UartTask.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810
  1. /****************************************************************************
  2. *
  3. * Copy right: Qx.
  4. * File name: UartTask.c
  5. * Description: 串口任务
  6. * History: 2021-03-05
  7. *
  8. * 2021-04-11:可以通过Ota线路升级Bms保护板
  9. ****************************************************************************/
  10. #include "bsp.h"
  11. #include "bsp_custom.h"
  12. #include "osasys.h"
  13. #include "ostask.h"
  14. #include "queue.h"
  15. #include "ps_event_callback.h"
  16. #include "cmisim.h"
  17. #include "cmimm.h"
  18. #include "cmips.h"
  19. #include "sockets.h"
  20. #include "psifevent.h"
  21. #include "ps_lib_api.h"
  22. #include "lwip/netdb.h"
  23. //#include <cis_def.h>
  24. #include "debug_log.h"
  25. #include "slpman_ec616.h"
  26. #include "plat_config.h"
  27. #include "ec_tcpip_api.h"
  28. #include "hal_module_adapter.h"
  29. #include "UartTask.h"
  30. #include "MainTask.h"
  31. #include <stdlib.h>
  32. #include "app.h"
  33. #include "numeric.h"
  34. #include "Fota.h"
  35. //全局变量输入区
  36. extern UINT32 Timer_count;
  37. extern volatile bool Sleep_flag;
  38. extern AppNVMDataType AppNVMData;
  39. //全局变量输出区
  40. UartReadMsgType UartReadMsg;
  41. osMutexId_t UartMutex = NULL;//Uart数据锁
  42. QueueHandle_t UartWriteCmdHandle = NULL;
  43. UINT8 BattChrgEndFlag;
  44. //
  45. extern ARM_DRIVER_USART Driver_USART1;
  46. static ARM_DRIVER_USART *USARTdrv = &Driver_USART1;
  47. volatile bool isRecvTimeout = false;
  48. volatile bool isRecvComplete = false;
  49. //线程声明区
  50. static StaticTask_t gProcess_Uart_Task_t;
  51. static UINT8 gProcess_Uart_TaskStack[PROC_UART_TASK_STACK_SIZE];
  52. static osThreadId_t UartTaskId = NULL;
  53. static process_Uart gProcess_Uart_Task = PROCESS_UART_STATE_IDLE;
  54. #define PROC_UART_STATE_SWITCH(a) (gProcess_Uart_Task = a)
  55. //函数声明区
  56. void USART_callback(uint32_t event);
  57. UINT8 Uart_DataRecv_func(UINT8* Uart_Read_Msg,UINT8* Uart_Recv_Buffer);
  58. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData);
  59. UINT16 crc_chk(UINT8* data, UINT8 length);
  60. void battSOCDisplay(void);
  61. void battErrorStateDisplay(void);
  62. void battLockStateDisplay(UINT8 lockState);
  63. void SP_BMS_Update_Service(void);
  64. BOOL BattHeaterSwitch(UINT8* heaterSwitch);
  65. UINT16 encryptionAlgorithm (UINT16 plainText);
  66. UINT8 decryptionAlgorithm (UINT16 cipherText);
  67. UINT8 Uart_Encrypt_Send(void);
  68. //BMS升级函数声明
  69. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len);
  70. void SP_BMS_Update_Service();
  71. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  72. //Uart线程任务区
  73. static void UartTask(void* arg)
  74. {
  75. USARTdrv->Initialize(USART_callback);
  76. USARTdrv->PowerControl(ARM_POWER_FULL);
  77. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  78. ARM_USART_DATA_BITS_8 |
  79. ARM_USART_PARITY_NONE |
  80. ARM_USART_STOP_BITS_1 |
  81. ARM_USART_FLOW_CONTROL_NONE, 9600);
  82. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_ENCRYPT);
  83. UINT16 Reg_Num = 0;
  84. UINT16 Uart_Uds_LEN;
  85. UINT16 Uart_Recv_LEN;
  86. UINT32 currentTimerCount=0;
  87. BOOL uartReadSuccessFlag = false;
  88. Uart_Read_Msg_Type Uart_Read_Msg;
  89. Uart_Write_Data_Type UartWriteData; //Uart控制命令
  90. if(UartWriteCmdHandle == NULL)//Uart控制命令传输指针
  91. {
  92. UartWriteCmdHandle = osMessageQueueNew(3,sizeof(Uart_Write_Data_Type), NULL);
  93. }
  94. if(UartMutex == NULL)
  95. {
  96. UartMutex = osMutexNew(NULL);
  97. }
  98. //上电起始控制区域
  99. while (1)
  100. {
  101. switch (gProcess_Uart_Task)
  102. {
  103. case PROCESS_UART_STATE_ENCRYPT:
  104. {
  105. UINT8 EncryptFlag=0x00;
  106. UINT8 EncryptCount=0;
  107. while(EncryptFlag!=0x01&&EncryptCount<=3)
  108. {
  109. EncryptFlag = Uart_Encrypt_Send();
  110. EncryptCount++;
  111. }
  112. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  113. break;
  114. }
  115. case PROCESS_UART_STATE_IDLE:
  116. {
  117. osDelay(100);
  118. if(Sleep_flag)
  119. {
  120. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_SLEEP);
  121. }
  122. else if(Timer_count%10==0)
  123. {
  124. #ifdef USING_PRINTF
  125. printf("[%d]Uart Timer 5s:%d\n",__LINE__,Timer_count);
  126. #endif
  127. if(osMessageQueueGet(UartWriteCmdHandle,&UartWriteData,0,0)==osOK)
  128. {
  129. #ifdef USING_PRINTF
  130. printf("[%d]UartWriteCmdHandle :%x\n",__LINE__,UartWriteData.WriteCmd);
  131. #endif
  132. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_WRITE);
  133. }
  134. else
  135. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  136. }
  137. if(UartReadMsg.Header[2]>0)
  138. {
  139. uartReadSuccessFlag = true;
  140. }
  141. if(Timer_count-currentTimerCount >= 1)
  142. {
  143. if(AppNVMData.isBattLocked != 0)
  144. {
  145. battLockStateDisplay(TRUE);
  146. }
  147. if(uartReadSuccessFlag)
  148. {
  149. battSOCDisplay();
  150. battErrorStateDisplay();
  151. }
  152. }
  153. currentTimerCount = Timer_count;
  154. if(BMS_Fota_update_flag)
  155. {
  156. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_UPDATE);
  157. }
  158. if(AppNVMData.isBattLocked==TRUE && ((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1])>>1)&0x03!=0x00)
  159. {
  160. UartWriteData.WriteCmd = 0x01;
  161. UartWriteData.Data[0] = 0x00;
  162. UartWriteData.Data[1] = 0x00;
  163. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  164. }
  165. else if (AppNVMData.isBattLocked==FALSE && ((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1])>>1)&0x03==0x00)
  166. {
  167. UartWriteData.WriteCmd = 0x01;
  168. UartWriteData.Data[0] = 0x00;
  169. UartWriteData.Data[1] = 0x03;
  170. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  171. }
  172. break;
  173. }
  174. case PROCESS_UART_STATE_READ:
  175. {
  176. osStatus_t result = osMutexAcquire(UartMutex, osWaitForever);
  177. Reg_Num = 0x21+BATT_CELL_VOL_NUM+BATT_TEMP_NUM + 2;//按照协议里面的0x21+X+N的结束地址
  178. Uart_Read_Msg.Bms_Address = BMS_ADDRESS_CODE;
  179. Uart_Read_Msg.Bms_Funcode = UART_READ_CODE;
  180. Uart_Read_Msg.Reg_Begin_H = 0x00;
  181. Uart_Read_Msg.Reg_Begin_L= 0x00;
  182. Uart_Read_Msg.Reg_Num_H = Reg_Num>>8;
  183. Uart_Read_Msg.Reg_Num_L = Reg_Num;
  184. Uart_Uds_LEN = Reg_Num*2;
  185. Uart_Recv_LEN = Uart_DataRecv_func((UINT8 *)&Uart_Read_Msg,UartReadMsg.Header);
  186. osMutexRelease(UartMutex);
  187. if(Uart_Recv_LEN>0)
  188. {
  189. UartReadMsg.UartFlag = TRUE;
  190. }
  191. else
  192. {
  193. UartReadMsg.UartFlag = FALSE;
  194. }
