hal_module_adapter.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572
  1. #include "bsp.h"
  2. #include "osasys.h"
  3. #include "ostask.h"
  4. #include "queue.h"
  5. #include "debug_log.h"
  6. #include "slpman_ec616.h"
  7. #include "plat_config.h"
  8. #include "hal_uart.h"
  9. #include "hal_adc.h"
  10. #include "adc_ec616.h"
  11. #include "gpio_ec616.h"
  12. #include "hal_module_adapter.h"
  13. #include <stdarg.h>
  14. /*
  15. gps
  16. */
  17. static posGGACallBack gGPSDataCBfunc = NULL;
  18. // GSENSOR device addr
  19. #define GSENSOR_DEVICE_ADDR (SC7A20_IIC_ADDRESS)
  20. #define ZM01_DEVICE_ADDR (0x2a)
  21. /*
  22. i2c
  23. */
  24. #define HAL_I2C_RECV_TASK_QUEUE_CREATED (0x1)
  25. #define I2C_RECV_QUEUE_BUF_SIZE (0x10)
  26. #define I2C_RECV_TASK_STACK_SIZE (1536)
  27. /*
  28. power control
  29. */
  30. // back power
  31. #define AON_GPS_POWER1 (8)
  32. //main power
  33. #define AON_GPS_POWER2 (4)
  34. #define AON_RELAY_DRV (5)
  35. #define AON_WAKEUP (8)
  36. #define GPIO_MOS_DRV1 (14)
  37. #define GPIO_MOS_DRV2 (15)
  38. #define GPIO_POWER_LED (9)
  39. /*GPS*/
  40. #define FEM_GPS_RSTN (6)
  41. #define FEM_GPS_BLK (7)
  42. #define FEM_GPS_PPS (9)
  43. /*CAN*/
  44. #define GPIO_CAN_POWER (9)
  45. /*
  46. I2C
  47. */
  48. #define I2C_RECV_CONTROL_FLAG (0x1)
  49. static UINT32 g_halI2CInitFlag = 0;
  50. static osEventFlagsId_t g_i2CRecvFlag;
  51. static StaticQueue_t i2c_recv_queue_cb;
  52. static StaticTask_t i2c_recv_task;
  53. static UINT8 i2c_recv_task_stack[I2C_RECV_TASK_STACK_SIZE];
  54. static UINT8 i2c_recv_queue_buf[I2C_RECV_QUEUE_BUF_SIZE * sizeof(i2c_recv_msgqueue_obj_t)];
  55. // message queue id
  56. static osMessageQueueId_t i2c_recv_msgqueue;
  57. /*
  58. adc
  59. */
  60. #define GPIO_AIO3_SEL (19)
  61. #define GPIO_AIO4_SEL (18)
  62. #define ADC_TASK_STACK_SIZE (512)
  63. #define ADC_MSG_MAX_NUM (7)
  64. #define ADC_AioResDivRatioDefault (ADC_AioResDivRatio14Over16)
  65. #define REV_AioResDivRatioDefault 16 / 14
  66. //#define ADC_ChannelAioVbat (1200)
  67. static UINT32 ADC_ChannelAioVbat = 1200;
  68. #define ADC_ChannelAioRes (15000)
  69. #define NTC_FullAioValue (1200)
  70. #define ADC_AioResDivRatioExtra (ADC_AioResDivRatio8Over16)
  71. #define REV_AioResDivRatioExtra 16 / 8
  72. #define NTC_REQ_UPDATE_DATA (0x01)
  73. #define ADC_MSG_TIMEOUT (1000)
  74. #define ADC_CALIBRATION_VALUE (50900)
  75. static UINT32 ADC_InsideRES = 500000;
  76. #define ADC_RECV_CONTROL_FLAG (0x1)
  77. typedef struct
  78. {
  79. UINT32 request;
  80. UINT32 NTCvalue[7];
  81. } NtcResult_t;
  82. NtcResult_t gNtcDev;
  83. volatile static UINT32 vbatChannelResult = 0;
  84. volatile static UINT32 thermalChannelResult = 0;
  85. volatile static UINT32 NTCChannelResult[NTC_ChannelMax];
  86. QueueHandle_t adcMsgHandle = NULL;
  87. static osEventFlagsId_t adcEvtHandle = NULL;
  88. static osEventFlagsId_t adcTrigerHandle = NULL;
  89. static osThreadId_t adcTaskHandle = NULL;
  90. static StaticTask_t adcTask = NULL;
  91. static UINT8 adcTaskStack[ADC_TASK_STACK_SIZE];
  92. QueueHandle_t uartDataHandle = NULL;
  93. /*
  94. gps
  95. */
  96. static QueueHandle_t gpsHandle = NULL;
  97. /*
  98. can
  99. */
  100. static osMessageQueueId_t can_recv_msgqueue;
  101. static StaticQueue_t can_recv_queue_cb;
  102. #define CAN_RECV_QUEUE_BUF_SIZE (0x10)
  103. static UINT8 can_recv_queue_buf[CAN_RECV_QUEUE_BUF_SIZE];
  104. #define CAN_RECV_CONTROL_FLAG (0x1)
  105. //#define SPI_ANALOG
  106. #ifdef SPI_ANALOG
  107. #define USING_SPI0 0
  108. #endif
  109. /*spi0*/
  110. #ifdef SPI_ANALOG
  111. #if USING_SPI0
  112. #define SPI_SSN_GPIO_INSTANCE RTE_SPI0_SSN_GPIO_INSTANCE
  113. #define SPI_SSN_GPIO_INDEX RTE_SPI0_SSN_GPIO_INDEX
  114. #define SPI_SSN_GPIO_PAD_ADDR 21
  115. #define SPI_CLK_GPIO_INSTANCE 0
  116. #define SPI_CLK_GPIO_INDEX 15
  117. #define SPI_CLK_GPIO_PAD_ADDR 24
  118. #define SPI_MOSI_GPIO_INSTANCE 0
  119. #define SPI_MOSI_GPIO_INDEX 11
  120. #define SPI_MOSI_GPIO_PAD_ADDR 22
  121. #define SPI_MISO_GPIO_INSTANCE 0
  122. #define SPI_MISO_GPIO_INDEX 14
  123. #define SPI_MISO_GPIO_PAD_ADDR 23
  124. #else //SPI1
  125. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  126. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  127. #define SPI_SSN_GPIO_PAD_ADDR 13
  128. #define SPI_CLK_GPIO_INSTANCE 0
