UartTask.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993
  1. /****************************************************************************
  2. *
  3. * Copy right: Qx.
  4. * File name: UartTask.c
  5. * Description: 串口任务
  6. * History: 2021-03-05
  7. *
  8. * 2021-04-11:可以通过Ota线路升级Bms保护板
  9. ****************************************************************************/
  10. #include "bsp.h"
  11. #include "bsp_custom.h"
  12. #include "osasys.h"
  13. #include "ostask.h"
  14. #include "queue.h"
  15. #include "ps_event_callback.h"
  16. #include "cmisim.h"
  17. #include "cmimm.h"
  18. #include "cmips.h"
  19. #include "sockets.h"
  20. #include "psifevent.h"
  21. #include "ps_lib_api.h"
  22. #include "lwip/netdb.h"
  23. //#include <cis_def.h>
  24. #include "debug_log.h"
  25. #include "slpman_ec616.h"
  26. #include "plat_config.h"
  27. #include "ec_tcpip_api.h"
  28. #include "hal_module_adapter.h"
  29. #include "UartTask.h"
  30. #include "MainTask.h"
  31. #include <stdlib.h>
  32. #include "app.h"
  33. #include "numeric.h"
  34. #include "Fota.h"
  35. #include "signal.h"
  36. //全局变量输入区
  37. extern UINT32 Timer_count;
  38. extern volatile BOOL Sleep_flag;
  39. extern AppNVMDataType AppNVMData;
  40. extern AppDataBody AppDataInfo;
  41. extern UINT8 WorkFlag;
  42. //全局变量输出区
  43. BOOL UartBattInfoRecvFlag = false;
  44. QueueHandle_t UartWriteCmdHandle = NULL;
  45. UINT8 BattChrgEndFlag;
  46. //
  47. extern ARM_DRIVER_USART Driver_USART1;
  48. static ARM_DRIVER_USART *USARTdrv = &Driver_USART1;
  49. volatile bool isRecvTimeout = false;
  50. volatile bool isRecvComplete = false;
  51. //线程声明区
  52. static StaticTask_t gProcess_Uart_Task_t;
  53. static UINT8 gProcess_Uart_TaskStack[PROC_UART_TASK_STACK_SIZE];
  54. static osThreadId_t UartTaskId = NULL;
  55. static process_Uart gProcess_Uart_Task = PROCESS_UART_STATE_IDLE;
  56. #define PROC_UART_STATE_SWITCH(a) (gProcess_Uart_Task = a)
  57. //函数声明区
  58. void USART_callback(uint32_t event);
  59. UINT8 Uart_DataRecv_func(Uart_Read_Msg_Type Uart_Read_Msg_Fun,UINT8* Uart_Recv_Buffer_Fun);
  60. static BOOL uartBattInfoDecode(UINT8* dataPtr);
  61. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData);
  62. UINT16 crc_chk(UINT8* data, UINT8 length);
  63. void battSOCDisplay(void);
  64. void battErrorStateDisplay(void);
  65. void battWarningStateDisplay(void);
  66. void battLockStateDisplay(UINT8 lockState);
  67. void relayControlFunc(UINT8 RingTimes);
  68. void SP_BMS_Update_Service(void);
  69. BOOL BattHeaterSwitch(UINT8* heaterSwitch);
  70. UINT16 encryptionAlgorithm (UINT16 plainText);
  71. UINT8 decryptionAlgorithm (UINT16 cipherText);
  72. UINT8 Uart_Encrypt_Send(void);
  73. UINT8 BmsErrorDecode(UINT32 battWarningState);
  74. //BMS升级函数声明
  75. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len);
  76. void SP_BMS_Update_Service();
  77. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  78. updateBMSStatus MS_BMS_Update_Service();
  79. UINT16 MS_BMS_Update_CRC16(UINT8* pSendData,UINT16 len);
  80. UINT8 MS_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  81. //Uart线程任务区
  82. static void UartTask(void* arg)
  83. {
  84. USARTdrv->Initialize(USART_callback);
  85. USARTdrv->PowerControl(ARM_POWER_FULL);
  86. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  87. ARM_USART_DATA_BITS_8 |
  88. ARM_USART_PARITY_NONE |
  89. ARM_USART_STOP_BITS_1 |
  90. ARM_USART_FLOW_CONTROL_NONE, 9600);
  91. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_ENCRYPT);
  92. UINT16 Reg_Num = 0;
  93. UINT16 Uart_Uds_LEN;
  94. UINT16 Uart_Recv_LEN;
  95. UINT32 currentTimerCount=0;
  96. BOOL uartReadSuccessFlag = false;
  97. Uart_Read_Msg_Type Uart_Read_Msg;
  98. memset(&(Uart_Read_Msg),0x00,sizeof(Uart_Read_Msg_Type));
  99. Uart_Write_Data_Type UartWriteData; //Uart控制命令
  100. memset(&(UartWriteData),0x00,sizeof(Uart_Write_Data_Type));
  101. UartReadMsgType UartReadMsg;
  102. memset(&(UartReadMsg.UartFlag),0x00,sizeof(UartReadMsgType));
  103. if(UartWriteCmdHandle == NULL)//Uart控制命令传输指针
  104. {
  105. UartWriteCmdHandle = osMessageQueueNew(3,sizeof(Uart_Write_Data_Type), NULL);
  106. }
  107. //上电起始控制区域
  108. UINT8 ret = 0x00;
  109. UINT8 HeatSwitch = 0;
  110. while (1)
  111. {
  112. switch (gProcess_Uart_Task)
  113. {
  114. case PROCESS_UART_STATE_ENCRYPT:
  115. {
  116. UINT8 EncryptFlag=0x00;
  117. UINT8 EncryptCount=0;
  118. while(EncryptFlag!=0x01&&EncryptCount<=3)
  119. {
  120. EncryptFlag = Uart_Encrypt_Send();
  121. EncryptCount++;
  122. }
  123. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  124. break;
  125. }
  126. case PROCESS_UART_STATE_IDLE:
  127. {
  128. osDelay(100);
  129. if(Sleep_flag)
  130. {
  131. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_SLEEP);
  132. }
  133. else if(Timer_count%10==0)
  134. {
  135. #ifdef USING_PRINTF1
  136. printf("[%d]Uart Timer 1s:%d,uartReadSuccessFlag:%d\n",__LINE__,Timer_count,uartReadSuccessFlag);
  137. #endif
  138. if(osMessageQueueGet(UartWriteCmdHandle,&UartWriteData,0,0)==osOK)
  139. {
  140. #ifdef USING_PRINTF
  141. printf("[%d]UartWriteCmdHandle :%x-%X%X\n",__LINE__,UartWriteData.WriteCmd,UartWriteData.Data[0],UartWriteData.Data[1]);
  142. #endif
  143. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_WRITE);
  144. break;
  145. }
  146. else
  147. {
  148. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  149. }
  150. if(maxCellVol>4400&&maxCellVol<6000)//继电器测试
  151. {
  152. AppDataInfo.RelayControl=TRUE;
  153. }
  154. else if(maxCellVol<3800)
  155. {
  156. AppDataInfo.RelayControl=FALSE;
  157. }
  158. }
  159. if(UartReadMsg.Header[2]>0)
  160. {
  161. uartReadSuccessFlag = true;
  162. }
  163. else
  164. {
  165. uartReadSuccessFlag = false;
  166. }
  167. if(Timer_count-currentTimerCount >= 1)
  168. {
  169. if(AppNVMData.isBattLocked != 0)
  170. {
  171. battLockStateDisplay(TRUE);
  172. }
  173. else if(uartReadSuccessFlag)
  174. {
  175. battSOCDisplay();
  176. battErrorStateDisplay();
  177. }
  178. else
  179. {
  180. battWarningStateDisplay();
  181. }
  182. }
  183. currentTimerCount = Timer_count;
  184. if(BMS_Fota_update_flag)
  185. {
  186. if(WorkFlag==0x00)
  187. {
  188. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_UPDATE);
  189. break;
  190. }
  191. }
  192. if(battWorkState ==0x00 && AppNVMData.isBattLocked==TRUE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03)!=0x02 && Timer_count%10==0)//try to lock lock the discharge
  193. {
  194. #ifdef USING_PRINTF
  195. printf("[%d]try to lock:%X-%X\n",__LINE__,AppNVMData.isBattLocked,(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03);
  196. #endif
  197. UartWriteData.WriteCmd = 0x01;
  198. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  199. UartWriteData.Data[1] = 0x02;
  200. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  201. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  202. }
  203. else if (battWorkState ==0x00 && AppNVMData.isBattLocked==FALSE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03)!=0x03 && Timer_count%10==0 ) // try to unlock
  204. {
  205. #ifdef USING_PRINTF
  206. printf("[%d]try to unlock:%X-%X\n",__LINE__,AppNVMData.isBattLocked,(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03);
  207. #endif
  208. UartWriteData.WriteCmd = 0x01;
  209. UartWriteData.Data[0] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2]);
  210. UartWriteData.Data[1] = 0x03;
  211. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  212. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  213. }
  214. if(AppNVMData.isBattLocked==FALSE && ret==0x01)
  215. {
  216. relayControlFunc(3);
  217. ret = 0x00;
  218. }
  219. else if (AppNVMData.isBattLocked==TRUE && ret==0x01)
  220. {
  221. relayControlFunc(2);
  222. ret = 0x00;
  223. }
  224. else if(BuzzerControl==TRUE && Timer_count%10==0)
  225. {
  226. relayControlFunc(1);
  227. }
  228. if(AppDataInfo.RelayControl==TRUE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2])&0x80)==0x00)//继电器断开
  229. {
  230. UartWriteData.WriteCmd = 0x03;
  231. UartWriteData.Data[0] = 0x80;
  232. UartWriteData.Data[1] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1]);
  233. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  234. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  235. }
  236. else if(AppDataInfo.RelayControl==FALSE && ((UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2])&0x80)==0x80)//继电器闭合
  237. {
  238. UartWriteData.WriteCmd = 0x03;
  239. UartWriteData.Data[0] = 0x00;
  240. UartWriteData.Data[1] = 0x00|(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1]);
  241. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  242. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  243. }
  244. if(Timer_count%50==0 && BattHeaterSwitch(&HeatSwitch)==TRUE)
  245. {
  246. UartWriteData.WriteCmd = 0x02;
  247. UartWriteData.Data[0] = 0x00;
  248. UartWriteData.Data[1] = HeatSwitch&0xFF;
  249. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  250. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  251. }
  252. break;
  253. }
  254. case PROCESS_UART_STATE_READ:
  255. {
  256. UINT16 CRC_chk_buffer;
  257. Reg_Num = 0x21+BATT_CELL_VOL_NUM+BATT_TEMP_NUM + BATT_OTHER_TEMP_NUM;//按照协议里面的0x21+X+N的结束地址
  258. Uart_Read_Msg.Bms_Address = BMS_ADDRESS_CODE;
  259. Uart_Read_Msg.Bms_Funcode = UART_READ_CODE;
  260. Uart_Read_Msg.Reg_Begin_H = 0x00;
  261. Uart_Read_Msg.Reg_Begin_L= 0x00;
  262. Uart_Read_Msg.Reg_Num_H = Reg_Num>>8;
  263. Uart_Read_Msg.Reg_Num_L = Reg_Num;
  264. Uart_Uds_LEN = Reg_Num*2;
  265. memset(UartReadMsg.Header,0x00,Uart_Uds_LEN);
  266. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Read_Msg,6);
  267. Uart_Read_Msg.CRC_L = CRC_chk_buffer;
  268. Uart_Read_Msg.CRC_H = CRC_chk_buffer>>8;
  269. //Uart_Recv_LEN = Uart_DataRecv_func((UINT8 *)&Uart_Read_Msg,(UINT8*)UartReadMsg.Header);
  270. Uart_Recv_LEN = Uart_DataRecv_func(Uart_Read_Msg,(UINT8*)(UartReadMsg.Header));
  271. if(Uart_Recv_LEN>0)
  272. {
  273. UartBattInfoRecvFlag = TRUE;
  274. uartBattInfoDecode(UartReadMsg.data);
  275. }
  276. else
  277. {
  278. UartBattInfoRecvFlag = FALSE;
  279. }
  280. UartReadMsg.len = Uart_Recv_LEN;
  281. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  282. if( battWorkState ==0x02)
  283. {
  284. BattChrgEndFlag=TRUE;
  285. }
  286. else
  287. {
  288. BattChrgEndFlag=FALSE;
  289. }
  290. #ifdef USING_PRINTF1
  291. printf("[%d]lock:%X,permit:%X,Mos:%x\n",__LINE__,AppNVMData.isBattLocked,(UartReadMsg.data[(0x1B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM)*2+1])&0x03,((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_OTHER_TEMP_NUM)*2+1])>>1)&0x03);
  292. #endif
  293. break;
  294. }
  295. case PROCESS_UART_STATE_WRITE:
  296. {
  297. ret = Uart_WriteCmd_func(UartWriteData);
  298. osDelay(500);
  299. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  300. break;
  301. }
  302. case PROCESS_UART_STATE_UPDATE:
  303. UartBattInfoRecvFlag = FALSE;
  304. #if BMS_MANUFACTURE==1
  305. {
  306. SP_BMS_Update_Service();
  307. }
  308. #elif BMS_MANUFACTURE==2
  309. MS_BMS_Update_Service();
  310. #endif
  311. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  312. BMS_Fota_update_flag = FALSE;
  313. break;
  314. case PROCESS_UART_STATE_SLEEP:
  315. {
  316. USARTdrv->PowerControl(ARM_POWER_LOW);
  317. while(TRUE)
  318. {
  319. osDelay(60000/portTICK_PERIOD_MS);
  320. }
  321. osThreadExit();
  322. break;
  323. }
  324. }
  325. }
  326. }
  327. //Uart 接收的数据解码
  328. static BOOL uartBattInfoDecode(UINT8* dataPtr)
  329. {
  330. //BattInfoType battInfo;
  331. UINT8 i,temp=0;
  332. UINT8 TEMP_NUM = BATT_TEMP_NUM + BATT_OTHER_TEMP_NUM;
  333. UINT16 Batt_current;
  334. for(i=0;i<BATT_CELL_VOL_NUM;i++)
  335. {
  336. battCellU[i] = (dataPtr[(0x02+i)*2] << 8) | dataPtr[(0x02+i)*2 + 1];
  337. }
  338. battWorkState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+1])&0x03;//电池状态(原始数据),0表示静置,1表示放电,2表示充电
  339. for(i=0; i<BATT_TEMP_NUM; i++)
  340. {
  341. battCellTemp[i] = dataPtr[(0x06+BATT_CELL_VOL_NUM+i)*2+1];
  342. }
  343. MOSTemp = dataPtr[(0x06+BATT_CELL_VOL_NUM+BATT_TEMP_NUM)*2+1];
  344. packTemp = dataPtr[(0x06+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+1)*2+1];
  345. Batt_current = (dataPtr[(0x02+BATT_CELL_VOL_NUM)*2]<<8)|(dataPtr[(0x02+BATT_CELL_VOL_NUM)*2+1]);
  346. //原始数据:充电为负,放电为正
  347. if(battWorkState == 0x02) //充电过程
  348. {
  349. if(Batt_current >0x8000)// 数据为负
  350. {
  351. //求补码,结果为负
  352. Batt_current = (UINT16)((UINT16)(~(Batt_current))+1);
  353. Batt_current = Batt_current/10;
  354. AppDataInfo.BattCurrentNegFlag = -1;
  355. }
  356. else
  357. {
  358. //源码,结果为负
  359. Batt_current = Batt_current/10;
  360. AppDataInfo.BattCurrentNegFlag = -1;
  361. }
  362. }
  363. else //放电过程
  364. {
  365. if(Batt_current >0x8000)// 数据为负
  366. {
  367. //求补码,结果为正
  368. Batt_current = (UINT16)((UINT16)(~(Batt_current))+1);
  369. Batt_current = Batt_current/10;
  370. AppDataInfo.BattCurrentNegFlag = 1;
  371. }
  372. else
  373. {
  374. //源码,结果为正
  375. Batt_current = Batt_current/10;
  376. AppDataInfo.BattCurrentNegFlag = 1;
  377. }
  378. }
  379. battI = Batt_current*AppDataInfo.BattCurrentNegFlag + 0x2710;
  380. //bit0 ~ bit31 represent cell0 ~ cell31
  381. battBalanceoInfo = dataPtr[(0x06+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1] | (dataPtr[(0x06+BATT_CELL_VOL_NUM+TEMP_NUM)*2] <<8) + (dataPtr[(0x07+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]<<16) | (dataPtr[(0x07+BATT_CELL_VOL_NUM+TEMP_NUM)*2] <<24);
  382. // chargerConnectState = (dataPtr[(0x03+BATT_CELL_VOL_NUM)*2+1])&0x04;//充电器连接状态,0表示未连接,1表示已连接
  383. bmsHwVersion = dataPtr[(0x08+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  384. bmsSwVersion = dataPtr[(0x08+BATT_CELL_VOL_NUM+TEMP_NUM)*2];
  385. temp = ((dataPtr[(0x09+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])>>1)&0x03;
  386. battMOSSwitchState = ((temp&0x01)<<1)|((temp&0x02)>>1);
  387. #ifdef USING_PRINTF1
  388. printf("[%d]battMOSSwitchState :%x\n",__LINE__,battMOSSwitchState);
  389. #endif
  390. if(AppNVMData.isBattLocked==TRUE)
  391. {
  392. battMOSSwitchState = battMOSSwitchState |(0x01<<2);
  393. }
  394. else
  395. {
  396. battMOSSwitchState = battMOSSwitchState |(0x00<<2);
  397. }
  398. battWarningState = (dataPtr[(0x09+BATT_CELL_VOL_NUM+TEMP_NUM)*2+0]<<16) | (dataPtr[(0x0A+BATT_CELL_VOL_NUM+TEMP_NUM)*2+0] << 8) |(dataPtr[(0x0A+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  399. battSOC = dataPtr[(0x0B+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  400. battSOH = dataPtr[(0x0C+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1];
  401. Battdesigncap = (dataPtr[(0x0E+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<24|(dataPtr[(0x0E+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1])<<16|(dataPtr[(0x0F+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x0F+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]);
  402. battPackVol =((dataPtr[(0x18+BATT_CELL_VOL_NUM+TEMP_NUM)*2])<<8|(dataPtr[(0x18+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]))/10; //uint 100mV
  403. maxCellVol = (dataPtr[(0x19+BATT_CELL_VOL_NUM+TEMP_NUM)*2] << 8) | dataPtr[(0x19+BATT_CELL_VOL_NUM+TEMP_NUM)*2 + 1];
  404. minCellVol = (dataPtr[(0x1A+BATT_CELL_VOL_NUM+TEMP_NUM)*2] << 8) | dataPtr[(0x1A+BATT_CELL_VOL_NUM+TEMP_NUM)*2 + 1];
  405. RelayControlState = (dataPtr[(0x1B+BATT_CELL_VOL_NUM+TEMP_NUM)*2])&0x80;
  406. battHeatEnableState = dataPtr[(0x1C+BATT_CELL_VOL_NUM+TEMP_NUM)*2+1]&0x01;
  407. maxCellTemp = 0x00;
  408. minCellTemp = 0xFF;
  409. for(i=0;i<BATT_TEMP_NUM;i++)
  410. {
  411. maxCellTemp = max(maxCellTemp,battCellTemp[i]);
  412. minCellTemp = min(minCellTemp,battCellTemp[i]);
  413. }
  414. nbSwVersion = APPSWVERSION;
  415. nbHwVersion = HWVERSION;
  416. BmsErrorDecode(battWarningState);
  417. return true;
  418. }
  419. //Uart线程初始化
  420. void UartTaskInit(void *arg)
  421. {
  422. osThreadAttr_t task_attr;
  423. memset(&task_attr,0,sizeof(task_attr));
  424. memset(gProcess_Uart_TaskStack, 0xA5, PROC_UART_TASK_STACK_SIZE);
  425. task_attr.name = "Uart_Task";
  426. task_attr.stack_mem = gProcess_Uart_TaskStack;
  427. task_attr.stack_size = PROC_UART_TASK_STACK_SIZE;
  428. task_attr.priority = osPriorityBelowNormal7;
  429. task_attr.cb_mem = &gProcess_Uart_Task_t;
  430. task_attr.cb_size = sizeof(StaticTask_t);
  431. UartTaskId = osThreadNew(UartTask, NULL, &task_attr);
  432. }
  433. void UartTaskDeInit(void *arg)
  434. {
  435. osThreadTerminate(UartTaskId);
  436. UartTaskId = NULL;
  437. }
  438. //函数区
  439. //Uart回调程序
  440. void USART_callback(uint32_t event)
  441. {
  442. if(event & ARM_USART_EVENT_RX_TIMEOUT)
  443. {
  444. isRecvTimeout = true;
  445. }
  446. if(event & ARM_USART_EVENT_RECEIVE_COMPLETE)
  447. {
  448. isRecvComplete = true;
  449. }
  450. }
  451. //Uart校验程序
  452. UINT16 crc_chk(UINT8* data, UINT8 length)
  453. {
  454. UINT8 j;
  455. UINT16 reg_crc=0xFFFF;
  456. while(length--)
  457. {
  458. reg_crc ^= *data++;
  459. for(j=0;j<8;j++)
  460. {
  461. if(reg_crc & 0x01)
  462. {
  463. reg_crc=(reg_crc>>1) ^ 0xA001;
  464. }
  465. else
  466. {
  467. reg_crc=reg_crc >>1;
  468. }
  469. }
  470. }
  471. return reg_crc;
  472. }
  473. //Uart写命令函数
  474. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData)
  475. {
  476. Uart_Write_Msg_Type Uart_Write_Msg;
  477. UINT16 RegAddress = 0x0000;
  478. UINT16 CRC_chk_buffer;
  479. UINT8 timeout = 0x00;
  480. UINT8 Uart_Recv_Buffer[8];
  481. #ifdef USING_PRINTF
  482. printf("\nUart_WriteCmd_func: %x ",UartWriteData.WriteCmd);
  483. #endif
  484. switch (UartWriteData.WriteCmd)
  485. {
  486. case 0x01://是否锁定
  487. {
  488. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  489. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  490. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  491. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  492. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  493. Uart_Write_Msg.Reg_Num_H = 0x00;
  494. Uart_Write_Msg.Reg_Num_L = 0x01;
  495. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  496. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  497. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  498. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  499. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  500. break;
  501. }
  502. case 0x02://是否加热
  503. {
  504. RegAddress = 0x1C + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  505. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  506. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  507. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  508. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  509. Uart_Write_Msg.Reg_Num_H = 0x00;
  510. Uart_Write_Msg.Reg_Num_L = 0x01;
  511. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  512. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  513. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  514. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  515. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  516. break;
  517. }
  518. case 0x03://是否继电器控制
  519. {
  520. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  521. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  522. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  523. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  524. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  525. Uart_Write_Msg.Reg_Num_H = 0x00;
  526. Uart_Write_Msg.Reg_Num_L = 0x01;
  527. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  528. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  529. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  530. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  531. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  532. break;
  533. }
  534. default:
  535. {
  536. UartWriteData.WriteCmd = 0x00;
  537. return 0;
  538. break;
  539. }
  540. }
  541. USARTdrv->Send((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg));
  542. #ifdef USING_PRINTF
  543. printf("Uart_Send_buffer: ");
  544. for(int i=0;i<sizeof(Uart_Write_Msg);i++)
  545. {
  546. printf("%x ",*((UINT8 *)&Uart_Write_Msg+i));
  547. }
  548. printf("\n");
  549. #endif
  550. USARTdrv->Receive(Uart_Recv_Buffer,8);
  551. while((isRecvTimeout == false) && (isRecvComplete == false))
  552. {
  553. timeout++;
  554. osDelay(100);
  555. if (timeout>=10)
  556. {
  557. timeout =0;
  558. isRecvTimeout = true;
  559. break;
  560. }
  561. }
  562. if (isRecvComplete == true)
  563. {
  564. #ifdef USING_PRINTF
  565. printf("Uart_Rece_buffer: ");
  566. for(int i=0;i<8;i++)
  567. {
  568. printf("%x ",Uart_Recv_Buffer[i]);
  569. }
  570. printf("\n");
  571. #endif
  572. isRecvComplete = false;
  573. if(Uart_Recv_Buffer[1]==0x10)
  574. {
  575. return UartWriteData.WriteCmd;
  576. }
  577. else
  578. {
  579. return 0x00;
  580. }
  581. }
  582. else
  583. {
  584. isRecvTimeout = false;
  585. return 0x00;
  586. }
  587. }
  588. //Uart发送接收函数
  589. UINT8 Uart_DataRecv_func(Uart_Read_Msg_Type Uart_Read_Msg_Fun,UINT8* Uart_Recv_Buffer_Fun)
  590. {
  591. UINT16 CRC_Rece_buffer;
  592. UINT16 CRC_chk_buffer;
  593. UINT16 Data_Len ;
  594. UINT8 timeout = 0x00;
  595. UINT8 pSendCmd[8];
  596. memcpy(pSendCmd,(UINT8*)(&Uart_Read_Msg_Fun),8);
  597. //Data_Len = (*(Uart_Read_Msg_Fun+4)|*(Uart_Read_Msg_Fun+5))*2+5;
  598. Data_Len = ((Uart_Read_Msg_Fun.Reg_Num_H<<8)|(Uart_Read_Msg_Fun.Reg_Num_L))*2+5;
  599. //USARTdrv->Send(Uart_Read_Msg_Fun,8);
  600. USARTdrv->Send(pSendCmd,8);
  601. #ifdef USING_PRINTF1
  602. printf("Uart_Send_buffer: ");
  603. for(int i=0;i<8;i++)
  604. // {
  605. printf("%x ",pSendCmd[i]);
  606. // }
  607. printf("end\n");
  608. //printf("%x ",*(Uart_Read_Msg_Fun));
  609. //UINT8 temp = *(Uart_Read_Msg_Fun);
  610. #endif