  195. UartReadMsg.len = Uart_Recv_LEN;
  196. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  197. if((UartReadMsg.data[(0x03+BATT_CELL_VOL_NUM)*2+1]&0x03)==0x02)
  198. {
  199. BattChrgEndFlag=TRUE;
  200. }
  201. else
  202. {
  203. BattChrgEndFlag=FALSE;
  204. }
  205. #ifdef USING_PRINTF1
  206. printf("\nUart_Recv_buffer: ");
  207. for(int i=0;i<Uart_Recv_LEN;i++)
  208. {
  209. printf("%x ",*((UINT8 *)&UartReadMsg.Header+i));
  210. }
  211. printf("\n");
  212. #endif
  213. break;
  214. }
  215. case PROCESS_UART_STATE_WRITE:
  216. {
  217. Uart_WriteCmd_func(UartWriteData);
  218. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  219. break;
  220. }
  221. case PROCESS_UART_STATE_UPDATE:
  222. SP_BMS_Update_Service();
  223. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  224. BMS_Fota_update_flag = FALSE;
  225. break;
  226. case PROCESS_UART_STATE_SLEEP:
  227. {
  228. USARTdrv->PowerControl(ARM_POWER_LOW);
  229. while(TRUE)
  230. {
  231. osDelay(60000/portTICK_PERIOD_MS);
  232. }
  233. break;
  234. }
  235. }
  236. }
  237. }
  238. //Uart线程初始化
  239. void UartTaskInit(void *arg)
  240. {
  241. osThreadAttr_t task_attr;
  242. memset(&task_attr,0,sizeof(task_attr));
  243. memset(gProcess_Uart_TaskStack, 0xA5, PROC_UART_TASK_STACK_SIZE);
  244. task_attr.name = "Uart_Task";
  245. task_attr.stack_mem = gProcess_Uart_TaskStack;
  246. task_attr.stack_size = PROC_UART_TASK_STACK_SIZE;
  247. task_attr.priority = osPriorityBelowNormal7;
  248. task_attr.cb_mem = &gProcess_Uart_Task_t;
  249. task_attr.cb_size = sizeof(StaticTask_t);
  250. UartTaskId = osThreadNew(UartTask, NULL, &task_attr);
  251. }
  252. void UartTaskDeInit(void *arg)
  253. {
  254. osThreadTerminate(UartTaskId);
  255. UartTaskId = NULL;
  256. }
  257. //函数区
  258. //Uart回调程序
  259. void USART_callback(uint32_t event)
  260. {
  261. if(event & ARM_USART_EVENT_RX_TIMEOUT)
  262. {
  263. isRecvTimeout = true;
  264. }
  265. if(event & ARM_USART_EVENT_RECEIVE_COMPLETE)
  266. {
  267. isRecvComplete = true;
  268. }
  269. }
  270. //Uart校验程序
  271. UINT16 crc_chk(UINT8* data, UINT8 length)
  272. {
  273. UINT8 j;
  274. UINT16 reg_crc=0xFFFF;
  275. while(length--)
  276. {
  277. reg_crc ^= *data++;
  278. for(j=0;j<8;j++)
  279. {
  280. if(reg_crc & 0x01)
  281. {
  282. reg_crc=(reg_crc>>1) ^ 0xA001;
  283. }
  284. else
  285. {
  286. reg_crc=reg_crc >>1;
  287. }
  288. }
  289. }
  290. return reg_crc;
  291. }
  292. //Uart写命令函数
  293. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData)
  294. {
  295. Uart_Write_Msg_Type Uart_Write_Msg;
  296. UINT16 RegAddress = 0x0000;
  297. UINT16 CRC_chk_buffer;
  298. UINT8 timeout = 0x00;
  299. UINT8 Uart_Recv_Buffer[8];
  300. switch (UartWriteData.WriteCmd)
  301. {
  302. case 0x01:
  303. {
  304. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  305. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  306. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  307. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  308. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  309. Uart_Write_Msg.Reg_Num_H = 0x00;
  310. Uart_Write_Msg.Reg_Num_L = 0x01;
  311. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  312. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  313. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  314. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  315. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  316. break;
  317. }
  318. default:
  319. {
  320. UartWriteData.WriteCmd = 0x00;
  321. return 0;
  322. break;
  323. }
  324. }
  325. USARTdrv->Send((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg));
  326. #ifdef USING_PRINTF
  327. printf("Uart_Send_buffer: ");
  328. for(int i=0;i<sizeof(Uart_Write_Msg);i++)
  329. {
  330. printf("%x ",*((UINT8 *)&Uart_Write_Msg+i));
  331. }
  332. printf("\n");
  333. #endif
  334. USARTdrv->Receive(Uart_Recv_Buffer,8);
  335. while((isRecvTimeout == false) && (isRecvComplete == false))
  336. {
  337. timeout++;
  338. osDelay(100);
  339. if (timeout>=10)
  340. {
  341. timeout =0;
  342. isRecvTimeout = true;
  343. break;
  344. }
  345. }
  346. if (isRecvComplete == true)
  347. {
  348. #ifdef USING_PRINTF
  349. printf("Uart_Rece_buffer: ");
  350. for(int i=0;i<8;i++)
  351. {
  352. printf("%x ",Uart_Recv_Buffer[i]);
  353. }
  354. printf("n");
  355. #endif
  356. isRecvComplete = false;
  357. if(Uart_Recv_Buffer[1]==0x10)
  358. {
  359. return UartWriteData.WriteCmd;
  360. }
  361. else
  362. {
  363. return 0x00;
  364. }
  365. }
  366. else
  367. {
  368. isRecvTimeout = false;
  369. return 0x00;
  370. }
  371. }
  372. //Uart发送接收函数
  373. UINT8 Uart_DataRecv_func(UINT8* Uart_Read_Msg,UINT8* Uart_Recv_Buffer)
  374. {
  375. UINT16 CRC_Rece_buffer;
  376. UINT16 CRC_chk_buffer;
  377. UINT16 Data_Len ;
  378. UINT8 timeout = 0x00;
  379. Data_Len = (*(Uart_Read_Msg+4)|*(Uart_Read_Msg+5))*2+5;
  380. CRC_chk_buffer = crc_chk(Uart_Read_Msg,6);
  381. *(Uart_Read_Msg+6) = CRC_chk_buffer;
  382. *(Uart_Read_Msg+7) = CRC_chk_buffer>>8;
  383. USARTdrv->Send(Uart_Read_Msg,8);
  384. #ifdef USING_PRINTF
  385. printf("Uart_Send_buffer: ");
  386. for(int i=0;i<8;i++)
  387. {
  388. printf("%x ",*(Uart_Read_Msg+i));
  389. }
  390. printf("\n");
  391. #endif
  392. USARTdrv->Receive(Uart_Recv_Buffer,Data_Len);
  393. while(true)
  394. {
  395. timeout++;
  396. if((isRecvTimeout == true) || (isRecvComplete == true))
  397. {
  398. break;
  399. }
  400. else
  401. {
  402. osDelay(100);
  403. if (timeout>=50)
  404. {
  405. timeout =0;
  406. isRecvTimeout = true;
  407. }
  408. }
  409. }
  410. #ifdef USING_PRINTF
  411. printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  412. printf("timeout = %d\n",timeout);
  413. #endif
  414. #ifdef USING_PRINTF1
  415. printf("Uart_Rece_buffer: ");
  416. for(int i=0;i<Data_Len;i++)
  417. {
  418. printf("%x ",*(Uart_Recv_Buffer+i));
  419. }
  420. #endif
  421. if (isRecvComplete == true)
  422. {
  423. isRecvComplete = false;
  424. CRC_Rece_buffer =*(Uart_Recv_Buffer+Data_Len-1)<<8|*(Uart_Recv_Buffer+Data_Len-2);
  425. CRC_chk_buffer = crc_chk(Uart_Recv_Buffer,Data_Len-2);
  426. // #ifdef USING_PRINTF
  427. // printf("Uart_Rece_buffer after Crc: ");
  428. // for(int i=0;i<Data_Len;i++)
  429. // {
  430. // printf("%x ",*(Uart_Recv_Buffer+i));
  431. // }
  432. // printf("\tcrcchk:%x,%x\n ",CRC_chk_buffer,CRC_Rece_buffer);
  433. // #endif
  434. if (CRC_Rece_buffer == CRC_chk_buffer)//满足校验
  435. {
  436. return Data_Len;//此处指针移位出现重启问题