  129. #define SPI_CLK_GPIO_INDEX 5
  130. #define SPI_CLK_GPIO_PAD_ADDR 16
  131. #define SPI_MOSI_GPIO_INSTANCE 0
  132. #define SPI_MOSI_GPIO_INDEX 3
  133. #define SPI_MOSI_GPIO_PAD_ADDR 14
  134. #define SPI_MISO_GPIO_INSTANCE 0
  135. #define SPI_MISO_GPIO_INDEX 4
  136. #define SPI_MISO_GPIO_PAD_ADDR 15
  137. #endif
  138. #else
  139. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  140. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  141. #endif
  142. extern ARM_DRIVER_I2C Driver_I2C0;
  143. extern ARM_DRIVER_SPI Driver_SPI0;
  144. extern ARM_DRIVER_SPI Driver_SPI1;
  145. extern ARM_DRIVER_USART Driver_USART2;
  146. extern ARM_DRIVER_USART Driver_USART1;
  147. uint8_t gps_uart_recv_buf[GPS_DATA_RECV_BUFFER_SIZE];
  148. static ARM_DRIVER_SPI *spiMasterDrv = &CREATE_SYMBOL(Driver_SPI, 1);
  149. static ARM_DRIVER_I2C *i2cDrvInstance = &CREATE_SYMBOL(Driver_I2C, 0);
  150. static ARM_DRIVER_USART *usartHandle = &CREATE_SYMBOL(Driver_USART, 2);
  151. static ARM_DRIVER_USART *printfHandle = &CREATE_SYMBOL(Driver_USART, 1);
  152. //LED define pin index
  153. #define LED_INX_MAX (5)
  154. #define LED_PORT_0 (0)
  155. #define LED_PORT_1 (1)
  156. /*
  157. pin1~pin4 for soc display
  158. pin5 for fault display
  159. */
  160. #define LED_GPIO_PIN_1 (6)
  161. #define LED_PAD_INDEX1 (17)
  162. #define LED_GPIO_PIN_2 (7)
  163. #define LED_PAD_INDEX2 (18)
  164. #define LED_GPIO_PIN_3 (0)
  165. #define LED_PAD_INDEX3 (21)
  166. #define LED_GPIO_PIN_4 (11)
  167. #define LED_PAD_INDEX4 (22)
  168. #define LED_GPIO_PIN_5 (1)
  169. #define LED_PAD_INDEX5 (27)
  170. led_pin_config_t gLedCfg[LED_INX_MAX] = {{LED_PORT_0, LED_GPIO_PIN_1, LED_PAD_INDEX1, PAD_MuxAlt0},
  171. {LED_PORT_0, LED_GPIO_PIN_2, LED_PAD_INDEX2, PAD_MuxAlt0},
  172. {LED_PORT_1, LED_GPIO_PIN_3, LED_PAD_INDEX3, PAD_MuxAlt0},
  173. {LED_PORT_0, LED_GPIO_PIN_4, LED_PAD_INDEX4, PAD_MuxAlt0},
  174. {LED_PORT_1, LED_GPIO_PIN_5, LED_PAD_INDEX5, PAD_MuxAlt0}};
  175. void UTCToBeijing(UTC8TimeType *UTC8Time, unsigned int UTCyear, unsigned char UTCmonth, unsigned char UTCday, unsigned int UTChour, unsigned char UTCminute, unsigned char UTCsecond)
  176. {
  177. int year = 0, month = 0, day = 0, hour = 0;
  178. int lastday = 0; // ÔµÄ×îºóÒ»ÌìÈÕÆÚ
  179. int lastlastday = 0; //ÉÏÔµÄ×îºóÒ»ÌìÈÕÆÚ
  180. year = UTCyear;
  181. month = UTCmonth;
  182. day = UTCday;
  183. hour = UTChour + 8; //UTC+8ת»»Îª±±¾©Ê±¼ä
  184. if (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12)
  185. {
  186. lastday = 31;
  187. if (month == 3)
  188. {
  189. if ((year % 400 == 0) || (year % 4 == 0 && year % 100 != 0)) //ÅжÏÊÇ·ñΪÈòÄê
  190. lastlastday = 29; //ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  191. else
  192. lastlastday = 28;
  193. }
  194. if (month == 8)
  195. lastlastday = 31;
  196. }
  197. else if (month == 4 || month == 6 || month == 9 || month == 11)
  198. {
  199. lastday = 30;
  200. lastlastday = 31;
  201. }
  202. else
  203. {
  204. lastlastday = 31;
  205. if ((year % 400 == 0) || (year % 4 == 0 && year % 100 != 0)) //ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  206. lastday = 29;
  207. else
  208. lastday = 28;
  209. }
  210. if (hour >= 24) //µ±Ëã³öµÄʱ´óÓÚ»òµÈÓÚ24£º00ʱ£¬Ó¦¼õÈ¥24£º00£¬ÈÕÆÚ¼ÓÒ»Ìì
  211. {
  212. hour -= 24;
  213. day += 1;
  214. if (day > lastday) //µ±Ëã³öµÄÈÕÆÚ´óÓÚ¸ÃÔÂ×îºóÒ»Ììʱ£¬Ó¦¼õÈ¥¸ÃÔÂ×îºóÒ»ÌìµÄÈÕÆÚ£¬Ô·ݼÓÉÏÒ»¸öÔÂ
  215. {
  216. day -= lastday;
  217. month += 1;
  218. if (month > 12) //µ±Ëã³öµÄÔ·ݴóÓÚ12£¬Ó¦¼õÈ¥12£¬Äê·Ý¼ÓÉÏ1Äê
  219. {
  220. month -= 12;
  221. year += 1;
  222. }
  223. }
  224. }
  225. UTC8Time->year = year;
  226. UTC8Time->month = month;
  227. UTC8Time->day = day;
  228. UTC8Time->hour = hour;
  229. UTC8Time->minute = UTCminute;
  230. UTC8Time->second = UTCsecond;
  231. }
  232. #ifdef DEBUGLOG
  233. static osMutexId_t DebugFileMux;
  234. static void Debug_Write_Logfile(UINT8 *buf)
  235. {
  236. UINT32 Count;
  237. OSAFILE file;
  238. osMutexAcquire(DebugFileMux, osWaitForever);
  239. file = OsaFopen("DebugFile", "wb");
  240. if (file != NULL)
  241. {
  242. if (OsaFseek(file, 0, SEEK_END) == 0)
  243. {
  244. Count = OsaFwrite(buf, 1, strlen(buf), file);
  245. }
  246. OsaFclose(file);
  247. }
  248. osMutexRelease(DebugFileMux);
  249. return;
  250. }
  251. void Debug_printf(const UINT8 *format, ...)