  611. USARTdrv->Receive(Uart_Recv_Buffer_Fun,Data_Len);
  612. while(true)
  613. {
  614. timeout++;
  615. if((isRecvTimeout == true) || (isRecvComplete == true))
  616. {
  617. break;
  618. }
  619. else
  620. {
  621. osDelay(100);
  622. if (timeout>=10)
  623. {
  624. // Data_Len = 0;
  625. timeout =0;
  626. isRecvTimeout = true;
  627. }
  628. }
  629. }
  630. #ifdef USING_PRINTF1
  631. printf("Uart_Rece_buffer1: ");
  632. for(int j=0;j<Data_Len;j++)
  633. {
  634. printf("%x ",*(Uart_Recv_Buffer_Fun+j));
  635. }
  636. #endif
  637. if (isRecvComplete == true)
  638. {
  639. isRecvComplete = false;
  640. CRC_Rece_buffer =*(Uart_Recv_Buffer_Fun+Data_Len-1)<<8|*(Uart_Recv_Buffer_Fun+Data_Len-2);
  641. CRC_chk_buffer = crc_chk(Uart_Recv_Buffer_Fun,Data_Len-2);
  642. #ifdef USING_PRINTF1
  643. printf("Uart_Rece_buffer after Crc: ");
  644. for(int i=0;i<Data_Len;i++)
  645. {
  646. printf("%x ",*(Uart_Recv_Buffer_Fun+i));
  647. }
  648. printf("\tcrcchk:%x,%x\n ",CRC_chk_buffer,CRC_Rece_buffer);
  649. #endif
  650. if (CRC_Rece_buffer == CRC_chk_buffer)//满足校验
  651. {
  652. return Data_Len;//此处指针移位出现重启问题
  653. }
  654. else //接收数据的校验不过
  655. {
  656. USARTdrv->Uninitialize();
  657. osDelay(1000);
  658. USARTdrv->Initialize(USART_callback);
  659. USARTdrv->PowerControl(ARM_POWER_FULL);
  660. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  661. ARM_USART_DATA_BITS_8 |
  662. ARM_USART_PARITY_NONE |
  663. ARM_USART_STOP_BITS_1 |
  664. ARM_USART_FLOW_CONTROL_NONE, 9600);
  665. memset(Uart_Recv_Buffer_Fun,0xff,Data_Len);
  666. return 0;
  667. }
  668. }
  669. else
  670. {
  671. memset(Uart_Recv_Buffer_Fun,0x00,Data_Len);
  672. isRecvTimeout = false;
  673. return 0;
  674. }
  675. return 0;
  676. }
  677. /**
  678. \fn BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  679. \param[in] (UINT8*) heaterSwitch: the heater switch state
  680. \brief according to the current switch state and all the cell temp, it will turn on/off the switch
  681. \return (BOOL) isNeedtoSwitch: true: need to send cmd to turn on/off the switch
  682. false: do not need to do anything
  683. */
  684. BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  685. {
  686. BOOL isNeedtoSwitch = FALSE;
  687. UINT8 i =0;
  688. UINT8 currentSwitchState = 0;
  689. //get the current switch state and the cell temp
  690. currentSwitchState = battHeatEnableState&0x01;
  691. if(currentSwitchState==0) //当前状态为关闭,判断是否应该开启
  692. {
  693. if(minCellTemp<5+40 && minCellTemp>=-29+40 && maxCellTemp<25+40)//温度偏移为40
  694. {
  695. *heaterSwitch = 1;
  696. isNeedtoSwitch = true;
  697. }
  698. }
  699. else //当前状态为开启,判断是否应该关闭
  700. {
  701. if(minCellTemp>=10+40 || maxCellTemp>=30+40)
  702. {
  703. *heaterSwitch = 0;
  704. isNeedtoSwitch = true;
  705. }
  706. }
  707. return isNeedtoSwitch;
  708. }
  709. void battSOCDisplay()
  710. {
  711. static UINT8 lightTimer = 0;
  712. UINT8 socLowLEDFlashPeriod = 10;//10*100 = 1000ms
  713. UINT8 chargeLEDFlashPeriod = 6;//6*100 = 600ms
  714. float dutyRatio = 0.4;
  715. UINT8 temp;
  716. if(AppNVMData.isBattLocked == TRUE)
  717. {
  718. return;
  719. }
  720. if(UartBattInfoRecvFlag == true)
  721. {
  722. lightTimer++;
  723. if(battWorkState == 0||battWorkState == 1) //静置或放电状态
  724. {
  725. if(battSOC<=10)
  726. {
  727. if(lightTimer<(UINT8)(socLowLEDFlashPeriod*dutyRatio))
  728. {
  729. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  730. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  731. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  732. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  733. }
  734. else if(lightTimer>=(UINT8)(socLowLEDFlashPeriod*dutyRatio) && lightTimer<socLowLEDFlashPeriod)
  735. {
  736. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  737. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  738. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  739. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  740. }
  741. else
  742. {
  743. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  744. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  745. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  746. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  747. lightTimer = 0;
  748. }
  749. }
  750. else if(battSOC>10&&battSOC<=25)
  751. {
  752. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  753. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  754. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  755. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  756. lightTimer = 0;
  757. }
  758. else if(battSOC>25&&battSOC<=50)
  759. {
  760. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  761. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  762. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  763. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  764. lightTimer = 0;
  765. }
  766. else if(battSOC>50&&battSOC<=75)
  767. {
  768. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  769. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  770. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  771. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  772. lightTimer = 0;
  773. }
  774. else if(battSOC>75&&battSOC<=100)
  775. {
  776. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  777. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  778. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  779. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  780. lightTimer = 0;
  781. }
  782. }
  783. else if(battWorkState == 2)
  784. {
  785. if(battSOC<=25)
  786. {
  787. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  788. {
  789. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  790. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  791. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  792. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  793. }
  794. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  795. {
  796. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  797. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  798. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  799. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  800. }
  801. else
  802. {
  803. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  804. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  805. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  806. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  807. lightTimer = 0;
  808. }
  809. }
  810. else if(battSOC>25&&battSOC<=50)
  811. {
  812. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  813. {
  814. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  815. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  816. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  817. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  818. }
  819. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  820. {
  821. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  822. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  823. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  824. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  825. }
  826. else
  827. {
  828. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  829. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  830. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  831. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  832. lightTimer = 0;
  833. }
  834. }
  835. else if(battSOC>50&&battSOC<=75)
  836. {
  837. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  838. {
  839. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  840. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  841. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  842. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  843. }
  844. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  845. {
  846. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  847. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  848. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  849. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  850. }
  851. else
  852. {
  853. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  854. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  855. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  856. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  857. lightTimer = 0;
  858. }
  859. }
  860. else if(battSOC>75&&battSOC<=97)
  861. {
  862. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  863. {
  864. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  865. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  866. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  867. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  868. }
  869. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  870. {
  871. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  872. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  873. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  874. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  875. }
  876. else
  877. {
  878. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  879. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  880. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  881. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  882. lightTimer = 0;
  883. }
  884. }
  885. else if(battSOC>97&&battSOC<=100)
  886. {
  887. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  888. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  889. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  890. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  891. }
  892. }
  893. }
  894. }
  895. void battErrorStateDisplay()
  896. {
  897. static UINT8 errorLightTimer = 0;
  898. //static UINT32 currentTimerCount=0;
  899. UINT8 errorLEDFlashPeriod = 6;//600ms
  900. float errorDutyRatio = 0.4;
  901. if(AppNVMData.isBattLocked == TRUE)
  902. {
  903. return;
  904. }
  905. if(UartBattInfoRecvFlag == true)
  906. {
  907. errorLightTimer++;
  908. if(battWorkState == 0x02) //充电模式下,如果只有“SOC低故障”,那么就不显示故障灯 zhengchao20210713 add
  909. {
  910. if((((battWarningState >> 10) & 0x01) == 0x01) && ((battWarningState & 0xFFFFFBFF) == 0x00))
  911. return;
  912. }
  913. if(battWarningState != 0 )
  914. {
  915. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  916. {
  917. FaultDisplay(LED_TURN_ON);
  918. }
  919. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  920. {
  921. FaultDisplay(LED_TURN_OFF);
  922. }
  923. else
  924. {
  925. FaultDisplay(LED_TURN_OFF);
  926. errorLightTimer = 0;
  927. }
  928. }
  929. else
  930. {
  931. FaultDisplay(LED_TURN_OFF);
  932. errorLightTimer = 0;
  933. }
  934. }
  935. }
  936. void battWarningStateDisplay()
  937. {
  938. static UINT8 warningLightTimer = 0;
  939. //static UINT32 currentTimerCount=0;
