuf[0] = tmp[0];
  2799. }
  2800. static void __invert_uint16(UINT16* dBuf, UINT16* srcBuf)
  2801. {
  2802. int i;
  2803. UINT16 tmp[4];
  2804. tmp[0] = 0;
  2805. for (i = 0;i < 16;i++)
  2806. {
  2807. if(srcBuf[0] & (1 << i))
  2808. {
  2809. tmp[0] |= 1 << (15 - i);
  2810. }
  2811. }
  2812. dBuf[0] = tmp[0];
  2813. }
  2814. UINT16 MS_BMS_Update_CRC16(UINT8* pSendData,UINT16 len)
  2815. {
  2816. UINT16 wCRCin = 0xFFFF;
  2817. UINT16 wCPoly = 0x8005;
  2818. UINT8 wChar = 0;
  2819. UINT16 crc_rslt = 0;
  2820. int i;
  2821. while (len--)
  2822. {
  2823. wChar = *(pSendData++);
  2824. __invert_uint8(&wChar, &wChar);
  2825. wCRCin ^= (wChar << 8);
  2826. for (i = 0;i < 8;i++)
  2827. {
  2828. if(wCRCin & 0x8000)
  2829. {
  2830. wCRCin = (wCRCin << 1) ^ wCPoly;
  2831. }
  2832. else
  2833. {
  2834. wCRCin = wCRCin << 1;
  2835. }
  2836. }
  2837. }
  2838. __invert_uint16(&wCRCin, &wCRCin);
  2839. crc_rslt = ((wCRCin << 8) & 0xFF00) | ((wCRCin >> 8) & 0x00FF);
  2840. return (crc_rslt);
  2841. }
  2842. UINT8 BmsErrorDecode(UINT32 battWarningState)
  2843. {
  2844. UINT16 ErrorNumTemp;
  2845. UINT8 ret;
  2846. if(battWarningState==0)
  2847. {
  2848. return 0;
  2849. }
  2850. else
  2851. {
  2852. if(osOK==osMutexAcquire(Error_Mutex, 100))
  2853. {
  2854. ret = ((battWarningState) & 0x01) == 1 ;
  2855. if (ret)
  2856. {
  2857. ErrorNumTemp = 7;
  2858. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2859. //str += "ERROR:存在电芯过放告警故障!!\n";单体电压过低
  2860. }
  2861. ret = ((battWarningState >> 1) & 0x01) == 1 ;
  2862. if (ret)
  2863. {
  2864. ErrorNumTemp = 10;
  2865. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2866. //str += "ERROR:存在总电压过放告警故障!!\n";总电压过低
  2867. }
  2868. ret = ((battWarningState >> 2) & 0x01) == 1 ;
  2869. if (ret)
  2870. {
  2871. ErrorNumTemp = 8;
  2872. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2873. //str += "ERROR:存在电芯过压告警故障!!\n";
  2874. }
  2875. ret = ((battWarningState >> 3) & 0x01) == 1 ;
  2876. if (ret)
  2877. {
  2878. ErrorNumTemp = 11;
  2879. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2880. //str += "ERROR:存在总电压过压告警故障!!\n";
  2881. }
  2882. ret = ((battWarningState >> 4) & 0x01) == 1 ;
  2883. if (ret)
  2884. {
  2885. ErrorNumTemp = 12;
  2886. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2887. //str += "ERROR:存在放电过流告警故障!!\n";
  2888. }
  2889. ret = ((battWarningState >> 5) & 0x01) == 1 ;
  2890. if (ret)
  2891. {
  2892. ErrorNumTemp = 13;
  2893. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2894. //str += "ERROR:存在充电过流告警故障!!\n";
  2895. }
  2896. ret = ((battWarningState >> 6) & 0x01) == 1 ;
  2897. if (ret)
  2898. {
  2899. ErrorNumTemp = 2;
  2900. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2901. //str += "ERROR:存在放电过温告警故障!!\n";
  2902. }
  2903. ret = ((battWarningState >> 7) & 0x01) == 1 ;
  2904. if (ret)
  2905. {
  2906. ErrorNumTemp = 2;
  2907. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2908. //str += "ERROR:存在充电过温告警故障!!\n";
  2909. }
  2910. ret = ((battWarningState >> 8) & 0x01) == 1 ;
  2911. if (ret)
  2912. {
  2913. //str += "ERROR:存在环境高温告警故障!!\n";
  2914. }
  2915. ret = ((battWarningState >> 9) & 0x01) == 1 ;
  2916. if (ret)
  2917. {
  2918. //str += "ERROR:存在环境低温告警故障!!\n";
  2919. }
  2920. ret = ((battWarningState >> 10) & 0x01) == 1 ;
  2921. if (ret)
  2922. {
  2923. ErrorNumTemp = 27;
  2924. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2925. //str += "ERROR:存在battSOC低告警故障!!\n";
  2926. }
  2927. ret = ((battWarningState >> 11) & 0x01) == 1 ;
  2928. if (ret)
  2929. {
  2930. ErrorNumTemp = 3;
  2931. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2932. //str += "ERROR:存在MOS高温告警故障!!\n";
  2933. }
  2934. ret = ((battWarningState >> 16) & 0x01) == 1;
  2935. if (ret)
  2936. {
  2937. ErrorNumTemp = 18;
  2938. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2939. //str += "ERROR:存在温度采集失效/传感器故障!!\n";
  2940. }
  2941. ret = ((battWarningState >> 17) & 0x01) == 1;
  2942. if (ret)
  2943. {
  2944. ErrorNumTemp = 19;
  2945. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2946. //str += "ERROR:存在电压采集失效/断线故障!!\n";
  2947. }
  2948. ret = ((battWarningState >> 18) & 0x01) == 1;
  2949. if (ret)
  2950. {
  2951. ErrorNumTemp = 17;
  2952. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2953. //str += "ERROR:存在放电MOS失效故障!!\n";
  2954. }
  2955. ret = ((battWarningState >> 19) & 0x01) == 1;
  2956. if (ret)
  2957. {
  2958. ErrorNumTemp = 16;
  2959. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2960. //str += "ERROR:存在充电MOS失效故障!!\n";
  2961. }
  2962. ret = ((battWarningState >> 20) & 0x01) == 1;
  2963. if (ret)
  2964. {
  2965. if(battSOC>95)
  2966. {
  2967. ErrorNumTemp = 22;
  2968. }
  2969. else
  2970. {
  2971. ErrorNumTemp = 0;
  2972. }
  2973. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2974. //str += "ERROR:存在电芯不均衡告警!!\n";
  2975. }
  2976. ret = ((battWarningState >> 22) & 0x01) == 1;
  2977. if (ret)
  2978. {
  2979. ErrorNumTemp = 1;
  2980. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2981. //str += "ERROR:存在放电低温告警故障!!\n";
  2982. }
  2983. ret = ((battWarningState >> 23) & 0x01) == 1 ;
  2984. if (ret)
  2985. {
  2986. ErrorNumTemp = 1;
  2987. PutErrorNum((UINT16 *)ErrorNum,ErrorNumLen,ErrorNumTemp);
  2988. //str += "ERROR:存在充电低温告警故障!!\n";
  2989. }
  2990. }
  2991. else
  2992. {
  2993. #ifdef USING_PRINTF
  2994. printf("get Muxtex error\n");
  2995. #endif
  2996. }
  2997. osMutexRelease(Error_Mutex);
  2998. }
  2999. return 1;
  3000. }