  252. {
  253. UINT8 buf[128 + 1];
  254. va_list args;
  255. OsaUtcTimeTValue timeUtc;
  256. UINT16 year;
  257. UINT8 month, day, hour, minute, sec;
  258. appGetSystemTimeUtcSync(&timeUtc);
  259. year = (timeUtc.UTCtimer1 & 0xffff0000) >> 16;
  260. month = (timeUtc.UTCtimer1 & 0xff00) >> 8;
  261. day = timeUtc.UTCtimer1 & 0xff;
  262. hour = (timeUtc.UTCtimer2 & 0xff000000) >> 24;
  263. minute = (timeUtc.UTCtimer2 & 0xff0000) >> 16;
  264. sec = (timeUtc.UTCtimer2 & 0xff00) >> 8;
  265. memset(buf, 0, 128 + 1);
  266. UTC8TimeType UTC8TimeStruct;
  267. UTCToBeijing((UTC8TimeType *)&UTC8TimeStruct, year, month, day, hour, minute, sec);
  268. sprintf((char *)buf, "%02d:%02d:%02d-", UTC8TimeStruct.hour, UTC8TimeStruct.minute, UTC8TimeStruct.second);
  269. va_start(args, format);
  270. vsnprintf(buf + strlen(buf), 128 - strlen(buf), format, args);
  271. va_end(args);
  272. Debug_Write_Logfile(buf);
  273. }
  274. UINT16 Debug_GetSize()
  275. {
  276. UINT16 FileSize;
  277. OSAFILE file;
  278. osMutexAcquire(DebugFileMux, osWaitForever);
  279. file = OsaFopen("DebugFile", "rb");
  280. FileSize = OsaFsize(file);
  281. OsaFclose(file);
  282. osMutexRelease(DebugFileMux);
  283. return FileSize;
  284. }
  285. void Debug_Read_Logfile(UINT8 *rbuf, UINT16 FileSize)
  286. {
  287. UINT32 Count;
  288. OSAFILE file;
  289. printf("%s start\r\n", __FUNCTION__);
  290. osMutexAcquire(DebugFileMux, osWaitForever);
  291. file = OsaFopen("DebugFile", "rb");
  292. if (file != NULL)
  293. {
  294. if (OsaFseek(file, 0, SEEK_SET) == 0)
  295. {
  296. memset(rbuf, 0, FileSize);
  297. Count = OsaFread(rbuf, 1, FileSize, file);
  298. printf("%s", rbuf);
  299. }
  300. OsaFclose(file);
  301. }
  302. printf("%s end! \r\n", __FUNCTION__);
  303. osMutexRelease(DebugFileMux);
  304. return;
  305. }
  306. void Debug_Del_Logfile(void)
  307. {
  308. osMutexAcquire(DebugFileMux, osWaitForever);
  309. OsaFremove("DebugFile");
  310. osMutexRelease(DebugFileMux);
  311. }
  312. #endif
  313. #ifdef BL_FILE_LOG
  314. static UINT8 blLogFileNux = 0;
  315. static void bluejoy_write_logfile(UINT8 *buf)
  316. {
  317. int32_t err;
  318. UINT32 Count;
  319. OSAFILE file;
  320. while (blLogFileNux)
  321. {
  322. osDelay(10 / portTICK_PERIOD_MS);
  323. }
  324. blLogFileNux = 1;
  325. file = OsaFopen("blLog", "wb");
  326. if (file == NULL)
  327. {
  328. //printf("blLog open fail!\r\n");
  329. blLogFileNux = 0;
  330. return;
  331. }
  332. if (OsaFseek(file, 0, SEEK_END) != 0)
  333. {
  334. //printf("Seek file failed [%d] \r\n",__LINE__);
  335. OsaFclose(file);
  336. blLogFileNux = 0;
  337. return;
  338. }
  339. Count = OsaFwrite(buf, 1, strlen(buf), file);
  340. if (Count != (strlen(buf)))
  341. {
  342. //printf("blLog write fail!\r\n");
  343. }
  344. OsaFclose(file);
  345. blLogFileNux = 0;
  346. }
  347. void bluejoy_read_logfile(void)
  348. {
  349. int32_t err;
  350. UINT32 Count;
  351. OSAFILE file;
  352. UINT8 rbuf[128 + 1] = {0};
  353. UINT8 *flag_p;
  354. UINT16 pri_l;
  355. printf("%s start\r\n", __FUNCTION__);
  356. while (blLogFileNux)
  357. {
  358. osDelay(10 / portTICK_PERIOD_MS);
  359. }
  360. blLogFileNux = 1;
  361. file = OsaFopen("blLog", "rb");
  362. if (file == NULL)
  363. {
  364. printf("blLog not exst!\r\n");
  365. blLogFileNux = 0;
  366. return;
  367. }
  368. if (OsaFseek(file, 0, SEEK_SET) != 0)
  369. {
  370. printf("Seek file failed [%d] \r\n", __LINE__);
  371. OsaFclose(file);
  372. blLogFileNux = 0;
  373. return;
  374. }
  375. do
  376. {
  377. memset(rbuf, 0, 128);
  378. Count = OsaFread(rbuf, 1, 128, file);
  379. printf("%s", rbuf);
  380. } while (Count == 128);
  381. OsaFclose(file);
  382. blLogFileNux = 0;
  383. printf("%s end! \r\n", __FUNCTION__);
  384. }
  385. void bluejoy_del_logfile(void)
  386. {
  387. UINT32 ret;
  388. //printf("%s start! \r\n",__FUNCTION__);
  389. while (blLogFileNux)
  390. {
  391. osDelay(10 / portTICK_PERIOD_MS);
  392. }
  393. blLogFileNux = 1;
  394. OsaFremove("blLog");
  395. blLogFileNux = 0;
  396. FaultDisplay(LED_TURN_OFF);
  397. osDelay(1000 / portTICK_PERIOD_MS);
  398. FaultDisplay(LED_TURN_ON);
  399. osDelay(1000 / portTICK_PERIOD_MS);
  400. FaultDisplay(LED_TURN_OFF);
  401. osDelay(1000 / portTICK_PERIOD_MS);
  402. FaultDisplay(LED_TURN_ON);
  403. }
  404. void bluejoy_printf(BlLogLevel level, const UINT8 *format, ...)