  940. UINT8 warningLEDFlashPeriod = 6;//600ms
  941. float warningDutyRatio = 0.4;
  942. if(AppNVMData.isBattLocked == TRUE)
  943. {
  944. return;
  945. }
  946. if(UartBattInfoRecvFlag == false)
  947. {
  948. warningLightTimer++;
  949. //if(battWarningState != 0)
  950. {
  951. if(warningLightTimer<(UINT8)(warningLEDFlashPeriod*warningDutyRatio))
  952. {
  953. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  954. FaultDisplay(LED_TURN_ON);
  955. }
  956. else if(warningLightTimer>=(UINT8)(warningLEDFlashPeriod*warningDutyRatio) && warningLightTimer<warningLEDFlashPeriod)
  957. {
  958. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  959. FaultDisplay(LED_TURN_OFF);
  960. }
  961. else
  962. {
  963. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  964. FaultDisplay(LED_TURN_OFF);
  965. warningLightTimer = 0;
  966. }
  967. }
  968. }
  969. }
  970. void battLockStateDisplay(UINT8 lockState)
  971. {
  972. static UINT8 currentState = 0;
  973. static UINT8 errorLightTimer = 0;
  974. //static UINT32 currentTimerCount=0;
  975. UINT8 errorLEDFlashPeriod = 10;//1000ms
  976. float errorDutyRatio = 0.4;
  977. //printf("lockState = %d\ncurrent State = %d\n",lockState,currentState);
  978. if(lockState==0)//no error
  979. {
  980. if(currentState!=lockState)
  981. {
  982. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  983. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  984. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  985. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  986. FaultDisplay(LED_TURN_OFF);
  987. currentState = lockState;
  988. errorLightTimer = 0;
  989. }
  990. else
  991. {
  992. return;
  993. }
  994. }
  995. else // error occurred, errorState = 1
  996. {
  997. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  998. {
  999. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  1000. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  1001. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  1002. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  1003. FaultDisplay(LED_TURN_ON);
  1004. }
  1005. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  1006. {
  1007. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1008. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1009. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1010. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1011. FaultDisplay(LED_TURN_OFF);
  1012. }
  1013. else
  1014. {
  1015. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  1016. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  1017. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  1018. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  1019. FaultDisplay(LED_TURN_OFF);
  1020. errorLightTimer = 0;
  1021. }
  1022. }
  1023. errorLightTimer++;
  1024. }
  1025. void relayControlFunc(UINT8 RingTimes)
  1026. {
  1027. UINT8 timerCount=0;
  1028. //printf("RingTimes=%d\n",RingTimes);
  1029. while(timerCount<RingTimes)
  1030. {
  1031. relayControl(TRUE);
  1032. osDelay(50);
  1033. relayControl(FALSE);
  1034. osDelay(150);
  1035. timerCount++;
  1036. }
  1037. }
  1038. UINT8 decryptionAlgorithm (UINT16 cipherText)
  1039. {
  1040. UINT16 plainText = 1;
  1041. UINT16 publicKeyD = 43;
  1042. UINT16 publicKeyN = 10961;
  1043. cipherText = cipherText % publicKeyN;
  1044. while(publicKeyD >0)
  1045. {
  1046. if(publicKeyD % 2 ==1)
  1047. {
  1048. plainText = plainText * cipherText % publicKeyN;
  1049. }
  1050. publicKeyD = publicKeyD/2;
  1051. cipherText = (cipherText * cipherText) % publicKeyN;
  1052. }
  1053. return (UINT8)plainText;
  1054. }
  1055. UINT16 encryptionAlgorithm (UINT16 plainText)
  1056. {
  1057. UINT16 cipherText = 1;
  1058. UINT16 privateKeyE = 37507;
  1059. UINT16 privateKeyN = 10961;
  1060. plainText = plainText % privateKeyN;
  1061. while(privateKeyE >0)
  1062. {
  1063. if(privateKeyE % 2 ==1)
  1064. {
  1065. cipherText = ( cipherText * plainText) % privateKeyN;
  1066. }
  1067. privateKeyE = privateKeyE/2;
  1068. plainText = (plainText * plainText) % privateKeyN;
  1069. }
  1070. return cipherText;
  1071. }
  1072. UINT8 Uart_Encrypt_Send()
  1073. {
  1074. UINT8 SeedNumberArrray[4]={0x38,0x56,0xfe,0xac};
  1075. UINT16 EncodeNumberArray[4];
  1076. UINT8 UartEncryptBuffer[17];
  1077. UINT8 UartDecryptBuffer[5];
  1078. UINT16 CRC_chk_buffer;
  1079. UINT8 timeCount = 0;
  1080. UartEncryptBuffer[0] = BMS_ADDRESS_CODE;
  1081. UartEncryptBuffer[1] = UART_ENCRYPT_CODE;
  1082. UartEncryptBuffer[2] = 0x0c;
  1083. for(int i=0;i<4;i++)
  1084. {
  1085. SeedNumberArrray[i]=rand();
  1086. EncodeNumberArray[i] = encryptionAlgorithm(SeedNumberArrray[i]);
  1087. UartEncryptBuffer[i+3] = SeedNumberArrray[i];
  1088. UartEncryptBuffer[i*2+7] = EncodeNumberArray[i]>>8;
  1089. UartEncryptBuffer[i*2+8] = EncodeNumberArray[i];
  1090. }
  1091. CRC_chk_buffer = crc_chk(UartEncryptBuffer,17-2);
  1092. UartEncryptBuffer[15] = CRC_chk_buffer;
  1093. UartEncryptBuffer[16] = CRC_chk_buffer>>8;
  1094. USARTdrv->Send(UartEncryptBuffer,17);
  1095. USARTdrv->Receive(UartDecryptBuffer,5);
  1096. while((isRecvTimeout == false) && (isRecvComplete == false))
  1097. {
  1098. timeCount++;
  1099. osDelay(100);
  1100. if (timeCount>=10)
  1101. {
  1102. timeCount =0;
  1103. isRecvTimeout = true;
  1104. break;
  1105. }
  1106. }
  1107. #ifdef USING_PRINTF
  1108. printf("Uart_Rece_buffer: ");
  1109. for(int i=0;i<5;i++)
  1110. {
  1111. printf("%x ",UartDecryptBuffer[i]);
  1112. }
  1113. #endif
  1114. if (isRecvComplete == true)
  1115. {
  1116. isRecvComplete = false;
  1117. return UartDecryptBuffer[2];
  1118. }
  1119. else
  1120. {
  1121. isRecvTimeout = false;
  1122. return 0x03;
  1123. }
  1124. }
  1125. /*-----------------------------------------------------------------------------*/
  1126. void SP_BMS_Update_Service() //超力源BMS升级服务
  1127. {
  1128. UINT8 errorCount = 0;
  1129. UINT8 resetCount = 0;
  1130. UINT16 currentPackage = 0;
  1131. UINT32 updateDataTotalByteLen = 0;
  1132. UpdateStep updateStep = UPDATE_STEP_CHECK_VERSION;
  1133. UINT8 i,j,ret=0;
  1134. UINT8 dataLen = 0;
  1135. UINT8 pUpdateMsgSend[80];
  1136. UINT32 updateMsgSendLen = 0;
  1137. UINT32 currentPackageStartAddr = 0;
  1138. BMS_Update_Recv_Msg_Type pUpdateMsgRecv;
  1139. UINT8 bmsUpdateFlag = 1;
  1140. //BMS_Update_Recv_Msg_Type bmsMsg;
  1141. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  1142. UINT8 Cycle_conut = 0;
  1143. while(bmsUpdateFlag && Cycle_conut<2)
  1144. {
  1145. switch (updateStep)
  1146. {
  1147. case UPDATE_STEP_CHECK_VERSION:
  1148. dataLen = 0;
  1149. updateMsgSendLen = 7;
  1150. pUpdateMsgSend[0] = 0xEB; //start flag
  1151. pUpdateMsgSend[1] = 0x01; //add flag
  1152. pUpdateMsgSend[2] = 0x01; //read
  1153. pUpdateMsgSend[3] = 0x03; //data len
  1154. pUpdateMsgSend[4] = 0x90; //cmd
  1155. pUpdateMsgSend[5] = 0x93; //checksum
  1156. pUpdateMsgSend[6] = 0xF5; //end flag
  1157. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1158. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1159. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 500);
  1160. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1161. if(ret!=0)
  1162. {
  1163. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1164. {
  1165. if(pUpdateMsgRecv.cmd == 0x90)
  1166. {
  1167. if(pUpdateMsgRecv.data != 0xFF)
  1168. {
  1169. updateStep = UPDATE_STEP_REQUEST_UPDATE;
  1170. errorCount = 0;
  1171. }
  1172. else
  1173. {
  1174. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1175. errorCount = 0;
  1176. }
  1177. }
  1178. else
  1179. {
  1180. errorCount++;
  1181. }
  1182. }
  1183. else
  1184. {
  1185. errorCount++;
  1186. }
  1187. }
  1188. else
  1189. {
  1190. errorCount++;
  1191. }
  1192. #ifdef USING_PRINTF1
  1193. //printf("update step:%d\n",updateStep);
  1194. printf("query:");
  1195. for(j=0;j<updateMsgSendLen;j++)
  1196. {
  1197. printf("%x ",pUpdateMsgSend[j]);
  1198. }
  1199. printf("\nanswer:");
  1200. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1201. {
  1202. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1203. }
  1204. printf("\n");
  1205. printf("next update step:%d\n",updateStep);
  1206. #endif
  1207. if(errorCount>10)
  1208. {
  1209. updateStep = UPDATE_STEP_RESET;
  1210. errorCount = 0;
  1211. }
  1212. osDelay(50);
  1213. break;
  1214. case UPDATE_STEP_REQUEST_UPDATE:
  1215. dataLen = 1;
  1216. updateMsgSendLen = 8;
  1217. pUpdateMsgSend[0] = 0xEB; //start flag
  1218. pUpdateMsgSend[1] = 0x01; //add flag
  1219. pUpdateMsgSend[2] = 0x00; //write
  1220. pUpdateMsgSend[3] = 0x04; //data len
  1221. pUpdateMsgSend[4] = 0x80; //cmd
  1222. pUpdateMsgSend[5] = 0x22; //data
  1223. pUpdateMsgSend[6] = 0xA6; //check
  1224. pUpdateMsgSend[7] = 0xF5; //end flag
  1225. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1226. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1227. if(ret!=0)
  1228. {
  1229. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1230. {
  1231. if(pUpdateMsgRecv.cmd == 0x80)
  1232. {
  1233. if(pUpdateMsgRecv.data == 0x33)
  1234. {
  1235. updateStep = UPDATE_STEP_START_UPDATE;
  1236. errorCount = 0;
  1237. }
  1238. else
  1239. {
  1240. errorCount++;
  1241. }
  1242. }
  1243. else
  1244. {
  1245. errorCount++;
  1246. }
  1247. }
  1248. else
  1249. {
  1250. errorCount++;
  1251. }
  1252. }
  1253. else
  1254. {
  1255. errorCount++;
  1256. }
  1257. if(errorCount>10)
  1258. {
  1259. updateStep = UPDATE_STEP_RESET;
  1260. errorCount = 0;
  1261. }
  1262. #ifdef USING_PRINTF1
  1263. printf("update step:%d\n",updateStep);
  1264. printf("query:");
  1265. for(j=0;j<updateMsgSendLen;j++)
  1266. {
  1267. printf("%x ",pUpdateMsgSend[j]);
  1268. }
  1269. printf("\nanswer:");
  1270. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1271. {
  1272. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1273. }
  1274. printf("\n");
  1275. printf("next update step:%d\n",updateStep);
  1276. #endif
  1277. osDelay(50);
  1278. break;
  1279. case UPDATE_STEP_START_UPDATE:
  1280. dataLen = 1;
  1281. updateMsgSendLen = 8;
  1282. pUpdateMsgSend[0] = 0xEB; //start flag
  1283. pUpdateMsgSend[1] = 0x01; //add flag
  1284. pUpdateMsgSend[2] = 0x00; //write
  1285. pUpdateMsgSend[3] = 0x04; //data len
  1286. pUpdateMsgSend[4] = 0x80; //cmd
  1287. pUpdateMsgSend[5] = 0x55; //data
  1288. pUpdateMsgSend[6] = 0xD9; //check
  1289. pUpdateMsgSend[7] = 0xF5; //end flag
  1290. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1291. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1292. //updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1293. updateStep = UPDATE_STEP_CHECK_VERSION_AGAIN;//2021-04-09跳过波特率设置
  1294. #ifdef USING_PRINTF1
  1295. printf("query:");
  1296. for(j=0;j<updateMsgSendLen;j++)
  1297. {
  1298. printf("%x ",pUpdateMsgSend[j]);
  1299. }
  1300. printf("\nanswer:");