  437. }
  438. else //接收数据的校验不过
  439. {
  440. USARTdrv->Uninitialize();
  441. osDelay(1000);
  442. USARTdrv->Initialize(USART_callback);
  443. USARTdrv->PowerControl(ARM_POWER_FULL);
  444. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  445. ARM_USART_DATA_BITS_8 |
  446. ARM_USART_PARITY_NONE |
  447. ARM_USART_STOP_BITS_1 |
  448. ARM_USART_FLOW_CONTROL_NONE, 9600);
  449. memset(Uart_Recv_Buffer,0xff,Data_Len);
  450. return 0;
  451. }
  452. }
  453. else
  454. {
  455. memset(Uart_Recv_Buffer,0x00,Data_Len);
  456. isRecvTimeout = false;
  457. return 0;
  458. }
  459. }
  460. /**
  461. \fn BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  462. \param[in] (UINT8*) heaterSwitch: the heater switch state
  463. \brief according to the current switch state and all the cell temp, it will turn on/off the switch
  464. \return (BOOL) isNeedtoSwitch: true: need to send cmd to turn on/off the switch
  465. false: do not need to do anything
  466. */
  467. BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  468. {
  469. BOOL isNeedtoSwitch = FALSE;
  470. UINT8 battCellTemp[BATT_TEMP_NUM];
  471. UINT8 maxCellTemp,minCellTemp;
  472. UINT8 i =0;
  473. UINT8 currentSwitchState = 0;
  474. //get the current switch state and the cell temp
  475. currentSwitchState = UartReadMsg.data[(0x1C+BATT_CELL_VOL_NUM+(BATT_TEMP_NUM+2))*2+1]&0x01;
  476. for(int i=0; i<BATT_TEMP_NUM; i++)
  477. {
  478. battCellTemp[i] = UartReadMsg.data[(0x06+BATT_CELL_VOL_NUM+i)*2+1];
  479. }
  480. //cal the maxtemp and mintemp
  481. maxCellTemp = battCellTemp[0];
  482. minCellTemp = battCellTemp[0];
  483. for(i=1;i<BATT_TEMP_NUM;i++)
  484. {
  485. maxCellTemp = max(maxCellTemp,battCellTemp[i]);
  486. minCellTemp = min(minCellTemp,battCellTemp[i]);
  487. }
  488. if(currentSwitchState==0) //当前状态为关闭,判断是否应该开启
  489. {
  490. if(minCellTemp<=5+40 && maxCellTemp<25+40)//温度偏移为40
  491. {
  492. *heaterSwitch = 1;
  493. isNeedtoSwitch = true;
  494. }
  495. }
  496. else //当前状态为开启,判断是否应该关闭
  497. {
  498. if(minCellTemp>10+40||maxCellTemp>30+40)
  499. {
  500. *heaterSwitch = 0;
  501. isNeedtoSwitch= true;
  502. }
  503. }
  504. return isNeedtoSwitch;
  505. }
  506. void battSOCDisplay()
  507. {
  508. static UINT8 workState;
  509. static UINT8 currentSoc;
  510. static UINT8 lightTimer = 0;
  511. UINT8 socLowLEDFlashPeriod = 10;//10*100 = 1000ms
  512. UINT8 chargeLEDFlashPeriod = 6;//6*100 = 600ms
  513. float dutyRatio = 0.4;
  514. UINT8 temp;
  515. if(AppNVMData.isBattLocked == TRUE)
  516. {
  517. return;
  518. }
  519. if(UartReadMsg.Header[2]>0)
  520. {
  521. temp = UartReadMsg.data[(0x03+BATT_CELL_VOL_NUM)*2+1]&0x03;
  522. workState = ((temp&0x01)<<01)|(temp>>0x01);
  523. currentSoc = UartReadMsg.data[(0x0B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1];
  524. }
  525. #ifdef USING_PRINTF1
  526. printf("current SOC = %d\n",currentSoc);
  527. printf("work state = %d\n",workState);
  528. #endif
  529. lightTimer++;
  530. if(workState == 0||workState == 2) //静置或放电状态
  531. {
  532. if(currentSoc<=10)
  533. {
  534. if(lightTimer<(UINT8)(socLowLEDFlashPeriod*dutyRatio))
  535. {
  536. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  537. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  538. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  539. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  540. }
  541. else if(lightTimer>=(UINT8)(socLowLEDFlashPeriod*dutyRatio) && lightTimer<socLowLEDFlashPeriod)
  542. {
  543. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  544. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  545. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  546. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  547. }
  548. else
  549. {
  550. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  551. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  552. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  553. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  554. lightTimer = 0;
  555. }
  556. }
  557. else if(currentSoc>10&&currentSoc<=25)
  558. {
  559. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  560. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  561. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  562. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  563. lightTimer = 0;
  564. }
  565. else if(currentSoc>25&&currentSoc<=50)
  566. {
  567. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  568. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  569. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  570. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  571. lightTimer = 0;
  572. }
  573. else if(currentSoc>50&&currentSoc<=75)
  574. {
  575. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  576. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  577. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  578. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  579. lightTimer = 0;
  580. }
  581. else if(currentSoc>75&&currentSoc<=100)
  582. {
  583. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  584. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  585. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  586. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  587. lightTimer = 0;
  588. }
  589. }
  590. else if(workState == 1)
  591. {
  592. if(currentSoc<=25)
  593. {
  594. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  595. {
  596. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  597. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  598. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  599. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  600. }
  601. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  602. {
  603. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  604. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  605. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  606. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  607. }
  608. else
  609. {
  610. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  611. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  612. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  613. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  614. lightTimer = 0;
  615. }
  616. }
  617. else if(currentSoc>25&&currentSoc<=50)
  618. {
  619. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  620. {