  405. {
  406. UINT8 buf[128 + 1];
  407. va_list args;
  408. OsaUtcTimeTValue timeUtc;
  409. UINT16 year;
  410. UINT8 month, day, hour, minite, sec;
  411. if (level < BL_LEVEL2)
  412. return;
  413. appGetSystemTimeUtcSync(&timeUtc);
  414. year = (timeUtc.UTCtimer1 & 0xffff0000) >> 16;
  415. month = (timeUtc.UTCtimer1 & 0xff00) >> 8;
  416. day = timeUtc.UTCtimer1 & 0xff;
  417. hour = (timeUtc.UTCtimer2 & 0xff000000) >> 24;
  418. minite = (timeUtc.UTCtimer2 & 0xff0000) >> 16;
  419. sec = (timeUtc.UTCtimer2 & 0xff00) >> 8;
  420. memset(buf, 0, 128 + 1);
  421. UTC8TimeType UTC8TimeStruct;
  422. UTCToBeijing(UTC8TimeStruct, year, month, day, hour, minite, sec);
  423. sprintf((char *)buf, "%04d-%02d-%02d %02d:%02d:%02d ", UTC8TimeStruct.year, UTC8TimeStruct.month, UTC8TimeStruct.day, UTC8TimeStruct.hour, UTC8TimeStruct.minute, UTC8TimeStruct.second);
  424. va_start(args, format);
  425. vsnprintf(buf + strlen(buf), 128 - strlen(buf), format, args);
  426. va_end(args);
  427. //printf("%s", buf);
  428. bluejoy_write_logfile(buf);
  429. }
  430. #endif
  431. #if 0
  432. /**
  433. \fn void NetSocDisplay(UINT8 soc)
  434. \param[in] void
  435. \brief RSSI display on led
  436. \return
  437. */
  438. #define RSSI_LEVEL_0 (0)
  439. #define RSSI_LEVEL_10 (10)
  440. #define RSSI_LEVEL_20 (20)
  441. #define RSSI_LEVEL_25 (25)
  442. #define RSSI_LEVEL_30 (30)
  443. void NetSocDisplay(UINT8 soc)
  444. {
  445. UINT16 pinLevel[LED_INX_MAX-1] ={0};
  446. gpio_pin_config_t nGpioCfg={0};
  447. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  448. nGpioCfg.misc.initOutput = 1;
  449. for(int8_t i=0;i< LED_INX_MAX-1;i++){
  450. GPIO_PinConfig(gLedCfg[i].pinPort, gLedCfg[i].pinInx, &nGpioCfg);
  451. }
  452. if(RSSI_LEVEL_0 < soc && soc <=RSSI_LEVEL_10)
  453. {
  454. pinLevel[0]=1;
  455. pinLevel[1]=pinLevel[2]=pinLevel[3]=0;
  456. }
  457. else if(RSSI_LEVEL_10 < soc && soc <=RSSI_LEVEL_20)
  458. {
  459. pinLevel[0]=pinLevel[1]=1;
  460. pinLevel[2]=pinLevel[3]=0;
  461. }
  462. else if(RSSI_LEVEL_20 < soc && soc <=RSSI_LEVEL_25)
  463. {
  464. pinLevel[0]=pinLevel[1]=pinLevel[2]=1;
  465. pinLevel[3]=0;
  466. }
  467. else if(RSSI_LEVEL_25 < soc && soc <=RSSI_LEVEL_30)
  468. {
  469. pinLevel[0]=pinLevel[1]=pinLevel[2]=pinLevel[3]=1;
  470. }
  471. for(UINT8 i=0; i<LED_INX_MAX-1; i++)
  472. {
  473. GPIO_PinWrite(gLedCfg[i].pinPort, 1<<gLedCfg[i].pinInx, pinLevel[i]<<gLedCfg[i].pinInx);
  474. }
  475. }
  476. #endif
  477. void NetSocDisplay(ledInx_t Inx, ledStaus_t level)
  478. {
  479. UINT16 pinLevel[LED_INX_MAX - 1] = {0};
  480. gpio_pin_config_t nGpioCfg = {0};
  481. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  482. nGpioCfg.misc.initOutput = 1;
  483. pad_config_t padConfig;
  484. PAD_GetDefaultConfig(&padConfig);
  485. padConfig.mux = gLedCfg[Inx].padMutex;
  486. PAD_SetPinConfig(gLedCfg[Inx].padInx, &padConfig);
  487. PAD_SetPinPullConfig(gLedCfg[Inx].padInx, PAD_InternalPullDown);
  488. GPIO_PinConfig(gLedCfg[Inx].pinPort, gLedCfg[Inx].pinInx, &nGpioCfg);
  489. GPIO_PinWrite(gLedCfg[Inx].pinPort, 1 << gLedCfg[Inx].pinInx, level << gLedCfg[Inx].pinInx);
  490. }
  491. /**
  492. \fn void FaultDisplay(ledStaus_t status)
  493. \param[in] status equal to 1 ,turn on red led ; status equal to 0 ,turn off red led
  494. \brief RSSI display on led
  495. \return
  496. */
  497. void FaultDisplay(ledStaus_t status)
  498. {
  499. gpio_pin_config_t nGpioCfg = {0};
  500. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  501. nGpioCfg.misc.initOutput = 1;
  502. pad_config_t padConfig;
  503. PAD_GetDefaultConfig(&padConfig);
  504. padConfig.mux = gLedCfg[4].padMutex;
  505. PAD_SetPinConfig(gLedCfg[4].padInx, &padConfig);
  506. PAD_SetPinPullConfig(gLedCfg[4].padInx, PAD_InternalPullDown);
  507. GPIO_PinConfig(gLedCfg[4].pinPort, gLedCfg[4].pinInx, &nGpioCfg);
  508. GPIO_PinWrite(gLedCfg[4].pinPort, 1 << gLedCfg[4].pinInx, status << gLedCfg[4].pinInx);
  509. }
  510. /**
  511. * @brief
  512. * @param
  513. * @return
  514. */
  515. void SPI_CS_High(void)
  516. {
  517. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 1 << SPI_SSN_GPIO_INDEX);
  518. }
  519. /**
  520. * @brief
  521. * @param
  522. * @return
  523. */
  524. void SPI_CS_Low(void)
  525. {
  526. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 0);
  527. }
  528. #ifdef SPI_ANALOG
  529. /**
  530. * @brief
  531. * @param
  532. * @return
  533. */
  534. void SPI_Clk_High(void)
  535. {
  536. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1 << SPI_CLK_GPIO_INDEX, 1 << SPI_CLK_GPIO_INDEX);
  537. }
  538. /**
  539. * @brief
  540. * @param
  541. * @return
  542. */
  543. void SPI_Clk_Low(void)
  544. {
  545. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1 << SPI_CLK_GPIO_INDEX, 0);
  546. }
  547. /**
  548. * @brief
  549. * @param
  550. * @return
  551. */
  552. void SPI_Mosi_High(void)
  553. {
  554. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1 << SPI_MOSI_GPIO_INDEX, 1 << SPI_MOSI_GPIO_INDEX);
  555. }
  556. /**
  557. * @brief
  558. * @param
  559. * @return
  560. */
  561. void SPI_Mosi_Low(void)
  562. {
  563. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1 << SPI_MOSI_GPIO_INDEX, 0);
  564. }
  565. /**
  566. * @brief
  567. * @param
  568. * @return
  569. */
  570. UINT8 SPI_MISO_Read(void)
  571. {
  572. return GPIO_PinRead(SPI_MISO_GPIO_INSTANCE, SPI_MISO_GPIO_INDEX);
  573. }
  574. #endif
  575. /**
  576. * @brief Software SPI_Flash bus driver basic function, send a single byte to MOSI,
  577. * and accept MISO data at the same time.