  1301. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1302. {
  1303. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1304. }
  1305. printf("\n");
  1306. printf("next update step:%d\n",updateStep);
  1307. #endif
  1308. break;
  1309. case UPDATE_STEP_CHECK_VERSION_AGAIN:
  1310. dataLen = 0;
  1311. updateMsgSendLen = 7;
  1312. pUpdateMsgSend[0] = 0xEB; //start flag
  1313. pUpdateMsgSend[1] = 0x01; //add flag
  1314. pUpdateMsgSend[2] = 0x01; //read
  1315. pUpdateMsgSend[3] = 0x03; //data len
  1316. pUpdateMsgSend[4] = 0x90; //cmd
  1317. pUpdateMsgSend[5] = 0x93; //checksum
  1318. pUpdateMsgSend[6] = 0xF5; //end flag
  1319. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1320. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1321. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 100);
  1322. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1323. if(ret!=0)
  1324. {
  1325. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1326. {
  1327. if(pUpdateMsgRecv.cmd == 0x90)
  1328. {
  1329. if(pUpdateMsgRecv.data != 0xFF)
  1330. {
  1331. updateStep = UPDATE_STEP_RESET;
  1332. errorCount = 0;
  1333. }
  1334. else
  1335. {
  1336. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1337. errorCount = 0;
  1338. }
  1339. }
  1340. else
  1341. {
  1342. errorCount++;
  1343. }
  1344. }
  1345. else
  1346. {
  1347. errorCount++;
  1348. }
  1349. }
  1350. else
  1351. {
  1352. errorCount++;
  1353. }
  1354. #ifdef USING_PRINTF1
  1355. //printf("update step:%d\n",updateStep);
  1356. printf("query:");
  1357. for(j=0;j<updateMsgSendLen;j++)
  1358. {
  1359. printf("%x ",pUpdateMsgSend[j]);
  1360. }
  1361. printf("\nanswer:");
  1362. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1363. {
  1364. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1365. }
  1366. printf("\n");
  1367. printf("next update step:%d\n",updateStep);
  1368. #endif
  1369. if(errorCount>10)
  1370. {
  1371. updateStep = UPDATE_STEP_RESET;
  1372. errorCount = 0;
  1373. }
  1374. osDelay(50);
  1375. break;
  1376. case UPDATE_STEP_SET_BAUD_RATE:
  1377. printf("start step %d\n",updateStep);
  1378. dataLen = 4;
  1379. updateMsgSendLen = 12;
  1380. pUpdateMsgSend[0] = 0xEB; //start flag
  1381. pUpdateMsgSend[1] = 0x01; //add flag
  1382. pUpdateMsgSend[2] = 0x00; //write
  1383. pUpdateMsgSend[3] = 0x08; //data len
  1384. pUpdateMsgSend[4] = 0x81; //cmd
  1385. pUpdateMsgSend[5] = 0x33; //data
  1386. pUpdateMsgSend[6] = 0x00; //baud rate:9600
  1387. pUpdateMsgSend[7] = 0x00;
  1388. pUpdateMsgSend[8] = 0x25;
  1389. pUpdateMsgSend[9] = 0x80;
  1390. pUpdateMsgSend[10] = 0x61; //check
  1391. pUpdateMsgSend[11] = 0xF5; //end flag
  1392. #ifdef USING_PRINTF1
  1393. printf("query:");
  1394. for(j=0;j<updateMsgSendLen;j++)
  1395. {
  1396. printf("%x ",pUpdateMsgSend[j]);
  1397. }
  1398. printf("\n");
  1399. #endif
  1400. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1401. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1402. printf("ret = %d\n",ret);
  1403. if(ret!=0)
  1404. {
  1405. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1406. {
  1407. if(pUpdateMsgRecv.cmd == 0x81)
  1408. {
  1409. if(pUpdateMsgRecv.data == 0x11)
  1410. {
  1411. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1412. errorCount = 0;
  1413. }
  1414. else
  1415. {
  1416. errorCount++;
  1417. }
  1418. }
  1419. else
  1420. {
  1421. errorCount++;
  1422. }
  1423. }
  1424. else
  1425. {
  1426. errorCount++;
  1427. }
  1428. }
  1429. else
  1430. {
  1431. errorCount++;
  1432. }
  1433. if(errorCount>10)
  1434. {
  1435. updateStep = UPDATE_STEP_RESET;
  1436. errorCount = 0;
  1437. }
  1438. #ifdef USING_PRINTF1
  1439. //printf("update step:%d\n",updateStep);
  1440. printf("query:");
  1441. for(j=0;j<updateMsgSendLen;j++)
  1442. {
  1443. printf("%x ",pUpdateMsgSend[j]);
  1444. }
  1445. printf("\nanswer:");
  1446. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1447. {
  1448. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1449. }
  1450. printf("\n");
  1451. printf("next update step:%d\n",updateStep);
  1452. #endif
  1453. osDelay(50);
  1454. break;
  1455. case UPDATE_STEP_PREPARE_SEND_DATA_LEN:
  1456. printf("start step %d\n",updateStep);
  1457. dataLen = 1;
  1458. updateMsgSendLen = 8;
  1459. pUpdateMsgSend[0] = 0xEB; //start flag
  1460. pUpdateMsgSend[1] = 0x01; //add flag
  1461. pUpdateMsgSend[2] = 0x00; //write
  1462. pUpdateMsgSend[3] = 0x04; //data len
  1463. pUpdateMsgSend[4] = 0x81; //cmd
  1464. pUpdateMsgSend[5] = 0x44; //data
  1465. pUpdateMsgSend[6] = 0xC9; //check
  1466. pUpdateMsgSend[7] = 0xF5; //end flag
  1467. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1468. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1469. if(ret!=0)
  1470. {
  1471. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1472. {
  1473. if(pUpdateMsgRecv.cmd == 0x81)
  1474. {
  1475. if(pUpdateMsgRecv.data == 0x11)
  1476. {
  1477. updateStep = UPDATE_STEP_SEND_DATA_LEN;
  1478. errorCount = 0;
  1479. }
  1480. else
  1481. {
  1482. errorCount++;
  1483. }
  1484. }
  1485. else
  1486. {
  1487. errorCount++;
  1488. }
  1489. }
  1490. else
  1491. {
  1492. errorCount++;
  1493. }
  1494. }
  1495. else
  1496. {
  1497. errorCount++;
  1498. }
  1499. if(errorCount>10)
  1500. {
  1501. updateStep = UPDATE_STEP_RESET;
  1502. errorCount = 0;
  1503. }
  1504. #ifdef USING_PRINTF1
  1505. //printf("update step:%d\n",updateStep);
  1506. printf("query:");
  1507. for(j=0;j<updateMsgSendLen;j++)
  1508. {
  1509. printf("%x ",pUpdateMsgSend[j]);
  1510. }
  1511. printf("\nanswer:");
  1512. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1513. {
  1514. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1515. }
  1516. printf("\n");
  1517. printf("next update step:%d\n",updateStep);
  1518. #endif
  1519. osDelay(50);
  1520. break;
  1521. case UPDATE_STEP_SEND_DATA_LEN:
  1522. dataLen = 4;
  1523. BSP_QSPI_Read_Safe(&updateDataTotalByteLen,FLASH_BMS_FOTA_START_ADDR,4);
  1524. updateDataTotalByteLen = (((updateDataTotalByteLen)&0xFF)<<24)|(((updateDataTotalByteLen>>8)&0xFF)<<16)|(((updateDataTotalByteLen>>16)&0xFF)<<8)|(((updateDataTotalByteLen>>24)&0xFF));
  1525. updateMsgSendLen = 11;
  1526. pUpdateMsgSend[0] = 0xEB; //start flag
  1527. pUpdateMsgSend[1] = 0x01; //add flag
  1528. pUpdateMsgSend[2] = 0x00; //write
  1529. pUpdateMsgSend[3] = 0x07; //data len
  1530. pUpdateMsgSend[4] = 0x82; //cmd
  1531. pUpdateMsgSend[5] = (updateDataTotalByteLen>>24)&0xFF; //data: package byte len
  1532. pUpdateMsgSend[6] = (updateDataTotalByteLen>>16)&0xFF;
  1533. pUpdateMsgSend[7] = (updateDataTotalByteLen>>8)&0xFF;
  1534. pUpdateMsgSend[8] = (updateDataTotalByteLen)&0xFF;
  1535. pUpdateMsgSend[9] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+2); //check sum
  1536. pUpdateMsgSend[10] = 0xF5; //end flag
  1537. memset((UINT8*)(&pUpdateMsgRecv),0,sizeof(BMS_Update_Recv_Msg_Type));
  1538. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1539. if(ret!=0)
  1540. {
  1541. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1542. {
  1543. if(pUpdateMsgRecv.cmd == 0x81)
  1544. {
  1545. if(pUpdateMsgRecv.data == 0x11)
  1546. {
  1547. updateStep = UPDATE_STEP_PREPARE_SEND_UPDATE_DATA;
  1548. errorCount = 0;
  1549. }
  1550. else
  1551. {
  1552. errorCount++;
  1553. }
  1554. }
  1555. else
  1556. {
  1557. errorCount++;
  1558. }
  1559. }
  1560. else
  1561. {
  1562. errorCount++;
  1563. }
  1564. }
  1565. else
  1566. {
  1567. errorCount++;
  1568. }
  1569. if(errorCount>10)
  1570. {
  1571. updateStep = UPDATE_STEP_RESET;
  1572. errorCount = 0;
  1573. }
  1574. #ifdef USING_PRINTF1
  1575. //printf("update step:%d\n",updateStep);
  1576. printf("query:");
  1577. for(j=0;j<updateMsgSendLen;j++)
  1578. {
  1579. printf("%x ",pUpdateMsgSend[j]);
  1580. }
  1581. printf("\nanswer:");
  1582. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1583. {
  1584. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1585. }
  1586. printf("\n");
  1587. printf("next update step:%d\n",updateStep);
  1588. #endif
  1589. osDelay(50);
  1590. break;
  1591. case UPDATE_STEP_PREPARE_SEND_UPDATE_DATA:
  1592. dataLen = 1;
  1593. updateMsgSendLen = 8;
  1594. pUpdateMsgSend[0] = 0xEB; //start flag
  1595. pUpdateMsgSend[1] = 0x01; //add flag
  1596. pUpdateMsgSend[2] = 0x00; //write
  1597. pUpdateMsgSend[3] = 0x04; //data len
  1598. pUpdateMsgSend[4] = 0x81; //cmd
  1599. pUpdateMsgSend[5] = 0x55; //data
  1600. pUpdateMsgSend[6] = 0xDA; //check
  1601. pUpdateMsgSend[7] = 0xF5; //end flag
  1602. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1603. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen,(UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1604. if(ret!=0)
  1605. {
  1606. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1607. {
  1608. if(pUpdateMsgRecv.cmd == 0x81)
  1609. {
  1610. if(pUpdateMsgRecv.data == 0x11)
  1611. {
  1612. updateStep = UPDATE_STEP_SEND_UPDATE_DATA;
  1613. errorCount = 0;
  1614. }
  1615. else
  1616. {
  1617. errorCount++;
  1618. }
  1619. }
  1620. else
  1621. {
  1622. errorCount++;
  1623. }
  1624. }
  1625. else
  1626. {
  1627. errorCount++;
  1628. }
  1629. }
  1630. else
  1631. {
  1632. errorCount++;
  1633. }
  1634. if(errorCount>10)
  1635. {
  1636. updateStep = UPDATE_STEP_RESET;
  1637. errorCount = 0;
  1638. }
  1639. #ifdef USING_PRINTF1
  1640. //printf("update step:%d\n",updateStep);
  1641. printf("query:");
  1642. for(j=0;j<updateMsgSendLen;j++)
  1643. {
  1644. printf("%x ",pUpdateMsgSend[j]);
  1645. }
  1646. printf("\nanswer:");
  1647. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1648. {
  1649. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1650. }
  1651. printf("\n");
  1652. printf("next update step:%d\n",updateStep);
  1653. #endif
  1654. osDelay(50);
  1655. break;
  1656. case UPDATE_STEP_SEND_UPDATE_DATA:
  1657. dataLen = 64;
  1658. updateMsgSendLen = 75;
  1659. for(currentPackage=0;currentPackage<updateDataTotalByteLen/64;currentPackage++)
  1660. {
  1661. currentPackageStartAddr = currentPackage*64;
  1662. pUpdateMsgSend[0] = 0xEB; //start flag
  1663. pUpdateMsgSend[1] = 0x01; //add flag
  1664. pUpdateMsgSend[2] = 0x00; //write
  1665. pUpdateMsgSend[3] = 0x47; //data len
  1666. pUpdateMsgSend[4] = 0x82; //cmd
  1667. pUpdateMsgSend[5] = (currentPackageStartAddr>>24)&0xFF;
  1668. pUpdateMsgSend[6] = (currentPackageStartAddr>>16)&0xFF;
  1669. pUpdateMsgSend[7] = (currentPackageStartAddr>>8)&0xFF;
  1670. pUpdateMsgSend[8] = currentPackageStartAddr&0xFF;
  1671. BSP_QSPI_Read_Safe(&pUpdateMsgSend[9], FLASH_BMS_FOTA_START_ADDR+4+currentPackage*dataLen, dataLen); //data
  1672. pUpdateMsgSend[8+dataLen+1] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+6); //check sum
  1673. pUpdateMsgSend[8+dataLen+2] = 0xF5; //end flag
  1674. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1675. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1676. if(ret!=0)