  621. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  622. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  623. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  624. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  625. }
  626. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  627. {
  628. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  629. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  630. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  631. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  632. }
  633. else
  634. {
  635. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  636. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  637. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  638. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  639. lightTimer = 0;
  640. }
  641. }
  642. else if(currentSoc>50&&currentSoc<=75)
  643. {
  644. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  645. {
  646. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  647. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  648. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  649. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  650. }
  651. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  652. {
  653. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  654. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  655. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  656. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  657. }
  658. else
  659. {
  660. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  661. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  662. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  663. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  664. lightTimer = 0;
  665. }
  666. }
  667. else if(currentSoc>75&&currentSoc<=97)
  668. {
  669. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  670. {
  671. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  672. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  673. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  674. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  675. }
  676. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  677. {
  678. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  679. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  680. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  681. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  682. }
  683. else
  684. {
  685. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  686. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  687. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  688. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  689. lightTimer = 0;
  690. }
  691. }
  692. else if(currentSoc>97&&currentSoc<=100)
  693. {
  694. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  695. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  696. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  697. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  698. }
  699. }
  700. }
  701. void battErrorStateDisplay()
  702. {
  703. static UINT32 errorState;
  704. static UINT8 errorLightTimer = 0;
  705. //static UINT32 currentTimerCount=0;
  706. UINT8 errorLEDFlashPeriod = 6;//600ms
  707. float errorDutyRatio = 0.4;
  708. if(AppNVMData.isBattLocked == TRUE)
  709. {
  710. return;
  711. }
  712. if(UartReadMsg.Header[2]>0)
  713. {
  714. errorState = ((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2])<<8)|0|((UartReadMsg.data[(0x0A+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2])<<24)|((UartReadMsg.data[(0x0A+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1])<<16);
  715. //MEMCPY(&errorState,&(UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2]),4);
  716. }
  717. errorLightTimer++;
  718. //errorState = testErrorState;
  719. #ifdef USING_PRINTF1
  720. for(int k=0;k<UartReadMsg.Header[2];k++)
  721. printf("%x ",UartReadMsg.data[k]);
  722. printf("error state = %x\n",errorState);
  723. #endif
  724. if(errorState != 0)
  725. {
  726. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  727. {
  728. FaultDisplay(LED_TURN_ON);
  729. }
  730. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  731. {
  732. FaultDisplay(LED_TURN_OFF);
  733. }
  734. else
  735. {
  736. FaultDisplay(LED_TURN_OFF);
  737. errorLightTimer = 0;
  738. }
  739. }
  740. else
  741. {
  742. FaultDisplay(LED_TURN_OFF);
  743. errorLightTimer = 0;
  744. }
  745. }
  746. void battLockStateDisplay(UINT8 lockState)
  747. {
  748. static UINT8 currentState = 0;
  749. static UINT8 errorLightTimer = 0;
  750. //static UINT32 currentTimerCount=0;
  751. UINT8 errorLEDFlashPeriod = 10;//1000ms
  752. float errorDutyRatio = 0.4;
  753. //printf("lockState = %d\ncurrent State = %d\n",lockState,currentState);
  754. if(lockState==0)//no error
  755. {
  756. if(currentState!=lockState)
  757. {
  758. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  759. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  760. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  761. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  762. FaultDisplay(LED_TURN_OFF);
  763. currentState = lockState;
  764. errorLightTimer = 0;
  765. }
  766. else
  767. {
  768. return;
  769. }
  770. }
  771. else // error occurred, errorState = 1
  772. {
  773. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  774. {
  775. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  776. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  777. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  778. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  779. FaultDisplay(LED_TURN_ON);
  780. }
  781. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  782. {
  783. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  784. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  785. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  786. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  787. FaultDisplay(LED_TURN_OFF);
  788. }
  789. else
  790. {
  791. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  792. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  793. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  794. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  795. FaultDisplay(LED_TURN_OFF);
  796. errorLightTimer = 0;
  797. }
  798. }
  799. errorLightTimer++;
  800. }
  801. UINT8 decryptionAlgorithm (UINT16 cipherText)
  802. {
  803. UINT16 plainText = 1;
  804. UINT16 publicKeyD = 43;
  805. UINT16 publicKeyN = 10961;