  578. * @param[in] u8Data:Data sent on the MOSI data line
  579. * @return u8Out: Data received on the MISO data line
  580. */
  581. UINT8 SPI_Write_Byte(UINT8 u8Data)
  582. {
  583. UINT8 data = u8Data;
  584. #ifdef SPI_ANALOG
  585. UINT8 i = 0;
  586. for (i = 0; i < 8; i++)
  587. {
  588. SPI_Clk_Low();
  589. if ((u8Data << i) & 0x80)
  590. SPI_Mosi_High();
  591. else
  592. SPI_Mosi_Low();
  593. SPI_Clk_High();
  594. }
  595. SPI_Clk_Low();
  596. #else
  597. spiMasterDrv->Transfer(&u8Data, &data, 1);
  598. #endif
  599. return 0;
  600. }
  601. #ifdef SPI_ANALOG
  602. /**
  603. * @brief
  604. * @param
  605. * @return
  606. */
  607. UINT8 SPI_Read_Byte(void)
  608. {
  609. UINT8 i = 0;
  610. UINT8 rByte = 0;
  611. SPI_Clk_Low();
  612. for (i = 0; i < 8; i++)
  613. {
  614. SPI_Clk_High();
  615. rByte <<= 1;
  616. rByte |= SPI_MISO_Read();
  617. SPI_Clk_Low();
  618. }
  619. return rByte;
  620. }
  621. #endif
  622. /**
  623. \fn INT32 CAN_ReadReg(UINT8 addr)
  624. \param[in] addr CAN register addr
  625. \brief write can register
  626. \return
  627. */
  628. INT32 CAN_WriteReg(UINT8 addr, UINT8 value)
  629. {
  630. SPI_CS_Low();
  631. SPI_Write_Byte(CAN_WRITE);
  632. SPI_Write_Byte(addr);
  633. SPI_Write_Byte(value);
  634. SPI_CS_High();
  635. return 0;
  636. }
  637. /**
  638. \fn INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  639. \param[in] reg: can register addr
  640. \brief read can register
  641. \return
  642. */
  643. INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  644. {
  645. UINT8 i = 0;
  646. UINT8 data = 0;
  647. INT32 res;
  648. if (buf == NULL)
  649. return -1;
  650. SPI_CS_Low();
  651. SPI_Write_Byte(CAN_READ);
  652. SPI_Write_Byte(reg);
  653. #ifdef SPI_ANALOG
  654. for (i = 0; i < len; i++)
  655. {
  656. buf[i] = SPI_Read_Byte();
  657. }
  658. #else
  659. for (i = 0; i < len; i++)
  660. {
  661. spiMasterDrv->Transfer(&data, &buf[i], 1);
  662. }
  663. #endif
  664. SPI_CS_High();
  665. return i;
  666. }
  667. /**
  668. \fn UINT8 CanTriggerEvtInit(void)
  669. \param[in]
  670. \brief generate irq,then notify app
  671. \return 1 fail; 0 ok;
  672. */
  673. UINT8 CanTriggerEvtInit(void)
  674. {
  675. /*for msg queue create*/
  676. osMessageQueueAttr_t queue_attr;
  677. memset(&queue_attr, 0, sizeof(queue_attr));
  678. queue_attr.cb_mem = &can_recv_queue_cb;
  679. queue_attr.cb_size = sizeof(can_recv_queue_cb);
  680. queue_attr.mq_mem = can_recv_queue_buf;
  681. queue_attr.mq_size = sizeof(can_recv_queue_buf);
  682. can_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE, 1, &queue_attr);
  683. //printf("CanTriggerEvtInit \r\n");
  684. return 0;
  685. }
  686. /**
  687. \fn void CanWaitEvt(UINT32 timeout)
  688. \param[in]
  689. \brief
  690. \return
  691. */
  692. void CanWaitEvt(UINT32 timeout)
  693. {
  694. osStatus_t status;
  695. UINT8 msg = 0;
  696. UINT32 mask;
  697. status = osMessageQueueGet(can_recv_msgqueue, &msg, 0, osWaitForever);
  698. //printf("msg = %#x\r\n",msg);
  699. }
  700. /**
  701. \fn void CanTiggerEvt(UINT8 cmd)
  702. \param[in]
  703. \brief
  704. \return
  705. */
  706. void CanTiggerEvt(UINT8 cmd)
  707. {
  708. osStatus_t status;
  709. UINT8 msg = cmd;
  710. status = osMessageQueuePut(can_recv_msgqueue, &msg, 0, 0);
  711. }
  712. /*******************************************************************************
  713. * o����y?? : MCP2515_Reset
  714. * ?����? : ����?��?��????��?����?t?��??MCP2515
  715. * ��?��? : ?T
  716. * ��?3? : ?T
  717. * ����???�� : ?T
  718. * ?��?�� : ???��2???��??��?��???a������?���䨬?,2��???��?t����?��?a?????�꨺?
  719. *******************************************************************************/
  720. INT32 HAL_Can_Reset(void)
  721. {
  722. SPI_CS_Low();
  723. SPI_Write_Byte(CAN_RESET);
  724. SPI_CS_High();
  725. return 0;
  726. }
  727. /*******************************************************************************
  728. * o����y?? : MCP2515_Init
  729. * ?����? : MCP25153?��??��????
  730. * ��?��? : ?T
  731. * ��?3? : ?T
  732. * ����???�� : ?T
  733. * ?��?�� : 3?��??���㨹������o����?t?��???��1�����2����??������???�������?��??��1?????�̨�?��
  734. *******************************************************************************/
  735. void HAL_Can_Init(Can_InitType param)
  736. {
  737. UINT8 temp = 0, temp1 = 0;
  738. INT32 res = -1;
  739. gpio_pin_config_t config;
  740. config.pinDirection = GPIO_DirectionOutput;
  741. config.misc.initOutput = 1;
  742. pad_config_t padConfig;
  743. PAD_GetDefaultConfig(&padConfig);
  744. //POWER
  745. padConfig.mux = PAD_MuxAlt0;
  746. PAD_SetPinConfig(28, &padConfig);
  747. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 1 << GPIO_CAN_POWER);
  748. HAL_Can_Reset(); //¡¤¡é?¨ª?¡ä????¨¢?¨¨¨ª?t?¡ä??MCP2515
  749. osDelay(100 / portTICK_PERIOD_MS);
  750. CAN_WriteReg(CANCTRL, OPMODE_CONFIG | CLKOUT_ENABLED);
  751. // CAN_ReadReg(CANCTRL,1,&temp);//?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  752. #ifdef USING_PRINTF
  753. //printf("[%d] CANCTRL = %#x \r\n",__LINE__,temp);
  754. #endif
  755. CAN_WriteReg(CNF1, param.baudrate);
  756. CAN_WriteReg(CNF2, BTLMODE_CNF3 | PHSEG1_3TQ | PRSEG_1TQ);
  757. CAN_WriteReg(CNF3, PHSEG2_3TQ);
  758. if (param.packType == STD_PACK)