  1677. {
  1678. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1679. {
  1680. if(pUpdateMsgRecv.cmd == 0x81)
  1681. {
  1682. if(pUpdateMsgRecv.data == 0x11)
  1683. {
  1684. if(currentPackage+1 == updateDataTotalByteLen/64)
  1685. {
  1686. updateStep = UPDATE_STEP_SEND_DATA_END;
  1687. }
  1688. errorCount = 0;
  1689. }
  1690. else
  1691. {
  1692. errorCount++;
  1693. }
  1694. }
  1695. else
  1696. {
  1697. errorCount++;
  1698. }
  1699. }
  1700. else
  1701. {
  1702. errorCount++;
  1703. }
  1704. }
  1705. else
  1706. {
  1707. errorCount++;
  1708. }
  1709. if(errorCount>10)
  1710. {
  1711. updateStep = UPDATE_STEP_RESET;
  1712. errorCount = 0;
  1713. break;
  1714. }
  1715. #ifdef USING_PRINTF1
  1716. //printf("update step:%d\n",updateStep);
  1717. printf("query:");
  1718. for(j=0;j<updateMsgSendLen;j++)
  1719. {
  1720. printf("%x ",pUpdateMsgSend[j]);
  1721. }
  1722. printf("\nanswer:");
  1723. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1724. {
  1725. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1726. }
  1727. printf("\n");
  1728. printf("next update step:%d\n",updateStep);
  1729. #endif
  1730. }
  1731. osDelay(50);
  1732. break;
  1733. case UPDATE_STEP_SEND_DATA_END:
  1734. dataLen = 1;
  1735. updateMsgSendLen = 8;
  1736. pUpdateMsgSend[0] = 0xEB; //start flag
  1737. pUpdateMsgSend[1] = 0x01; //add flag
  1738. pUpdateMsgSend[2] = 0x00; //write
  1739. pUpdateMsgSend[3] = 0x04; //data len
  1740. pUpdateMsgSend[4] = 0x81; //cmd
  1741. pUpdateMsgSend[5] = 0x66; //data
  1742. pUpdateMsgSend[6] = 0xEB; //check
  1743. pUpdateMsgSend[7] = 0xF5; //end flag
  1744. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1745. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1746. if(ret!=0)
  1747. {
  1748. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1749. {
  1750. if(pUpdateMsgRecv.cmd == 0x81)
  1751. {
  1752. if(pUpdateMsgRecv.data == 0x11)
  1753. {
  1754. updateStep = UPDATE_STEP_START_INSTALL;
  1755. errorCount = 0;
  1756. }
  1757. else
  1758. {
  1759. errorCount++;
  1760. }
  1761. }
  1762. else
  1763. {
  1764. errorCount++;
  1765. }
  1766. }
  1767. else
  1768. {
  1769. errorCount++;
  1770. }
  1771. }
  1772. else
  1773. {
  1774. errorCount++;
  1775. }
  1776. if(errorCount>10)
  1777. {
  1778. updateStep = UPDATE_STEP_RESET;
  1779. errorCount = 0;
  1780. }
  1781. #ifdef USING_PRINTF1
  1782. //printf("update step:%d\n",updateStep);
  1783. printf("query:");
  1784. for(j=0;j<updateMsgSendLen;j++)
  1785. {
  1786. printf("%x ",pUpdateMsgSend[j]);
  1787. }
  1788. printf("\nanswer:");
  1789. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1790. {
  1791. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1792. }
  1793. printf("\n");
  1794. printf("next update step:%d\n",updateStep);
  1795. #endif
  1796. osDelay(50);
  1797. break;
  1798. case UPDATE_STEP_START_INSTALL:
  1799. dataLen = 1;
  1800. updateMsgSendLen = 8;
  1801. pUpdateMsgSend[0] = 0xEB; //start flag
  1802. pUpdateMsgSend[1] = 0x01; //add flag
  1803. pUpdateMsgSend[2] = 0x00; //write
  1804. pUpdateMsgSend[3] = 0x04; //data len
  1805. pUpdateMsgSend[4] = 0x81; //cmd
  1806. pUpdateMsgSend[5] = 0x99; //data
  1807. pUpdateMsgSend[6] = 0x1E; //check
  1808. pUpdateMsgSend[7] = 0xF5; //end flag
  1809. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1810. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1811. updateStep = UPDATE_STEP_END;
  1812. #ifdef USING_PRINTF1
  1813. //printf("update step:%d\n",updateStep);
  1814. printf("query:");
  1815. for(j=0;j<updateMsgSendLen;j++)
  1816. {
  1817. printf("%x ",pUpdateMsgSend[j]);
  1818. }
  1819. printf("\nanswer:");
  1820. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1821. {
  1822. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1823. }
  1824. printf("\n");
  1825. printf("next update step:%d\n",updateStep);
  1826. #endif
  1827. osDelay(50);
  1828. break;
  1829. case UPDATE_STEP_END:
  1830. updateStep = UPDATE_STEP_CHECK_VERSION;
  1831. printf("update end\n");
  1832. bmsUpdateFlag = 0;
  1833. break;
  1834. case UPDATE_STEP_RESET:
  1835. dataLen = 1;
  1836. updateMsgSendLen = 8;
  1837. pUpdateMsgSend[0] = 0xEB; //start flag
  1838. pUpdateMsgSend[1] = 0x01; //add flag
  1839. pUpdateMsgSend[2] = 0x00; //write
  1840. pUpdateMsgSend[3] = 0x04; //data len
  1841. pUpdateMsgSend[4] = 0x81; //cmd
  1842. pUpdateMsgSend[5] = 0xAA; //data
  1843. pUpdateMsgSend[6] = 0x2F; //check
  1844. pUpdateMsgSend[7] = 0xF5; //end flag
  1845. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1846. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1847. osDelay(50);
  1848. resetCount++;
  1849. if(resetCount>=2)
  1850. {
  1851. updateStep = UPDATE_STEP_DOWNLOAD_BREAK_OFF;
  1852. resetCount = 0;
  1853. }
  1854. else
  1855. {
  1856. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1857. }
  1858. #ifdef USING_PRINTF
  1859. printf("update error!!\n rest and start send data lenth again!!\n continue update!\n");
  1860. #endif
  1861. break;
  1862. case UPDATE_STEP_DOWNLOAD_BREAK_OFF:
  1863. dataLen = 1;
  1864. updateMsgSendLen = 8;
  1865. pUpdateMsgSend[0] = 0xEB; //start flag
  1866. pUpdateMsgSend[1] = 0x01; //add flag
  1867. pUpdateMsgSend[2] = 0x00; //write
  1868. pUpdateMsgSend[3] = 0x04; //data len
  1869. pUpdateMsgSend[4] = 0x81; //cmd
  1870. pUpdateMsgSend[5] = 0xBB; //data
  1871. pUpdateMsgSend[6] = 0x40; //check
  1872. pUpdateMsgSend[7] = 0xF5; //end flag
  1873. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1874. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1875. osDelay(50);
  1876. updateStep = UPDATE_STEP_CHECK_VERSION;
  1877. Cycle_conut++;
  1878. break;
  1879. case UPDATE_STEP_ERROR:
  1880. updateStep = UPDATE_STEP_CHECK_VERSION;
  1881. printf("update error end\n");
  1882. bmsUpdateFlag = 0;
  1883. break;
  1884. default:
  1885. updateStep = UPDATE_STEP_CHECK_VERSION;
  1886. printf("update default end\n");
  1887. bmsUpdateFlag = 0;
  1888. break;
  1889. }
  1890. }
  1891. }
  1892. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  1893. {
  1894. UINT8 timeCount = 0;
  1895. UINT8 j=0;
  1896. USARTdrv->Send(pSend,sendLen);
  1897. #ifdef USING_PRINTF
  1898. printf("query in:");
  1899. for(j=0;j<sendLen;j++)
  1900. {
  1901. printf("%x ",*(pSend+j));
  1902. }
  1903. printf("\n");
  1904. #endif
  1905. if(readLen>0)
  1906. {
  1907. USARTdrv->Receive(pRead,readLen);
  1908. while((isRecvTimeout == false) && (isRecvComplete == false))
  1909. {
  1910. timeCount++;
  1911. osDelay(100);
  1912. if (timeCount>=timeout/100)
  1913. {
  1914. timeCount =0;
  1915. isRecvTimeout = true;
  1916. break;
  1917. }
  1918. }
  1919. #ifdef USING_PRINTF
  1920. printf("\nanswer in:");
  1921. for(j=0;j<readLen;j++)
  1922. {
  1923. printf("%x ",*(pRead+j));
  1924. }
  1925. printf("\n");
  1926. #endif
  1927. if (isRecvComplete == true)
  1928. {
  1929. isRecvComplete = false;
  1930. if(*(pRead+0)!=0xEB)
  1931. {
  1932. USARTdrv->Uninitialize();
  1933. osDelay(100);
  1934. USARTdrv->Initialize(USART_callback);
  1935. USARTdrv->PowerControl(ARM_POWER_FULL);
  1936. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  1937. ARM_USART_DATA_BITS_8 |
  1938. ARM_USART_PARITY_NONE |
  1939. ARM_USART_STOP_BITS_1 |
  1940. ARM_USART_FLOW_CONTROL_NONE, 9600);
  1941. #ifdef USING_PRINTF
  1942. printf("\nuart reset in \n");
  1943. #endif
  1944. return 0;
  1945. }
  1946. return readLen;
  1947. }
  1948. else
  1949. {
  1950. memset(pRead,0x00,readLen);
  1951. isRecvTimeout = false;
  1952. return 0;
  1953. }
  1954. }
  1955. else
  1956. {
  1957. return 1;
  1958. }
  1959. }
  1960. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len)
  1961. {
  1962. UINT8 ret = 0;
  1963. UINT8 i=0;
  1964. for(i=0;i<len;i++)
  1965. {
  1966. ret +=*(pSendData+i);
  1967. }
  1968. return ret&0xFF;
  1969. }
  1970. //________________________________________________________________________________
  1971. updateBMSStatus MS_BMS_Update_Service() //美顺BMS升级服务
  1972. {
  1973. #ifdef USING_PRINTF
  1974. UINT8 ii = 0;
  1975. #endif
  1976. UINT8 errorCount = 0;
  1977. UINT16 currentPackage = 0;
  1978. UINT32 updateDataTotalByteLen = 0;
  1979. UINT16 updateDataPackageCount = 0;
  1980. UINT8 ReadNVMTemp[64];
  1981. UpdateStep_MS_BMS updateStep = MS_UPDATE_STEP_SEND_FIRMWARE_UPDATE_REQUEST_AND_JUMP_TO_BOOTLOADER;
  1982. UINT16 i,j=0;
  1983. UINT8 dataLen = 0;
  1984. UINT8 ret0 = 0;
  1985. updateBMSStatus ret = updateFailed;
  1986. UINT8 pUpdateMsgSend[80];
  1987. UINT32 updateMsgSendLen = 0;
  1988. UINT32 updateMsgReadLen = 0;
  1989. BOOL bmsUpdateFlag = TRUE;
  1990. UINT8 bmsAnswerMsg[8];
  1991. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  1992. UINT8 Cycle_conut = 0;
  1993. UINT16 CRCtemp = 0;
  1994. UINT8 headerLen = 5;
  1995. UINT8 checkSum = 0x00;
  1996. UINT8 checkSumCal = 0x00;
  1997. UINT8 tempLen = 0x00;
  1998. BSP_QSPI_Read_Safe(&checkSum,FLASH_BMS_FOTA_START_ADDR,1);
  1999. memset(ReadNVMTemp, 0, 64);
  2000. BSP_QSPI_Read_Safe(ReadNVMTemp, FLASH_BMS_FOTA_START_ADDR+1, 4); //data
  2001. updateDataTotalByteLen = ((ReadNVMTemp[0]<<24)&0xFF000000) | ((ReadNVMTemp[1]<<16)&0xFF0000) | ((ReadNVMTemp[2]<<8)&0xFF00) | (ReadNVMTemp[3]&0xFF) ;
  2002. updateDataPackageCount = (updateDataTotalByteLen+(64-1))/64; //进一法 e = (a+(b-1))/b
  2003. for(i=0; i<((updateDataTotalByteLen+4)+(64-1))/64;i++)
  2004. {
  2005. memset(ReadNVMTemp, 0, 64);
  2006. if((i+1)*64 < (updateDataTotalByteLen+4))
  2007. {
  2008. tempLen = 64;
  2009. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+1+i*64,64);
  2010. }
  2011. else
  2012. {
  2013. tempLen = (updateDataTotalByteLen+4) - i*64;
  2014. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+1+i*64,tempLen);
  2015. }
  2016. for(j = 0; j< tempLen; j++)
  2017. {
  2018. checkSumCal = (checkSumCal + ReadNVMTemp[j]) & 0xFF;
  2019. }
  2020. //osDelay(10);
  2021. }
  2022. if(checkSum != checkSumCal)
  2023. {
  2024. #ifdef USING_PRINTF
  2025. printf("checksum error: checksum = %x, checksumCal = %x\n",checkSum,checkSumCal);
  2026. #endif
  2027. ret = updateErrorCheckSumError;
  2028. return ret;
  2029. }
  2030. else
  2031. {
  2032. #ifdef USING_PRINTF
  2033. printf("checksum OK: checksum = %x, checksumCal = %x\n",checkSum,checkSumCal);
  2034. #endif
  2035. }
  2036. #ifdef USING_PRINTF
  2037. printf(" bmsUpdateFlag = %x, Cycle_conut = %x\n",bmsUpdateFlag,Cycle_conut);
  2038. #endif
  2039. while(bmsUpdateFlag && Cycle_conut<2)
  2040. {
  2041. #ifdef USING_PRINTF
  2042. printf("update ms bms step %d\n:",updateStep);
  2043. #endif
  2044. switch (updateStep)
  2045. {
  2046. case MS_UPDATE_STEP_SEND_FIRMWARE_UPDATE_REQUEST_AND_JUMP_TO_BOOTLOADER: //0x01
  2047. dataLen = 0x00;
  2048. updateMsgSendLen = 6+dataLen;
  2049. updateMsgReadLen = 8;
  2050. pUpdateMsgSend[0] = 0x01; //node byte