  806. cipherText = cipherText % publicKeyN;
  807. while(publicKeyD >0)
  808. {
  809. if(publicKeyD % 2 ==1)
  810. {
  811. plainText = plainText * cipherText % publicKeyN;
  812. }
  813. publicKeyD = publicKeyD/2;
  814. cipherText = (cipherText * cipherText) % publicKeyN;
  815. }
  816. return (UINT8)plainText;
  817. }
  818. UINT16 encryptionAlgorithm (UINT16 plainText)
  819. {
  820. UINT16 cipherText = 1;
  821. UINT16 privateKeyE = 37507;
  822. UINT16 privateKeyN = 10961;
  823. plainText = plainText % privateKeyN;
  824. while(privateKeyE >0)
  825. {
  826. if(privateKeyE % 2 ==1)
  827. {
  828. cipherText = ( cipherText * plainText) % privateKeyN;
  829. }
  830. privateKeyE = privateKeyE/2;
  831. plainText = (plainText * plainText) % privateKeyN;
  832. }
  833. return cipherText;
  834. }
  835. UINT8 Uart_Encrypt_Send()
  836. {
  837. UINT8 SeedNumberArrray[4]={0x38,0x56,0xfe,0xac};
  838. UINT16 EncodeNumberArray[4];
  839. UINT8 UartEncryptBuffer[17];
  840. UINT8 UartDecryptBuffer[5];
  841. UINT16 CRC_chk_buffer;
  842. UINT8 timeCount = 0;
  843. UartEncryptBuffer[0] = BMS_ADDRESS_CODE;
  844. UartEncryptBuffer[1] = UART_ENCRYPT_CODE;
  845. UartEncryptBuffer[2] = 0x0c;
  846. for(int i=0;i<4;i++)
  847. {
  848. SeedNumberArrray[i]=rand();
  849. EncodeNumberArray[i] = encryptionAlgorithm(SeedNumberArrray[i]);
  850. UartEncryptBuffer[i+3] = SeedNumberArrray[i];
  851. UartEncryptBuffer[i*2+7] = EncodeNumberArray[i]>>8;
  852. UartEncryptBuffer[i*2+8] = EncodeNumberArray[i];
  853. }
  854. CRC_chk_buffer = crc_chk(UartEncryptBuffer,17-2);
  855. UartEncryptBuffer[15] = CRC_chk_buffer;
  856. UartEncryptBuffer[16] = CRC_chk_buffer>>8;
  857. USARTdrv->Send(UartEncryptBuffer,17);
  858. USARTdrv->Receive(UartDecryptBuffer,5);
  859. while((isRecvTimeout == false) && (isRecvComplete == false))
  860. {
  861. timeCount++;
  862. osDelay(100);
  863. if (timeCount>=10)
  864. {
  865. timeCount =0;
  866. isRecvTimeout = true;
  867. break;
  868. }
  869. }
  870. if (isRecvComplete == true)
  871. {
  872. isRecvComplete = false;
  873. return UartDecryptBuffer[2];
  874. }
  875. else
  876. {
  877. isRecvTimeout = false;
  878. return 0x03;
  879. }
  880. }
  881. /*-----------------------------------------------------------------------------*/
  882. void SP_BMS_Update_Service() //超力源BMS升级服务
  883. {
  884. UINT8 errorCount = 0;
  885. UINT8 resetCount = 0;
  886. UINT16 currentPackage = 0;
  887. UINT32 updateDataTotalByteLen = 0;
  888. UpdateStep updateStep = UPDATE_STEP_CHECK_VERSION;
  889. UINT8 i,j,ret=0;
  890. UINT8 dataLen = 0;
  891. UINT8 pUpdateMsgSend[80];
  892. UINT32 updateMsgSendLen = 0;
  893. UINT32 currentPackageStartAddr = 0;
  894. BMS_Update_Recv_Msg_Type pUpdateMsgRecv;
  895. UINT8 bmsUpdateFlag = 1;
  896. //BMS_Update_Recv_Msg_Type bmsMsg;
  897. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  898. UINT8 Cycle_conut = 0;
  899. while(bmsUpdateFlag && Cycle_conut<2)
  900. {
  901. switch (updateStep)
  902. {
  903. case UPDATE_STEP_CHECK_VERSION:
  904. dataLen = 0;
  905. updateMsgSendLen = 7;
  906. pUpdateMsgSend[0] = 0xEB; //start flag
  907. pUpdateMsgSend[1] = 0x01; //add flag
  908. pUpdateMsgSend[2] = 0x01; //read
  909. pUpdateMsgSend[3] = 0x03; //data len
  910. pUpdateMsgSend[4] = 0x90; //cmd
  911. pUpdateMsgSend[5] = 0x93; //checksum
  912. pUpdateMsgSend[6] = 0xF5; //end flag
  913. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  914. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  915. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 500);
  916. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  917. if(ret!=0)
  918. {
  919. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  920. {
  921. if(pUpdateMsgRecv.cmd == 0x90)
  922. {
  923. if(pUpdateMsgRecv.data != 0xFF)
  924. {
  925. updateStep = UPDATE_STEP_REQUEST_UPDATE;
  926. errorCount = 0;
  927. }
  928. else
  929. {
  930. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  931. errorCount = 0;
  932. }
  933. }
  934. else
  935. {
  936. errorCount++;
  937. }
  938. }
  939. else
  940. {
  941. errorCount++;
  942. }
  943. }
  944. else
  945. {
  946. errorCount++;
  947. }
  948. #ifdef USING_PRINTF1
  949. //printf("update step:%d\n",updateStep);
  950. printf("query:");
  951. for(j=0;j<updateMsgSendLen;j++)
  952. {
  953. printf("%x ",pUpdateMsgSend[j]);
  954. }
  955. printf("\nanswer:");
  956. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  957. {
  958. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  959. }
  960. printf("\n");
  961. printf("next update step:%d\n",updateStep);
  962. #endif
  963. if(errorCount>10)
  964. {
  965. updateStep = UPDATE_STEP_RESET;
  966. errorCount = 0;
  967. }
  968. osDelay(50);
  969. break;
  970. case UPDATE_STEP_REQUEST_UPDATE:
  971. dataLen = 1;
  972. updateMsgSendLen = 8;
  973. pUpdateMsgSend[0] = 0xEB; //start flag
  974. pUpdateMsgSend[1] = 0x01; //add flag
  975. pUpdateMsgSend[2] = 0x00; //write
  976. pUpdateMsgSend[3] = 0x04; //data len
  977. pUpdateMsgSend[4] = 0x80; //cmd
  978. pUpdateMsgSend[5] = 0x22; //data
  979. pUpdateMsgSend[6] = 0xA6; //check
  980. pUpdateMsgSend[7] = 0xF5; //end flag
  981. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  982. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  983. if(ret!=0)
  984. {
  985. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  986. {
  987. if(pUpdateMsgRecv.cmd == 0x80)
  988. {
  989. if(pUpdateMsgRecv.data == 0x33)
  990. {
  991. updateStep = UPDATE_STEP_START_UPDATE;
  992. errorCount = 0;
  993. }
  994. else
  995. {
  996. errorCount++;
  997. }
  998. }
  999. else
  1000. {
  1001. errorCount++;
  1002. }
  1003. }
  1004. else
  1005. {
  1006. errorCount++;
  1007. }
  1008. }
  1009. else
  1010. {
  1011. errorCount++;
  1012. }
  1013. if(errorCount>10)
  1014. {
  1015. updateStep = UPDATE_STEP_RESET;
  1016. errorCount = 0;
  1017. }
  1018. #ifdef USING_PRINTF1
  1019. printf("update step:%d\n",updateStep);
  1020. printf("query:");
  1021. for(j=0;j<updateMsgSendLen;j++)
  1022. {
  1023. printf("%x ",pUpdateMsgSend[j]);
  1024. }
  1025. printf("\nanswer:");
  1026. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1027. {
  1028. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1029. }
  1030. printf("\n");
  1031. printf("next update step:%d\n",updateStep);
  1032. #endif
  1033. osDelay(50);
  1034. break;
  1035. case UPDATE_STEP_START_UPDATE:
  1036. dataLen = 1;
  1037. updateMsgSendLen = 8;
  1038. pUpdateMsgSend[0] = 0xEB; //start flag