  759. {
  760. /*?����???2��??��??��*/
  761. CAN_WriteReg(TXB0SIDH, 0xFF & (param.TxStdIDH)); //����?��?o3??��0������?������?��?????
  762. CAN_WriteReg(TXB0SIDL, 0xE0 & (param.TxStdIDL)); //����?��?o3??��0������?������?��?�̨�??
  763. CAN_WriteReg(RXM0SIDH, 0x00);
  764. CAN_WriteReg(RXM0SIDL, 0x00);
  765. CAN_WriteReg(RXM1SIDH, 0x00);
  766. CAN_WriteReg(RXM1SIDL, 0x00);
  767. /*?����???2��??��??��*/
  768. CAN_WriteReg(RXF0SIDH, 0xFF & (param.RxStdIDH[0]));
  769. CAN_WriteReg(RXF0SIDL, 0xE0 & (param.RxStdIDL[0]));
  770. CAN_WriteReg(RXF1SIDH, 0xFF & (param.RxStdIDH[1]));
  771. CAN_WriteReg(RXF1SIDL, 0xE0 & (param.RxStdIDL[1]));
  772. #if 0
  773. CAN_WriteReg(RXF2SIDH,0x00);
  774. CAN_WriteReg(RXF2SIDL,0xa0);
  775. CAN_WriteReg(RXF3SIDH,0x00);
  776. CAN_WriteReg(RXF3SIDL,0x40);
  777. CAN_WriteReg(RXF4SIDH,0x00);
  778. CAN_WriteReg(RXF4SIDL,0x60);
  779. CAN_WriteReg(RXF5SIDH,0x00);
  780. CAN_WriteReg(RXF5SIDL,0x80);
  781. #else
  782. CAN_WriteReg(RXF2SIDH, 0xFF & (param.RxStdIDH[2]));
  783. CAN_WriteReg(RXF2SIDL, 0xE0 & (param.RxStdIDL[2]));
  784. CAN_WriteReg(RXF3SIDH, 0xFF & (param.RxStdIDH[3]));
  785. CAN_WriteReg(RXF3SIDL, 0xE0 & (param.RxStdIDL[3]));
  786. CAN_WriteReg(RXF4SIDH, 0xFF & (param.RxStdIDH[4]));
  787. CAN_WriteReg(RXF4SIDL, 0xE0 & (param.RxStdIDL[4]));
  788. CAN_WriteReg(RXF5SIDH, 0xFF & (param.RxStdIDH[5]));
  789. CAN_WriteReg(RXF5SIDL, 0xE0 & (param.RxStdIDL[5]));
  790. #endif
  791. CAN_WriteReg(RXB0CTRL, RXM_RCV_ALL | BUKT_ROLLOVER);
  792. CAN_WriteReg(RXB0DLC, DLC_8);
  793. CAN_WriteReg(RXB1CTRL, RXM_RCV_ALL);
  794. CAN_WriteReg(RXB1DLC, DLC_8);
  795. }
  796. else if (param.packType == EXT_PACK)
  797. {
  798. /*TXB0*/
  799. CAN_WriteReg(TXB0SIDH, 0xFF & (param.TxStdIDH));
  800. CAN_WriteReg(TXB0SIDL, (0xEB & (param.TxStdIDL)) | 0x08);
  801. CAN_WriteReg(TXB0EID8, 0xFF & (param.TxExtIDH));
  802. CAN_WriteReg(TXB0EID0, 0xFF & (param.TxExtIDL));
  803. /*?����???2��??��??��*/
  804. CAN_WriteReg(RXM0SIDH, 0x00); //FF->00 zhengchao
  805. CAN_WriteReg(RXM0SIDL, 0x00); //E3->00 zhengchao
  806. CAN_WriteReg(RXM0EID8, 0x00); //FF->00 zhengchao
  807. CAN_WriteReg(RXM0EID0, 0x00); //FF->00 zhengchao
  808. /*?����???2��??��??��*/
  809. CAN_WriteReg(RXF0SIDH, 0xFF & (param.RxStdIDH[0]));
  810. CAN_WriteReg(RXF0SIDL, (0xEB & (param.RxStdIDL[0])) | 0x08);
  811. CAN_WriteReg(RXF0EID8, 0xFF & (param.RxExtIDH[0]));
  812. CAN_WriteReg(RXF0EID8, 0xFF & (param.RxExtIDL[0]));
  813. CAN_WriteReg(RXF1SIDH, 0xFF & (param.RxStdIDH[1]));
  814. CAN_WriteReg(RXF1SIDL, (0xEB & (param.RxStdIDL[1])) | 0x08);
  815. CAN_WriteReg(RXF1EID8, 0xFF & (param.RxExtIDH[1]));
  816. CAN_WriteReg(RXF1EID8, 0xFF & (param.RxExtIDL[1]));
  817. CAN_WriteReg(RXF2SIDH, 0xFF & (param.RxStdIDH[2]));
  818. CAN_WriteReg(RXF2SIDL, (0xEB & (param.RxStdIDL[2])) | 0x08);
  819. CAN_WriteReg(RXF2EID8, 0xFF & (param.RxExtIDH[2]));
  820. CAN_WriteReg(RXF2EID8, 0xFF & (param.RxExtIDL[2]));
  821. CAN_WriteReg(RXF3SIDH, 0xFF & (param.RxStdIDH[3]));
  822. CAN_WriteReg(RXF3SIDL, (0xEB & (param.RxStdIDL[3])) | 0x08);
  823. CAN_WriteReg(RXF3EID8, 0xFF & (param.RxExtIDH[3]));
  824. CAN_WriteReg(RXF3EID8, 0xFF & (param.RxExtIDL[3]));
  825. CAN_WriteReg(RXF4SIDH, 0xFF & (param.RxStdIDH[4]));
  826. CAN_WriteReg(RXF4SIDL, (0xEB & (param.RxStdIDL[4])) | 0x08);
  827. CAN_WriteReg(RXF4EID8, 0xFF & (param.RxExtIDH[4]));
  828. CAN_WriteReg(RXF4EID8, 0xFF & (param.RxExtIDL[4]));
  829. CAN_WriteReg(RXF5SIDH, 0xFF & (param.RxStdIDH[5]));
  830. CAN_WriteReg(RXF5SIDL, (0xEB & (param.RxStdIDL[5])) | 0x08);
  831. CAN_WriteReg(RXF5EID8, 0xFF & (param.RxExtIDH[5]));
  832. CAN_WriteReg(RXF5EID8, 0xFF & (param.RxExtIDL[5]));
  833. CAN_WriteReg(RXB0CTRL, RXM_VALID_EXT | BUKT_ROLLOVER);
  834. CAN_WriteReg(RXB0DLC, DLC_8);
  835. CAN_WriteReg(RXB1CTRL, RXM_VALID_EXT | FILHIT1_FLTR_2);
  836. CAN_WriteReg(RXB1DLC, DLC_8);
  837. }
  838. CAN_WriteReg(BFPCTRL, 0x3F); //zhengchao20210304 add
  839. CAN_WriteReg(CANINTE, RX0IF | RX1IF); //zhengchao20210304 0x43 -> 0x03
  840. CAN_WriteReg(CANINTF, 0x00);
  841. CAN_WriteReg(CANCTRL, param.mode | CLKOUT_ENABLED); //??MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º? REQOP_NORMAL|CLKOUT_ENABLED
  842. CAN_ReadReg(CANSTAT, 1, &temp); //?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  843. if (param.mode != (temp & 0xE0)) //?D??MCP2515¨º?¡¤?¨°??-??¨¨??y3¡ê?¡ê¨º?