  2051. pUpdateMsgSend[1] = 0x40; //func byte
  2052. pUpdateMsgSend[2] = updateStep; //cmd byte
  2053. pUpdateMsgSend[3] = dataLen; //data len
  2054. //no data type
  2055. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2056. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2057. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2058. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2059. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2060. #ifdef USING_PRINTF
  2061. printf("update step 1 answer,updateMsgReadLen = %x:\n",updateMsgReadLen);
  2062. for(ii=0;ii<updateMsgReadLen;ii++)
  2063. printf("%x ",bmsAnswerMsg[ii]);
  2064. printf("\nret0 = %d",ret0);
  2065. printf("\n");
  2066. #endif
  2067. if(ret0!=0)
  2068. {
  2069. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2070. {
  2071. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_FIRMWARE_UPDATE_REQUEST_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x02, answer data len:0x02
  2072. {
  2073. if(bmsAnswerMsg[4] == 0x00) //answer data byte1
  2074. {
  2075. if(bmsAnswerMsg[5] == 0x00) //answer data byte2
  2076. {
  2077. updateStep = MS_UPDATE_STEP_SEND_FIRMWARE_INFO;
  2078. errorCount = 0;
  2079. }
  2080. }
  2081. else if(bmsAnswerMsg[4] == 0x01) //不允许升级
  2082. {
  2083. if(bmsAnswerMsg[5] == 0x01)//电量过低
  2084. {
  2085. updateStep = MS_UPDATE_STEP_ERROR;
  2086. ret = updateErrorBMSPowerLow;
  2087. }
  2088. else if(bmsAnswerMsg[5] == 0x02)//电池存在保护状态不允许升级
  2089. {
  2090. updateStep = MS_UPDATE_STEP_ERROR;
  2091. ret = updateErrorBMSWarningProtect;
  2092. }
  2093. else if(bmsAnswerMsg[5] == 0x03) //不支持升级
  2094. {
  2095. updateStep = MS_UPDATE_STEP_ERROR;
  2096. ret = updateErrorBMSNotSurport;
  2097. }
  2098. else if(bmsAnswerMsg[5] == 0x04) //当前电池处于充放电状态
  2099. {
  2100. updateStep = MS_UPDATE_STEP_ERROR;
  2101. ret = updateErrorBMSWorkState;
  2102. }
  2103. else
  2104. {
  2105. errorCount++;
  2106. }
  2107. }
  2108. }
  2109. else
  2110. {
  2111. errorCount++;
  2112. }
  2113. }
  2114. else
  2115. {
  2116. errorCount++;
  2117. }
  2118. }
  2119. else
  2120. {
  2121. errorCount++;
  2122. }
  2123. if(errorCount>10)
  2124. {
  2125. updateStep = MS_UPDATE_STEP_ERROR;
  2126. errorCount = 0;
  2127. }
  2128. osDelay(50);
  2129. printf(" step 1 ret = %d\n",ret);
  2130. break;
  2131. case MS_UPDATE_STEP_SEND_FIRMWARE_INFO: //0x03
  2132. dataLen = 52;
  2133. updateMsgSendLen = 6+dataLen;
  2134. updateMsgReadLen = 7;
  2135. pUpdateMsgSend[0] = 0x01; //node byte
  2136. pUpdateMsgSend[1] = 0x40; //func byte
  2137. pUpdateMsgSend[2] = updateStep; //cmd byte
  2138. pUpdateMsgSend[3] = dataLen; //data len
  2139. memset(ReadNVMTemp, 0, 64);
  2140. BSP_QSPI_Read_Safe(ReadNVMTemp, FLASH_BMS_FOTA_START_ADDR+headerLen, 16); //data
  2141. MEMCPY(&pUpdateMsgSend[4], ReadNVMTemp, 16); //厂家信息,未开启校验
  2142. MEMCPY(&pUpdateMsgSend[4+16], ReadNVMTemp, 16); //保护板硬件序列号,未开启校验
  2143. pUpdateMsgSend[4+16*2 + 0] = (updateDataTotalByteLen>>24)&0xFF; //固件包大小
  2144. pUpdateMsgSend[4+16*2 + 1] = (updateDataTotalByteLen>>16)&0xFF;
  2145. pUpdateMsgSend[4+16*2 + 2] = (updateDataTotalByteLen>>8)&0xFF;
  2146. pUpdateMsgSend[4+16*2 + 3] = (updateDataTotalByteLen)&0xFF;
  2147. MEMCPY(&pUpdateMsgSend[4+16*2+4], ReadNVMTemp, 16); // 固件包头信息,未开启校验
  2148. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2149. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2150. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2151. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2152. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2153. #ifdef USING_PRINTF
  2154. printf("update step 3 answer:\n");
  2155. for(ii=0;ii<updateMsgReadLen;ii++)
  2156. printf("%x ",bmsAnswerMsg[ii]);
  2157. printf("\nret0 = %d",ret0);
  2158. printf("\n");
  2159. #endif
  2160. if(ret0!=0)
  2161. {
  2162. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2163. {
  2164. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_FIRMWARE_INFO_CHECK_AND_UPDATE_REQEST_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x04, answer data len:0x01
  2165. {
  2166. if(bmsAnswerMsg[4] == 0x00) //answer data byte1
  2167. {
  2168. updateStep = MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST;
  2169. errorCount = 0;
  2170. }
  2171. else if(bmsAnswerMsg[4] == 0x01) //厂家信息错误
  2172. {
  2173. errorCount++;
  2174. ret = updateErrorFirmwareInfoError;
  2175. }
  2176. else if(bmsAnswerMsg[4] == 0x02) //硬件序列号不匹配
  2177. {
  2178. errorCount++;
  2179. ret = updateErrorFirmwareInfoError;
  2180. }
  2181. else if(bmsAnswerMsg[4] == 0x03) //固件大小超出范围
  2182. {
  2183. errorCount++;
  2184. ret = updateErrorFirmwareSizeError;
  2185. }
  2186. else if(bmsAnswerMsg[4] == 0x04) //固件包头信息错误
  2187. {
  2188. errorCount++;
  2189. ret = updateErrorFirmwareInfoError;
  2190. }
  2191. else
  2192. {
  2193. errorCount++;
  2194. }
  2195. }
  2196. else
  2197. {
  2198. errorCount++;
  2199. }
  2200. }
  2201. else
  2202. {
  2203. errorCount++;
  2204. }
  2205. }
  2206. else
  2207. {
  2208. errorCount++;
  2209. }
  2210. if(errorCount>10)
  2211. {
  2212. updateStep = MS_UPDATE_STEP_ERROR;
  2213. errorCount = 0;
  2214. }
  2215. printf(" step 3 ret = %d\n",ret);
  2216. osDelay(50);
  2217. break;
  2218. case MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST: //0x05
  2219. dataLen = 0;
  2220. updateMsgSendLen = 6+dataLen;
  2221. updateMsgReadLen = 8;
  2222. pUpdateMsgSend[0] = 0x01; //node byte
  2223. pUpdateMsgSend[1] = 0x40; //func byte
  2224. pUpdateMsgSend[2] = updateStep; //cmd byte
  2225. pUpdateMsgSend[3] = dataLen; //data len
  2226. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2227. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2228. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2229. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2230. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2231. #ifdef USING_PRINTF
  2232. printf("update step 5 answer:\n");
  2233. for(ii=0;ii<updateMsgReadLen;ii++)
  2234. printf("%x ",bmsAnswerMsg[ii]);
  2235. printf("\nret0 = %d",ret0);
  2236. printf("\n");
  2237. #endif
  2238. if(ret0!=0)
  2239. {
  2240. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2241. {
  2242. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_EREASE_FLASH_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x06, answer data len:0x02
  2243. {
  2244. if(bmsAnswerMsg[4] == 0x00) //answer data byte1, erease successed
  2245. {
  2246. updateStep = MS_UPDATE_STEP_SEND_UPDATE_DATA; //0x07
  2247. errorCount = 0;
  2248. }
  2249. else if(bmsAnswerMsg[4] == 0x01) //擦除失败
  2250. {
  2251. errorCount++;
  2252. ret = updateErrorAppErease;
  2253. }
  2254. else
  2255. {
  2256. errorCount++;
  2257. }
  2258. }
  2259. else
  2260. {
  2261. errorCount++;
  2262. }
  2263. }
  2264. else
  2265. {
  2266. errorCount++;
  2267. }
  2268. }
  2269. else
  2270. {
  2271. errorCount++;
  2272. }
  2273. if(errorCount>10)
  2274. {
  2275. updateStep = MS_UPDATE_STEP_ERROR;
  2276. errorCount = 0;
  2277. }
  2278. osDelay(50);
  2279. break;
  2280. case MS_UPDATE_STEP_SEND_UPDATE_DATA: //0x07
  2281. updateMsgReadLen = 7;
  2282. pUpdateMsgSend[0] = 0x01; //node byte
  2283. pUpdateMsgSend[1] = 0x40; //func byte
  2284. pUpdateMsgSend[2] = updateStep; //cmd byte
  2285. for(i = 0; i < updateDataPackageCount ; i++ )
  2286. {
  2287. memset(ReadNVMTemp, 0, 64);
  2288. if((i+1)*64 < (updateDataTotalByteLen))
  2289. {
  2290. tempLen = 64;
  2291. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+headerLen+i*64,64);
  2292. }
  2293. else
  2294. {
  2295. tempLen = (updateDataTotalByteLen+4) - i*64;
  2296. BSP_QSPI_Read_Safe(ReadNVMTemp,FLASH_BMS_FOTA_START_ADDR+headerLen+i*64,tempLen);
  2297. }
  2298. CRCtemp = MS_BMS_Update_CRC16(ReadNVMTemp, tempLen);
  2299. dataLen = tempLen+6; //data len =count(2+2 byte) + crc(2byte) + update data len
  2300. updateMsgSendLen = 6+dataLen; // updateMsgSendLen = data len + header len(6byte)
  2301. pUpdateMsgSend[3] = dataLen; //data len
  2302. pUpdateMsgSend[4] = ((i+1)>>8)&0xFF; //当前包序号,大端模式
  2303. pUpdateMsgSend[5] = (i+1)&0xFF;
  2304. pUpdateMsgSend[6] = (updateDataPackageCount>>8)&0xFF;
  2305. pUpdateMsgSend[7] = updateDataPackageCount&0xFF;
  2306. pUpdateMsgSend[8] = (CRCtemp>>8)&0xFF; // data CRC High
  2307. pUpdateMsgSend[9] = CRCtemp&0xFF; //data CRC Low
  2308. MEMCPY(&pUpdateMsgSend[4+6], ReadNVMTemp, 64); //升级数据,64字节
  2309. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4+dataLen);
  2310. pUpdateMsgSend[4+dataLen] = (CRCtemp>>8)&0xFF; // CRC High
  2311. pUpdateMsgSend[5+dataLen] = CRCtemp&0xFF; //CRC Low
  2312. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2313. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2314. #ifdef USING_PRINTF
  2315. printf("update step 7 answer:\n");
  2316. for(ii=0;ii<updateMsgReadLen;ii++)
  2317. printf("%x ",bmsAnswerMsg[ii]);
  2318. printf("\nret0 = %d",ret0);
  2319. printf("\n");
  2320. #endif
  2321. if(ret0!=0)
  2322. {
  2323. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2324. {
  2325. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_UPDATE_DATA_WRITE_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x04, answer data len:0x01
  2326. {
  2327. if(bmsAnswerMsg[4] == 0x00) //answer data byte1,接收并操作成功
  2328. {
  2329. updateStep = MS_UPDATE_STEP_EREASE_APP_FLASH_REQUEST;
  2330. errorCount = 0;
  2331. }
  2332. else if(bmsAnswerMsg[4] == 0x01) //固件块校验失败
  2333. {
  2334. errorCount=10;
  2335. ret = updateErrorPackageCRC;
  2336. }
  2337. else if(bmsAnswerMsg[4] == 0x02) //烧写失败
  2338. {
  2339. errorCount=10;
  2340. ret = updateErrorPackageWrite;
  2341. }
  2342. else if(bmsAnswerMsg[4] == 0x03) //固件块编号异常
  2343. {
  2344. errorCount=10;
  2345. ret = updateErrorPackageNo;
  2346. }
  2347. else
  2348. {
  2349. errorCount=10;
  2350. }
  2351. }
  2352. else
  2353. {
  2354. errorCount=10;
  2355. }
  2356. }
  2357. else
  2358. {
  2359. errorCount=10;
  2360. }
  2361. }
  2362. else
  2363. {
  2364. errorCount=10;
  2365. }
  2366. if(errorCount>=10)
  2367. {
  2368. updateStep = MS_UPDATE_STEP_ERROR;
  2369. errorCount = 0;
  2370. i--;
  2371. break;
  2372. }
  2373. osDelay(50);
  2374. }
  2375. if(i == updateDataPackageCount)
  2376. {
  2377. updateStep = MS_UPDATE_STEP_SEND_UPDATE_DATA_END_AND_JUMP_TO_APP;
  2378. }
  2379. break;
  2380. case MS_UPDATE_STEP_SEND_UPDATE_DATA_END_AND_JUMP_TO_APP: //0x09
  2381. dataLen = 0x00;
  2382. updateMsgSendLen = 6+dataLen;
  2383. updateMsgReadLen = 7;
  2384. pUpdateMsgSend[0] = 0x01; //node byte
  2385. pUpdateMsgSend[1] = 0x40; //func byte
  2386. pUpdateMsgSend[2] = updateStep; //cmd byte
  2387. pUpdateMsgSend[3] = dataLen; //data len
  2388. //no data type
  2389. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2390. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2391. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2392. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2393. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2394. #ifdef USING_PRINTF