  1039. pUpdateMsgSend[1] = 0x01; //add flag
  1040. pUpdateMsgSend[2] = 0x00; //write
  1041. pUpdateMsgSend[3] = 0x04; //data len
  1042. pUpdateMsgSend[4] = 0x80; //cmd
  1043. pUpdateMsgSend[5] = 0x55; //data
  1044. pUpdateMsgSend[6] = 0xD9; //check
  1045. pUpdateMsgSend[7] = 0xF5; //end flag
  1046. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1047. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1048. //updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1049. updateStep = UPDATE_STEP_CHECK_VERSION_AGAIN;//2021-04-09跳过波特率设置
  1050. #ifdef USING_PRINTF1
  1051. printf("query:");
  1052. for(j=0;j<updateMsgSendLen;j++)
  1053. {
  1054. printf("%x ",pUpdateMsgSend[j]);
  1055. }
  1056. printf("\nanswer:");
  1057. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1058. {
  1059. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1060. }
  1061. printf("\n");
  1062. printf("next update step:%d\n",updateStep);
  1063. #endif
  1064. break;
  1065. case UPDATE_STEP_CHECK_VERSION_AGAIN:
  1066. dataLen = 0;
  1067. updateMsgSendLen = 7;
  1068. pUpdateMsgSend[0] = 0xEB; //start flag
  1069. pUpdateMsgSend[1] = 0x01; //add flag
  1070. pUpdateMsgSend[2] = 0x01; //read
  1071. pUpdateMsgSend[3] = 0x03; //data len
  1072. pUpdateMsgSend[4] = 0x90; //cmd
  1073. pUpdateMsgSend[5] = 0x93; //checksum
  1074. pUpdateMsgSend[6] = 0xF5; //end flag
  1075. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1076. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1077. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 100);
  1078. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1079. if(ret!=0)
  1080. {
  1081. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1082. {
  1083. if(pUpdateMsgRecv.cmd == 0x90)
  1084. {
  1085. if(pUpdateMsgRecv.data != 0xFF)
  1086. {
  1087. updateStep = UPDATE_STEP_RESET;
  1088. errorCount = 0;
  1089. }
  1090. else
  1091. {
  1092. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1093. errorCount = 0;
  1094. }
  1095. }
  1096. else
  1097. {
  1098. errorCount++;
  1099. }
  1100. }
  1101. else
  1102. {
  1103. errorCount++;
  1104. }
  1105. }
  1106. else
  1107. {
  1108. errorCount++;
  1109. }
  1110. #ifdef USING_PRINTF1
  1111. //printf("update step:%d\n",updateStep);
  1112. printf("query:");
  1113. for(j=0;j<updateMsgSendLen;j++)
  1114. {
  1115. printf("%x ",pUpdateMsgSend[j]);
  1116. }
  1117. printf("\nanswer:");
  1118. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1119. {
  1120. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1121. }
  1122. printf("\n");
  1123. printf("next update step:%d\n",updateStep);
  1124. #endif
  1125. if(errorCount>10)
  1126. {
  1127. updateStep = UPDATE_STEP_RESET;
  1128. errorCount = 0;
  1129. }
  1130. osDelay(50);
  1131. break;
  1132. case UPDATE_STEP_SET_BAUD_RATE:
  1133. printf("start step %d\n",updateStep);
  1134. dataLen = 4;
  1135. updateMsgSendLen = 12;
  1136. pUpdateMsgSend[0] = 0xEB; //start flag
  1137. pUpdateMsgSend[1] = 0x01; //add flag
  1138. pUpdateMsgSend[2] = 0x00; //write
  1139. pUpdateMsgSend[3] = 0x08; //data len
  1140. pUpdateMsgSend[4] = 0x81; //cmd
  1141. pUpdateMsgSend[5] = 0x33; //data
  1142. pUpdateMsgSend[6] = 0x00; //baud rate:9600
  1143. pUpdateMsgSend[7] = 0x00;
  1144. pUpdateMsgSend[8] = 0x25;
  1145. pUpdateMsgSend[9] = 0x80;
  1146. pUpdateMsgSend[10] = 0x61; //check
  1147. pUpdateMsgSend[11] = 0xF5; //end flag
  1148. #ifdef USING_PRINTF1
  1149. printf("query:");
  1150. for(j=0;j<updateMsgSendLen;j++)
  1151. {
  1152. printf("%x ",pUpdateMsgSend[j]);
  1153. }
  1154. printf("\n");
  1155. #endif
  1156. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1157. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1158. printf("ret = %d\n",ret);
  1159. if(ret!=0)
  1160. {
  1161. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1162. {
  1163. if(pUpdateMsgRecv.cmd == 0x81)
  1164. {
  1165. if(pUpdateMsgRecv.data == 0x11)
  1166. {
  1167. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1168. errorCount = 0;
  1169. }
  1170. else
  1171. {
  1172. errorCount++;
  1173. }
  1174. }
  1175. else
  1176. {
  1177. errorCount++;
  1178. }
  1179. }
  1180. else
  1181. {
  1182. errorCount++;
  1183. }
  1184. }
  1185. else
  1186. {
  1187. errorCount++;
  1188. }
  1189. if(errorCount>10)
  1190. {
  1191. updateStep = UPDATE_STEP_RESET;
  1192. errorCount = 0;
  1193. }
  1194. #ifdef USING_PRINTF1
  1195. //printf("update step:%d\n",updateStep);
  1196. printf("query:");
  1197. for(j=0;j<updateMsgSendLen;j++)
  1198. {
  1199. printf("%x ",pUpdateMsgSend[j]);
  1200. }
  1201. printf("\nanswer:");
  1202. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1203. {
  1204. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1205. }
  1206. printf("\n");
  1207. printf("next update step:%d\n",updateStep);
  1208. #endif
  1209. osDelay(50);
  1210. break;
  1211. case UPDATE_STEP_PREPARE_SEND_DATA_LEN:
  1212. printf("start step %d\n",updateStep);
  1213. dataLen = 1;
  1214. updateMsgSendLen = 8;
  1215. pUpdateMsgSend[0] = 0xEB; //start flag
  1216. pUpdateMsgSend[1] = 0x01; //add flag
  1217. pUpdateMsgSend[2] = 0x00; //write
  1218. pUpdateMsgSend[3] = 0x04; //data len
  1219. pUpdateMsgSend[4] = 0x81; //cmd
  1220. pUpdateMsgSend[5] = 0x44; //data
  1221. pUpdateMsgSend[6] = 0xC9; //check
  1222. pUpdateMsgSend[7] = 0xF5; //end flag
  1223. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1224. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1225. if(ret!=0)
  1226. {
  1227. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1228. {
  1229. if(pUpdateMsgRecv.cmd == 0x81)
  1230. {
  1231. if(pUpdateMsgRecv.data == 0x11)
  1232. {
  1233. updateStep = UPDATE_STEP_SEND_DATA_LEN;
  1234. errorCount = 0;
  1235. }
  1236. else
  1237. {
  1238. errorCount++;
  1239. }
  1240. }
  1241. else
  1242. {
  1243. errorCount++;
  1244. }
  1245. }
  1246. else
  1247. {
  1248. errorCount++;
  1249. }
  1250. }
  1251. else
  1252. {
  1253. errorCount++;
  1254. }
  1255. if(errorCount>10)
  1256. {
  1257. updateStep = UPDATE_STEP_RESET;
  1258. errorCount = 0;
  1259. }
  1260. #ifdef USING_PRINTF1
  1261. //printf("update step:%d\n",updateStep);
  1262. printf("query:");
  1263. for(j=0;j<updateMsgSendLen;j++)
  1264. {
  1265. printf("%x ",pUpdateMsgSend[j]);
  1266. }
  1267. printf("\nanswer:");
  1268. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1269. {
  1270. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1271. }
  1272. printf("\n");
  1273. printf("next update step:%d\n",updateStep);