  844. {
  845. CAN_WriteReg(CANCTRL, param.mode | CLKOUT_ENABLED); //?¨´¡ä???MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º?REQOP_NORMAL
  846. }
  847. }
  848. /*******************************************************************************
  849. * : HAL_Can_Sleep
  850. *
  851. *
  852. *
  853. *
  854. *
  855. *******************************************************************************/
  856. void HAL_Can_Sleep(void)
  857. {
  858. UINT8 temp = 0, temp2 = 0, t = 0;
  859. do
  860. {
  861. CAN_WriteReg(CANCTRL, OPMODE_CONFIG);
  862. CAN_WriteReg(CANINTE, WAKIE | RX0IE | RX1IE);
  863. //CAN_WriteReg(CNF3, WAKFIL);
  864. CAN_ReadReg(CANSTAT, 1, &temp);
  865. CAN_WriteReg(CANCTRL, OPMODE_SLEEP | CLKOUT_DISABLED);
  866. #ifdef USING_PRINTF
  867. //printf("%s[%d] [%#x]\r\n",__FUNCTION__, __LINE__,temp);
  868. #endif
  869. if (OPMODE_SLEEP == (temp & 0xE0))
  870. {
  871. #ifdef USING_PRINTF
  872. //printf("SLEEP SUC \r\n");
  873. #endif
  874. break;
  875. }
  876. } while (t++ < 3);
  877. //POWER
  878. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 0);
  879. }
  880. /*******************************************************************************
  881. * o¡¥¨ºy?? : HAL_Can_Transmit
  882. * ?¨¨¨º? : CAN¡¤¡é?¨ª???¡§3¡è?¨¨¦Ì?¨ºy?Y
  883. * ¨º?¨¨? : *CAN_TX_Buf(¡äy¡¤¡é?¨ª¨ºy?Y?o3???????),len(¡äy¡¤¡é?¨ª¨ºy?Y3¡è?¨¨)
  884. * ¨º?3? : ?T
  885. * ¡¤¦Ì???¦Ì : ?T
  886. * ?¦Ì?¡Â : ?T
  887. *******************************************************************************/
  888. INT8 HAL_Can_Transmit(CAN_Msg_Type Can_TxMsg)
  889. {
  890. UINT8 tryTim, count, value, i, temp, TXBufferCase = 0;
  891. INT8 ret = 0;
  892. UINT8 TXB0CTRLvalue, TXB1CTRLvalue, TXB2CTRLvalue, CANINTFValue = 0;
  893. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  894. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  895. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  896. if ((TXB0CTRLvalue & TXREQ) == 0)
  897. TXBufferCase = 0;
  898. else if ((TXB1CTRLvalue & TXREQ) == 0)
  899. TXBufferCase = 1;
  900. else if ((TXB2CTRLvalue & TXREQ) == 0)
  901. TXBufferCase = 2;
  902. else
  903. {
  904. CAN_WriteReg(TXB0CTRL, TXB0CTRLvalue & (~TXREQ));
  905. TXBufferCase = 0;
  906. }
  907. switch (TXBufferCase)
  908. {
  909. case 0:
  910. {
  911. //tryTim=0;
  912. //CAN_RseadReg(TXB0CTRL,1,&value);
  913. //while((value&0x08) && (tryTim<50))//?��?��?��?3D?���䨬???��?,�̨���yTXREQ����????��?
  914. //{
  915. // CAN_ReadReg(TXB0CTRL,1,&value);
  916. // osDelay(1/portTICK_PERIOD_MS);
  917. // tryTim++;
  918. //}
  919. /*TXB0*/
  920. CAN_WriteReg(TXB0SIDH, 0xFF & ((Can_TxMsg.Id) >> 3)); //����?��?o3??��0������?������?��?????
  921. CAN_WriteReg(TXB0SIDL, 0xE0 & ((Can_TxMsg.Id) << 5)); //����?��?o3??��0������?������?��?�̨�??
  922. for (i = 0; i < Can_TxMsg.DLC; i++)
  923. {
  924. CAN_WriteReg(TXB0D0 + i, Can_TxMsg.Data[i]); //??��y����?����?��y?YD�䨨?����?��?o3???��??��
  925. }
  926. CAN_WriteReg(TXB0DLC, Can_TxMsg.DLC); //??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  927. SPI_CS_Low();
  928. CAN_WriteReg(TXB0CTRL, TXREQ); //???������?������??
  929. //SPI_CS_High();
  930. ret = 0;
  931. break;
  932. }
  933. case 1:
  934. {
  935. /*TXB0*/
  936. CAN_WriteReg(TXB1SIDH, 0xFF & ((Can_TxMsg.Id) >> 3)); //����?��?o3??��0������?������?��?????
  937. CAN_WriteReg(TXB1SIDL, 0xE0 & ((Can_TxMsg.Id) << 5)); //����?��?o3??��0������?������?��?�̨�??
  938. for (i = 0; i < Can_TxMsg.DLC; i++)
  939. {
  940. CAN_WriteReg(TXB1D0 + i, Can_TxMsg.Data[i]); //??��y����?����?��y?YD�䨨?����?��?o3???��??��
  941. }
  942. CAN_WriteReg(TXB1DLC, Can_TxMsg.DLC); //??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  943. SPI_CS_Low();
  944. CAN_WriteReg(TXB1CTRL, TXREQ); //???������?������??
  945. //SPI_CS_High();
  946. ret = 1;
  947. break;
  948. }
  949. case 2:
  950. {
  951. /*TXB0*/
  952. CAN_WriteReg(TXB2SIDH, 0xFF & ((Can_TxMsg.Id) >> 3)); //����?��?o3??��0������?������?��?????
  953. CAN_WriteReg(TXB2SIDL, 0xE0 & ((Can_TxMsg.Id) << 5)); //����?��?o3??��0������?������?��?�̨�??
  954. for (i = 0; i < Can_TxMsg.DLC; i++)
  955. {
  956. CAN_WriteReg(TXB2D0 + i, Can_TxMsg.Data[i]); //??��y����?����?��y?YD�䨨?����?��?o3???��??��
  957. }
  958. CAN_WriteReg(TXB2DLC, Can_TxMsg.DLC); //??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  959. SPI_CS_Low();
  960. CAN_WriteReg(TXB2CTRL, TXREQ); //???������?������??
  961. //SPI_CS_High();
  962. ret = 2;
  963. break;
  964. }
  965. default:
  966. {
  967. ret = -1;
  968. break;
  969. }
  970. }
  971. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  972. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  973. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  974. tryTim = 0;
  975. while ((TXB0CTRLvalue & TXREQ) && (TXB1CTRLvalue & TXREQ) && (TXB1CTRLvalue & TXREQ) && (tryTim < 50))
  976. {
  977. //SPI_CS_High();
  978. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  979. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  980. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  981. osDelay(1);
  982. tryTim++;
  983. }
  984. CAN_ReadReg(CANINTF, 1, &CANINTFValue);
  985. SPI_CS_High();
  986. if ((TXB0CTRLvalue & 0x20) || (TXB1CTRLvalue & 0x20) || (TXB2CTRLvalue & 0x20) || (CANINTFValue & 0x80))
  987. {
  988. ret = -1;
  989. }
  990. return ret;
  991. }
  992. /*******************************************************************************
  993. * o����y?? : HAL_Can_Receive(UINT8 *CAN_RX_Buf)
  994. * ?����? : CAN?����?��???��y?Y
  995. * ��?��? : *CAN_TX_Buf(��y?����?��y?Y?o3???????)