  2395. printf("update step 9 answer:\n");
  2396. for(ii=0;ii<updateMsgReadLen;ii++)
  2397. printf("%x ",bmsAnswerMsg[ii]);
  2398. printf("\nret0 = %d",ret0);
  2399. printf("\n");
  2400. #endif
  2401. if(ret0!=0)
  2402. {
  2403. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2404. {
  2405. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_JUMP_TO_APP_ANSWER && bmsAnswerMsg[3] == 0x01) //answer cmd byte:0x0A, answer data len:0x01
  2406. {
  2407. if(bmsAnswerMsg[4] == 0x00) //answer data byte1, update succeed
  2408. {
  2409. errorCount = 0;
  2410. updateStep = MS_UPDATE_STEP_READ_CURRENT_RUNNING_MODE; //0x0B
  2411. }
  2412. else if(bmsAnswerMsg[4] == 0x01) //升级失败
  2413. {
  2414. errorCount = 10;
  2415. ret = updateFailed;
  2416. }
  2417. }
  2418. else
  2419. {
  2420. errorCount++;
  2421. }
  2422. }
  2423. else
  2424. {
  2425. errorCount++;
  2426. }
  2427. }
  2428. else
  2429. {
  2430. errorCount++;
  2431. }
  2432. if(errorCount>=10)
  2433. {
  2434. updateStep = MS_UPDATE_STEP_ERROR;
  2435. errorCount = 0;
  2436. }
  2437. osDelay(50);
  2438. break;
  2439. case MS_UPDATE_STEP_READ_CURRENT_RUNNING_MODE: //0x0B
  2440. dataLen = 0x00;
  2441. updateMsgSendLen = 6+dataLen;
  2442. updateMsgReadLen = 8;
  2443. pUpdateMsgSend[0] = 0x01; //node byte
  2444. pUpdateMsgSend[1] = 0x40; //func byte
  2445. pUpdateMsgSend[2] = updateStep; //cmd byte
  2446. pUpdateMsgSend[3] = dataLen; //data len
  2447. //no data type
  2448. CRCtemp = MS_BMS_Update_CRC16(pUpdateMsgSend, 4);
  2449. pUpdateMsgSend[4] = (CRCtemp>>8)&0xFF; // CRC High
  2450. pUpdateMsgSend[5] = CRCtemp&0xFF; //CRC Low
  2451. memset((UINT8*)(bmsAnswerMsg) , 0, 8);
  2452. ret0 = MS_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(bmsAnswerMsg), updateMsgReadLen, 500);
  2453. #ifdef USING_PRINTF
  2454. printf("update step A answer:\n");
  2455. for(ii=0;ii<updateMsgReadLen;ii++)
  2456. printf("%x ",bmsAnswerMsg[ii]);
  2457. printf("\nret0 = %d",ret0);
  2458. printf("\n");
  2459. #endif
  2460. if(ret0!=0)
  2461. {
  2462. if(bmsAnswerMsg[0] == 0x01 && bmsAnswerMsg[1] == 0x40) // node and func byte
  2463. {
  2464. if(bmsAnswerMsg[2] == MS_UPDATE_STEP_CURRENT_RUNNING_MODE_ANSWER && bmsAnswerMsg[3] == 0x02) //answer cmd byte:0x0C, answer data len:0x02
  2465. {
  2466. if(bmsAnswerMsg[4] == 0x01) //answer data byte1, update succeed, app is running
  2467. {
  2468. errorCount = 0;
  2469. updateStep = MS_UPDATE_STEP_END;
  2470. }
  2471. else if(bmsAnswerMsg[4] == 0x00) //update failed , boot is running,error
  2472. {
  2473. errorCount = 10;
  2474. }
  2475. }
  2476. else
  2477. {
  2478. errorCount++;
  2479. }
  2480. }
  2481. else
  2482. {
  2483. errorCount++;
  2484. }
  2485. }
  2486. else
  2487. {
  2488. errorCount++;
  2489. }
  2490. if(errorCount>=3)
  2491. {
  2492. updateStep = MS_UPDATE_STEP_ERROR;
  2493. errorCount = 0;
  2494. }
  2495. osDelay(50);
  2496. break;
  2497. case MS_UPDATE_STEP_END: //0x0D
  2498. errorCount = 0;
  2499. bmsUpdateFlag = FALSE;
  2500. ret = updateOK;
  2501. break;
  2502. case MS_UPDATE_STEP_ERROR: //0x0E
  2503. errorCount = 0;
  2504. bmsUpdateFlag = true;
  2505. Cycle_conut++;
  2506. if(Cycle_conut>2)
  2507. {
  2508. ret = updateErrorTimeout;
  2509. bmsUpdateFlag = FALSE;
  2510. }
  2511. break;
  2512. default:
  2513. bmsUpdateFlag = FALSE;
  2514. break;
  2515. }
  2516. }
  2517. #ifdef USING_PRINTF
  2518. printf("last ret = %x\n",ret);
  2519. #endif
  2520. return ret;
  2521. }
  2522. UINT8 MS_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  2523. {
  2524. UINT8 timeCount = 0;
  2525. UINT8 j=0;
  2526. USARTdrv->Send(pSend,sendLen);
  2527. #ifdef USING_PRINTF
  2528. printf("query in:");
  2529. for(j=0;j<sendLen;j++)
  2530. {
  2531. printf("%x ",*(pSend+j));
  2532. }
  2533. printf("\n");
  2534. #endif
  2535. if(readLen>0)
  2536. {
  2537. USARTdrv->Receive(pRead,readLen);
  2538. while((isRecvTimeout == false) && (isRecvComplete == false))
  2539. {
  2540. timeCount++;
  2541. osDelay(100);
  2542. if (timeCount>=timeout/100)
  2543. {
  2544. timeCount =0;
  2545. isRecvTimeout = true;
  2546. break;
  2547. }
  2548. }
  2549. #ifdef USING_PRINTF
  2550. printf("\nanswer in:");
  2551. for(j=0;j<readLen;j++)
  2552. {
  2553. printf("%x ",*(pRead+j));
  2554. }
  2555. printf("\n");
  2556. #endif
  2557. if (isRecvComplete == true)
  2558. {
  2559. isRecvComplete = false;
  2560. if(*(pRead+0)!=0x01)
  2561. {
  2562. USARTdrv->Uninitialize();
  2563. osDelay(100);
  2564. USARTdrv->Initialize(USART_callback);
  2565. USARTdrv->PowerControl(ARM_POWER_FULL);
  2566. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  2567. ARM_USART_DATA_BITS_8 |
  2568. ARM_USART_PARITY_NONE |
  2569. ARM_USART_STOP_BITS_1 |
  2570. ARM_USART_FLOW_CONTROL_NONE, 9600);
  2571. #ifdef USING_PRINTF
  2572. printf("\nuart reset in \n");
  2573. #endif
  2574. return 0;
  2575. }
  2576. return readLen;
  2577. }
  2578. else
  2579. {
  2580. memset(pRead,0x00,readLen);
  2581. isRecvTimeout = false;
  2582. return 0;
  2583. }
  2584. }
  2585. else
  2586. {
  2587. return 1;
  2588. }
  2589. }
  2590. static void __invert_uint8(UINT8* dBuf, UINT8* srcBuf)
  2591. {
  2592. int i;
  2593. UINT8 tmp[4];
  2594. tmp[0] = 0;
  2595. for (i = 0;i < 8;i++)
  2596. {
  2597. if(srcBuf[0] & (1 << i))
  2598. {
  2599. tmp[0] |= 1<<(7-i);
  2600. }
  2601. }
  2602. dBuf[0] = tmp[0];
  2603. }
  2604. static void __invert_uint16(UINT16* dBuf, UINT16* srcBuf)
  2605. {
  2606. int i;
  2607. UINT16 tmp[4];
  2608. tmp[0] = 0;
  2609. for (i = 0;i < 16;i++)
  2610. {
  2611. if(srcBuf[0] & (1 << i))
  2612. {
  2613. tmp[0] |= 1 << (15 - i);
  2614. }
  2615. }
  2616. dBuf[0] = tmp[0];
  2617. }
  2618. UINT16 MS_BMS_Update_CRC16(UINT8* pSendData,UINT16 len)
  2619. {
  2620. UINT16 wCRCin = 0xFFFF;
  2621. UINT16 wCPoly = 0x8005;
  2622. UINT8 wChar = 0;
  2623. UINT16 crc_rslt = 0;
  2624. int i;
  2625. while (len--)
  2626. {
  2627. wChar = *(pSendData++);
  2628. __invert_uint8(&wChar, &wChar);
  2629. wCRCin ^= (wChar << 8);
  2630. for (i = 0;i < 8;i++)
  2631. {
  2632. if(wCRCin & 0x8000)
  2633. {
  2634. wCRCin = (wCRCin << 1) ^ wCPoly;
  2635. }
  2636. else
  2637. {
  2638. wCRCin = wCRCin << 1;
  2639. }
  2640. }
  2641. }
  2642. __invert_uint16(&wCRCin, &wCRCin);
  2643. crc_rslt = ((wCRCin << 8) & 0xFF00) | ((wCRCin >> 8) & 0x00FF);
  2644. return (crc_rslt);
  2645. }
  2646. UINT8 BmsErrorDecode(UINT32 battWarningState)
  2647. {
  2648. UINT16 ErrorNumTemp;
  2649. UINT8 ret;
  2650. if(battWarningState==0)
  2651. {
  2652. return 0;
  2653. }
  2654. else
  2655. {
  2656. if(osOK==osMutexAcquire(Error_Mutex, 100))
  2657. {
  2658. ret = ((battWarningState) & 0x01) == 1 ;
  2659. if (ret)
  2660. {
  2661. ErrorNumTemp = 7;
  2662. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2663. //str += "ERROR:存在电芯过放告警故障!!\n";单体电压过低
  2664. }
  2665. ret = ((battWarningState >> 1) & 0x01) == 1 ;
  2666. if (ret)
  2667. {
  2668. ErrorNumTemp = 10;
  2669. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2670. //str += "ERROR:存在总电压过放告警故障!!\n";总电压过低
  2671. }
  2672. ret = ((battWarningState >> 2) & 0x01) == 1 ;
  2673. if (ret)
  2674. {
  2675. ErrorNumTemp = 8;
  2676. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2677. //str += "ERROR:存在电芯过压告警故障!!\n";
  2678. }
  2679. ret = ((battWarningState >> 3) & 0x01) == 1 ;
  2680. if (ret)
  2681. {
  2682. ErrorNumTemp = 11;
  2683. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2684. //str += "ERROR:存在总电压过压告警故障!!\n";
  2685. }
  2686. ret = ((battWarningState >> 4) & 0x01) == 1 ;
  2687. if (ret)
  2688. {
  2689. ErrorNumTemp = 12;
  2690. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2691. //str += "ERROR:存在放电过流告警故障!!\n";
  2692. }
  2693. ret = ((battWarningState >> 5) & 0x01) == 1 ;
  2694. if (ret)
  2695. {
  2696. ErrorNumTemp = 13;
  2697. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2698. //str += "ERROR:存在充电过流告警故障!!\n";
  2699. }
  2700. ret = ((battWarningState >> 6) & 0x01) == 1 ;
  2701. if (ret)
  2702. {
  2703. ErrorNumTemp = 2;
  2704. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2705. //str += "ERROR:存在放电过温告警故障!!\n";
  2706. }
  2707. ret = ((battWarningState >> 7) & 0x01) == 1 ;
  2708. if (ret)
  2709. {
  2710. ErrorNumTemp = 2;
  2711. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2712. //str += "ERROR:存在充电过温告警故障!!\n";
  2713. }
  2714. ret = ((battWarningState >> 8) & 0x01) == 1 ;
  2715. if (ret)
  2716. {
  2717. //str += "ERROR:存在环境高温告警故障!!\n";
  2718. }
  2719. ret = ((battWarningState >> 9) & 0x01) == 1 ;
  2720. if (ret)
  2721. {
  2722. //str += "ERROR:存在环境低温告警故障!!\n";
  2723. }
  2724. ret = ((battWarningState >> 10) & 0x01) == 1 ;
  2725. if (ret)
  2726. {
  2727. ErrorNumTemp = 27;
  2728. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2729. //str += "ERROR:存在battSOC低告警故障!!\n";
  2730. }
  2731. ret = ((battWarningState >> 11) & 0x01) == 1 ;
  2732. if (ret)
  2733. {
  2734. ErrorNumTemp = 3;
  2735. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2736. //str += "ERROR:存在MOS高温告警故障!!\n";
  2737. }
  2738. ret = ((battWarningState >> 16) & 0x01) == 1;
  2739. if (ret)
  2740. {
  2741. ErrorNumTemp = 18;
  2742. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2743. //str += "ERROR:存在温度采集失效/传感器故障!!\n";
  2744. }
  2745. ret = ((battWarningState >> 17) & 0x01) == 1;
  2746. if (ret)
  2747. {
  2748. ErrorNumTemp = 19;
  2749. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2750. //str += "ERROR:存在电压采集失效/断线故障!!\n";
  2751. }
  2752. ret = ((battWarningState >> 18) & 0x01) == 1;
  2753. if (ret)
  2754. {
  2755. ErrorNumTemp = 17;
  2756. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2757. //str += "ERROR:存在放电MOS失效故障!!\n";
  2758. }
  2759. ret = ((battWarningState >> 19) & 0x01) == 1;
  2760. if (ret)
  2761. {
  2762. ErrorNumTemp = 16;
  2763. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2764. //str += "ERROR:存在充电MOS失效故障!!\n";
  2765. }
  2766. ret = ((battWarningState >> 20) & 0x01) == 1;
  2767. if (ret)
  2768. {
  2769. ErrorNumTemp = 22;
  2770. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2771. //str += "ERROR:存在电芯不均衡告警!!\n";
  2772. }
  2773. ret = ((battWarningState >> 22) & 0x01) == 1;
  2774. if (ret)
  2775. {
  2776. ErrorNumTemp = 1;
  2777. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2778. //str += "ERROR:存在放电低温告警故障!!\n";
  2779. }
  2780. ret = ((battWarningState >> 23) & 0x01) == 1 ;
  2781. if (ret)
  2782. {
  2783. ErrorNumTemp = 1;
  2784. PutErrorNum((UINT16 *)ErrorNum,sizeof(ErrorNum),ErrorNumTemp);
  2785. //str += "ERROR:存在充电低温告警故障!!\n";
  2786. }
  2787. }
  2788. else
  2789. {
  2790. #ifdef USING_PRINTF
  2791. printf("get Muxtex error\n");
  2792. #endif
  2793. }
  2794. osMutexRelease(Error_Mutex);
  2795. }
  2796. return 1;
  2797. }