  1274. #endif
  1275. osDelay(50);
  1276. break;
  1277. case UPDATE_STEP_SEND_DATA_LEN:
  1278. dataLen = 4;
  1279. BSP_QSPI_Read_Safe(&updateDataTotalByteLen,FLASH_BMS_FOTA_START_ADDR,4);
  1280. updateDataTotalByteLen = (((updateDataTotalByteLen)&0xFF)<<24)|(((updateDataTotalByteLen>>8)&0xFF)<<16)|(((updateDataTotalByteLen>>16)&0xFF)<<8)|(((updateDataTotalByteLen>>24)&0xFF));
  1281. updateMsgSendLen = 11;
  1282. pUpdateMsgSend[0] = 0xEB; //start flag
  1283. pUpdateMsgSend[1] = 0x01; //add flag
  1284. pUpdateMsgSend[2] = 0x00; //write
  1285. pUpdateMsgSend[3] = 0x07; //data len
  1286. pUpdateMsgSend[4] = 0x82; //cmd
  1287. pUpdateMsgSend[5] = (updateDataTotalByteLen>>24)&0xFF; //data: package byte len
  1288. pUpdateMsgSend[6] = (updateDataTotalByteLen>>16)&0xFF;
  1289. pUpdateMsgSend[7] = (updateDataTotalByteLen>>8)&0xFF;
  1290. pUpdateMsgSend[8] = (updateDataTotalByteLen)&0xFF;
  1291. pUpdateMsgSend[9] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+2); //check sum
  1292. pUpdateMsgSend[10] = 0xF5; //end flag
  1293. memset((UINT8*)(&pUpdateMsgRecv),0,sizeof(BMS_Update_Recv_Msg_Type));
  1294. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1295. if(ret!=0)
  1296. {
  1297. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1298. {
  1299. if(pUpdateMsgRecv.cmd == 0x81)
  1300. {
  1301. if(pUpdateMsgRecv.data == 0x11)
  1302. {
  1303. updateStep = UPDATE_STEP_PREPARE_SEND_UPDATE_DATA;
  1304. errorCount = 0;
  1305. }
  1306. else
  1307. {
  1308. errorCount++;
  1309. }
  1310. }
  1311. else
  1312. {
  1313. errorCount++;
  1314. }
  1315. }
  1316. else
  1317. {
  1318. errorCount++;
  1319. }
  1320. }
  1321. else
  1322. {
  1323. errorCount++;
  1324. }
  1325. if(errorCount>10)
  1326. {
  1327. updateStep = UPDATE_STEP_RESET;
  1328. errorCount = 0;
  1329. }
  1330. #ifdef USING_PRINTF1
  1331. //printf("update step:%d\n",updateStep);
  1332. printf("query:");
  1333. for(j=0;j<updateMsgSendLen;j++)
  1334. {
  1335. printf("%x ",pUpdateMsgSend[j]);
  1336. }
  1337. printf("\nanswer:");
  1338. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1339. {
  1340. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1341. }
  1342. printf("\n");
  1343. printf("next update step:%d\n",updateStep);
  1344. #endif
  1345. osDelay(50);
  1346. break;
  1347. case UPDATE_STEP_PREPARE_SEND_UPDATE_DATA:
  1348. dataLen = 1;
  1349. updateMsgSendLen = 8;
  1350. pUpdateMsgSend[0] = 0xEB; //start flag
  1351. pUpdateMsgSend[1] = 0x01; //add flag
  1352. pUpdateMsgSend[2] = 0x00; //write
  1353. pUpdateMsgSend[3] = 0x04; //data len
  1354. pUpdateMsgSend[4] = 0x81; //cmd
  1355. pUpdateMsgSend[5] = 0x55; //data
  1356. pUpdateMsgSend[6] = 0xDA; //check
  1357. pUpdateMsgSend[7] = 0xF5; //end flag
  1358. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1359. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen,(UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1360. if(ret!=0)
  1361. {
  1362. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1363. {
  1364. if(pUpdateMsgRecv.cmd == 0x81)
  1365. {
  1366. if(pUpdateMsgRecv.data == 0x11)
  1367. {
  1368. updateStep = UPDATE_STEP_SEND_UPDATE_DATA;
  1369. errorCount = 0;
  1370. }
  1371. else
  1372. {
  1373. errorCount++;
  1374. }
  1375. }
  1376. else
  1377. {
  1378. errorCount++;
  1379. }
  1380. }
  1381. else
  1382. {
  1383. errorCount++;
  1384. }
  1385. }
  1386. else
  1387. {
  1388. errorCount++;
  1389. }
  1390. if(errorCount>10)
  1391. {
  1392. updateStep = UPDATE_STEP_RESET;
  1393. errorCount = 0;
  1394. }
  1395. #ifdef USING_PRINTF1
  1396. //printf("update step:%d\n",updateStep);
  1397. printf("query:");
  1398. for(j=0;j<updateMsgSendLen;j++)
  1399. {
  1400. printf("%x ",pUpdateMsgSend[j]);
  1401. }
  1402. printf("\nanswer:");
  1403. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1404. {
  1405. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1406. }
  1407. printf("\n");
  1408. printf("next update step:%d\n",updateStep);
  1409. #endif
  1410. osDelay(50);
  1411. break;
  1412. case UPDATE_STEP_SEND_UPDATE_DATA:
  1413. dataLen = 64;
  1414. updateMsgSendLen = 75;
  1415. for(currentPackage=0;currentPackage<updateDataTotalByteLen/64;currentPackage++)
  1416. {
  1417. currentPackageStartAddr = currentPackage*64;
  1418. pUpdateMsgSend[0] = 0xEB; //start flag
  1419. pUpdateMsgSend[1] = 0x01; //add flag
  1420. pUpdateMsgSend[2] = 0x00; //write
  1421. pUpdateMsgSend[3] = 0x47; //data len
  1422. pUpdateMsgSend[4] = 0x82; //cmd
  1423. pUpdateMsgSend[5] = (currentPackageStartAddr>>24)&0xFF;
  1424. pUpdateMsgSend[6] = (currentPackageStartAddr>>16)&0xFF;
  1425. pUpdateMsgSend[7] = (currentPackageStartAddr>>8)&0xFF;
  1426. pUpdateMsgSend[8] = currentPackageStartAddr&0xFF;
  1427. BSP_QSPI_Read_Safe(&pUpdateMsgSend[9], FLASH_BMS_FOTA_START_ADDR+4+currentPackage*dataLen, dataLen); //data
  1428. pUpdateMsgSend[8+dataLen+1] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+6); //check sum
  1429. pUpdateMsgSend[8+dataLen+2] = 0xF5; //end flag
  1430. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1431. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1432. if(ret!=0)
  1433. {
  1434. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1435. {
  1436. if(pUpdateMsgRecv.cmd == 0x81)
  1437. {
  1438. if(pUpdateMsgRecv.data == 0x11)
  1439. {
  1440. if(currentPackage+1 == updateDataTotalByteLen/64)
  1441. {
  1442. updateStep = UPDATE_STEP_SEND_DATA_END;
  1443. }
  1444. errorCount = 0;
  1445. }
  1446. else
  1447. {
  1448. errorCount++;
  1449. }
  1450. }
  1451. else
  1452. {
  1453. errorCount++;
  1454. }
  1455. }
  1456. else
  1457. {
  1458. errorCount++;
  1459. }
  1460. }
  1461. else
  1462. {
  1463. errorCount++;
  1464. }
  1465. if(errorCount>10)
  1466. {
  1467. updateStep = UPDATE_STEP_RESET;
  1468. errorCount = 0;
  1469. break;
  1470. }
  1471. #ifdef USING_PRINTF1
  1472. //printf("update step:%d\n",updateStep);
  1473. printf("query:");
  1474. for(j=0;j<updateMsgSendLen;j++)
  1475. {
  1476. printf("%x ",pUpdateMsgSend[j]);
  1477. }
  1478. printf("\nanswer:");
  1479. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1480. {
  1481. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1482. }
  1483. printf("\n");
  1484. printf("next update step:%d\n",updateStep);
  1485. #endif
  1486. }
  1487. osDelay(50);
  1488. break;
  1489. case UPDATE_STEP_SEND_DATA_END:
  1490. dataLen = 1;
  1491. updateMsgSendLen = 8;
  1492. pUpdateMsgSend[0] = 0xEB; //start flag
  1493. pUpdateMsgSend[1] = 0x01; //add flag
  1494. pUpdateMsgSend[2] = 0x00; //write
  1495. pUpdateMsgSend[3] = 0x04; //data len
  1496. pUpdateMsgSend[4] = 0x81; //cmd
  1497. pUpdateMsgSend[5] = 0x66; //data
  1498. pUpdateMsgSend[6] = 0xEB; //check
  1499. pUpdateMsgSend[7] = 0xF5; //end flag
  1500. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1501. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1502. if(ret!=0)
  1503. {
  1504. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1505. {
  1506. if(pUpdateMsgRecv.cmd == 0x81)
  1507. {
  1508. if(pUpdateMsgRecv.data == 0x11)
  1509. {
  1510. updateStep = UPDATE_STEP_START_INSTALL;
  1511. errorCount = 0;
  1512. }
  1513. else
  1514. {
  1515. errorCount++;
  1516. }
  1517. }
  1518. else
  1519. {
  1520. errorCount++;
  1521. }
  1522. }
  1523. else
  1524. {
  1525. errorCount++;
  1526. }
  1527. }
  1528. else
  1529. {
  1530. errorCount++;
  1531. }
  1532. if(errorCount>10)
  1533. {
  1534. updateStep = UPDATE_STEP_RESET;
  1535. errorCount = 0;
  1536. }
  1537. #ifdef USING_PRINTF1
  1538. //printf("update step:%d\n",updateStep);
  1539. printf("query:");
  1540. for(j=0;j<updateMsgSendLen;j++)
  1541. {
  1542. printf("%x ",pUpdateMsgSend[j]);
  1543. }
  1544. printf("\nanswer:");
  1545. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1546. {
  1547. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1548. }
  1549. printf("\n");
  1550. printf("next update step:%d\n",updateStep);
  1551. #endif
  1552. osDelay(50);
  1553. break;
  1554. case UPDATE_STEP_START_INSTALL:
  1555. dataLen = 1;
  1556. updateMsgSendLen = 8;
  1557. pUpdateMsgSend[0] = 0xEB; //start flag
  1558. pUpdateMsgSend[1] = 0x01; //add flag
  1559. pUpdateMsgSend[2] = 0x00; //write
  1560. pUpdateMsgSend[3] = 0x04; //data len
  1561. pUpdateMsgSend[4] = 0x81; //cmd
  1562. pUpdateMsgSend[5] = 0x99; //data
  1563. pUpdateMsgSend[6] = 0x1E; //check
  1564. pUpdateMsgSend[7] = 0xF5; //end flag
  1565. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1566. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1567. updateStep = UPDATE_STEP_END;
  1568. #ifdef USING_PRINTF1
  1569. //printf("update step:%d\n",updateStep);
  1570. printf("query:");
  1571. for(j=0;j<updateMsgSendLen;j++)
  1572. {
  1573. printf("%x ",pUpdateMsgSend[j]);
  1574. }
  1575. printf("\nanswer:");
  1576. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1577. {
  1578. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1579. }
  1580. printf("\n");
  1581. printf("next update step:%d\n",updateStep);
  1582. #endif
  1583. osDelay(50);
  1584. break;
  1585. case UPDATE_STEP_END:
  1586. updateStep = UPDATE_STEP_CHECK_VERSION;
  1587. printf("update end\n");
  1588. bmsUpdateFlag = 0;
  1589. break;
  1590. case UPDATE_STEP_RESET:
  1591. dataLen = 1;
  1592. updateMsgSendLen = 8;
  1593. pUpdateMsgSend[0] = 0xEB; //start flag
  1594. pUpdateMsgSend[1] = 0x01; //add flag
  1595. pUpdateMsgSend[2] = 0x00; //write
  1596. pUpdateMsgSend[3] = 0x04; //data len
  1597. pUpdateMsgSend[4] = 0x81; //cmd
  1598. pUpdateMsgSend[5] = 0xAA; //data
  1599. pUpdateMsgSend[6] = 0x2F; //check
  1600. pUpdateMsgSend[7] = 0xF5; //end flag
  1601. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1602. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1603. osDelay(50);
  1604. resetCount++;
  1605. if(resetCount>=2)
  1606. {
  1607. updateStep = UPDATE_STEP_DOWNLOAD_BREAK_OFF;
  1608. resetCount = 0;
  1609. }
  1610. else
  1611. {
  1612. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1613. }
  1614. #ifdef USING_PRINTF
  1615. printf("update error!!\n rest and start send data lenth again!!\n continue update!\n");
  1616. #endif
  1617. break;
  1618. case UPDATE_STEP_DOWNLOAD_BREAK_OFF:
  1619. dataLen = 1;
  1620. updateMsgSendLen = 8;
  1621. pUpdateMsgSend[0] = 0xEB; //start flag
  1622. pUpdateMsgSend[1] = 0x01; //add flag
  1623. pUpdateMsgSend[2] = 0x00; //write
  1624. pUpdateMsgSend[3] = 0x04; //data len
  1625. pUpdateMsgSend[4] = 0x81; //cmd
  1626. pUpdateMsgSend[5] = 0xBB; //data
  1627. pUpdateMsgSend[6] = 0x40; //check
  1628. pUpdateMsgSend[7] = 0xF5; //end flag
  1629. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1630. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1631. osDelay(50);
  1632. updateStep = UPDATE_STEP_CHECK_VERSION;
  1633. Cycle_conut++;
  1634. break;
  1635. case UPDATE_STEP_ERROR:
  1636. updateStep = UPDATE_STEP_CHECK_VERSION;
  1637. printf("update error end\n");
  1638. bmsUpdateFlag = 0;
  1639. break;
  1640. default:
  1641. updateStep = UPDATE_STEP_CHECK_VERSION;
  1642. printf("update default end\n");
  1643. bmsUpdateFlag = 0;
  1644. break;
  1645. }
  1646. }
  1647. }
  1648. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  1649. {
  1650. UINT8 timeCount = 0;
  1651. UINT8 j=0;
  1652. USARTdrv->Send(pSend,sendLen);
  1653. #ifdef USING_PRINTF
  1654. printf("query in:");
  1655. for(j=0;j<sendLen;j++)
  1656. {
  1657. printf("%x ",*(pSend+j));
  1658. }
  1659. printf("\n");
  1660. #endif
  1661. if(readLen>0)
  1662. {
  1663. USARTdrv->Receive(pRead,readLen);
  1664. while((isRecvTimeout == false) && (isRecvComplete == false))
  1665. {
  1666. timeCount++;
  1667. osDelay(100);
  1668. if (timeCount>=timeout/100)
  1669. {
  1670. timeCount =0;
  1671. isRecvTimeout = true;
  1672. break;
  1673. }
  1674. }
  1675. #ifdef USING_PRINTF
  1676. printf("\nanswer in:");
  1677. for(j=0;j<readLen;j++)
  1678. {
  1679. printf("%x ",*(pRead+j));
  1680. }
  1681. printf("\n");
  1682. #endif
  1683. if (isRecvComplete == true)
  1684. {
  1685. isRecvComplete = false;
  1686. if(*(pRead+0)!=0xEB)
  1687. {
  1688. USARTdrv->Uninitialize();
  1689. osDelay(100);
  1690. USARTdrv->Initialize(USART_callback);
  1691. USARTdrv->PowerControl(ARM_POWER_FULL);
  1692. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  1693. ARM_USART_DATA_BITS_8 |
  1694. ARM_USART_PARITY_NONE |
  1695. ARM_USART_STOP_BITS_1 |
  1696. ARM_USART_FLOW_CONTROL_NONE, 9600);
  1697. #ifdef USING_PRINTF
  1698. printf("\nuart reset in \n");
  1699. #endif
  1700. return 0;
  1701. }
  1702. return readLen;
  1703. }
  1704. else
  1705. {
  1706. memset(pRead,0x00,readLen);
  1707. isRecvTimeout = false;
  1708. return 0;
  1709. }
  1710. }
  1711. else
  1712. {
  1713. return 1;
  1714. }
  1715. }
  1716. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len)
  1717. {
  1718. UINT8 ret = 0;
  1719. UINT8 i=0;
  1720. for(i=0;i<len;i++)
  1721. {
  1722. ret +=*(pSendData+i);
  1723. }
  1724. return ret&0xFF;
  1725. }