  996. * ��?3? : ?T
  997. * ����???�� : len(?����?��?��y?Y��?3��?��,0~8��??��)
  998. * ?��?�� : ?T
  999. *******************************************************************************/
  1000. UINT8 HAL_Can_Receive(CAN_Msg_Type *CanRxMsgBuffer)
  1001. {
  1002. UINT8 j = 0, len = 0, temp = 0;
  1003. UINT8 SIdH, SIdL, EId8, EId0;
  1004. //static UINT16 counterBuff0,counterBuff1 = 0;
  1005. UINT8 ret = 0;
  1006. CAN_ReadReg(CANINTF, 1, &temp);
  1007. ret = temp & 0x03;
  1008. switch (ret)
  1009. {
  1010. case 0x00:
  1011. return ret;
  1012. break;
  1013. case 0x01:
  1014. /*get the id information*/
  1015. CAN_ReadReg(RXB0SIDH, 1, &SIdH);
  1016. CAN_ReadReg(RXB0SIDL, 1, &SIdL);
  1017. CAN_ReadReg(RXB0EID8, 1, &EId8);
  1018. CAN_ReadReg(RXB0EID0, 1, &EId0);
  1019. CAN_ReadReg(RXB0DLC, 1, &len);
  1020. len = len & 0x0F;
  1021. CanRxMsgBuffer[0].DLC = len;
  1022. if (SIdL & 0x8) // if SIdL.3 = 1, the id belongs to ExtID
  1023. {
  1024. (CanRxMsgBuffer[0]).Id = ((SIdH << 5 | (SIdL >> 5) << 2 | SIdL & 0x3) << 16 | (EId8 << 8) | EId0);
  1025. }
  1026. else
  1027. {
  1028. (CanRxMsgBuffer[0]).Id = SIdH << 3 | SIdL >> 5;
  1029. }
  1030. j = 0;
  1031. while (j < len)
  1032. {
  1033. CAN_ReadReg(RXB0D0 + j, 1, &((CanRxMsgBuffer[0]).Data[j]));
  1034. j++;
  1035. }
  1036. #ifdef USING_PRINTF1
  1037. printf("buffer0 ID = %x\n", CanRxMsgBuffer[0].Id);
  1038. for (j = 0; j < 8; j++)
  1039. {
  1040. printf("%x ", CanRxMsgBuffer[0].Data[j]);
  1041. }
  1042. printf("\n");
  1043. #endif
  1044. CAN_WriteReg(CANINTF, temp & 0xFE);
  1045. return ret;
  1046. break;
  1047. case 0x02:
  1048. /*get the id information*/
  1049. CAN_ReadReg(RXB1SIDH, 1, &SIdH);
  1050. CAN_ReadReg(RXB1SIDL, 1, &SIdL);
  1051. CAN_ReadReg(RXB1EID8, 1, &EId8);
  1052. CAN_ReadReg(RXB1EID0, 1, &EId0);
  1053. CAN_ReadReg(RXB1DLC, 1, &len);
  1054. len = len & 0x0F;
  1055. CanRxMsgBuffer[1].DLC = len;
  1056. if (SIdL & 0x8) // SIdL.3 = 1, ExtID
  1057. {
  1058. (CanRxMsgBuffer[1]).Id = ((SIdH << 5 | (SIdL >> 5) << 2 | SIdL & 0x3) << 16 | (EId8 << 8) | EId0);
  1059. }
  1060. else
  1061. {
  1062. (CanRxMsgBuffer[1]).Id = SIdH << 3 | SIdL >> 5;
  1063. }
  1064. j = 0;
  1065. while (j < len)
  1066. {
  1067. CAN_ReadReg(RXB1D0 + j, 1, &((CanRxMsgBuffer[1]).Data[j]));
  1068. j++;
  1069. }
  1070. #ifdef USING_PRINTF1
  1071. printf("buffer1 ID = %x\n", CanRxMsgBuffer[1].Id);
  1072. for (j = 0; j < 8; j++)
  1073. {
  1074. printf("%x ", CanRxMsgBuffer[1].Data[j]);
  1075. }
  1076. printf("\n");
  1077. #endif
  1078. CAN_WriteReg(CANINTF, temp & 0xFD);
  1079. return ret;
  1080. break;
  1081. case 0x03:
  1082. /*get the id information*/
  1083. CAN_ReadReg(RXB0SIDH, 1, &SIdH);
  1084. CAN_ReadReg(RXB0SIDL, 1, &SIdL);
  1085. CAN_ReadReg(RXB0EID8, 1, &EId8);
  1086. CAN_ReadReg(RXB0EID0, 1, &EId0);
  1087. CAN_ReadReg(RXB0DLC, 1, &len);
  1088. len = len & 0x0F;
  1089. CanRxMsgBuffer[0].DLC = len;
  1090. if (SIdL & 0x8) // if SIdL.3 = 1, the id belongs to ExtID
  1091. {
  1092. (CanRxMsgBuffer[0]).Id = ((SIdH << 5 | (SIdL >> 5) << 2 | SIdL & 0x3) << 16 | (EId8 << 8) | EId0);
  1093. }
  1094. else
  1095. {
  1096. (CanRxMsgBuffer[0]).Id = SIdH << 3 | SIdL >> 5;
  1097. }
  1098. j = 0;
  1099. while (j < len)
  1100. {
  1101. CAN_ReadReg(RXB0D0 + j, 1, &((CanRxMsgBuffer[0]).Data[j]));
  1102. j++;
  1103. }
  1104. #ifdef USING_PRINTF1
  1105. printf("buffer0 ID = %x\n", CanRxMsgBuffer[0].Id);
  1106. for (j = 0; j < 8; j++)
  1107. {
  1108. printf("%x ", CanRxMsgBuffer[0].Data[j]);
  1109. }
  1110. printf("\n");
  1111. #endif
  1112. /*get the id information*/
  1113. CAN_ReadReg(RXB1SIDH, 1, &SIdH);
  1114. CAN_ReadReg(RXB1SIDL, 1, &SIdL);
  1115. CAN_ReadReg(RXB1EID8, 1, &EId8);
  1116. CAN_ReadReg(RXB1EID0, 1, &EId0);
  1117. CAN_ReadReg(RXB1DLC, 1, &len);
  1118. len = len & 0x0F;
  1119. CanRxMsgBuffer[1].DLC = len;
  1120. if (SIdL & 0x8) // SIdL.3 = 1, ExtID
  1121. {
  1122. (CanRxMsgBuffer[1]).Id = ((SIdH << 5 | (SIdL >> 5) << 2 | SIdL & 0x3) << 16 | (EId8 << 8) | EId0);
  1123. }
  1124. else
  1125. {
  1126. (CanRxMsgBuffer[1]).Id = SIdH << 3 | SIdL >> 5;
  1127. }
  1128. j = 0;
  1129. while (j < len)
  1130. {
  1131. CAN_ReadReg(RXB1D0 + j, 1, &((CanRxMsgBuffer[1]).Data[j]));
  1132. j++;
  1133. }
  1134. #ifdef USING_PRINTF1
  1135. printf("buffer1 ID = %x\n", CanRxMsgBuffer[1].Id);
  1136. for (j = 0; j < 8; j++)
  1137. {
  1138. printf("%x ", CanRxMsgBuffer[1].Data[j]);
  1139. }
  1140. printf("\n");
  1141. #endif
  1142. CAN_WriteReg(CANINTF, temp & 0xFC);
  1143. return ret;
  1144. break;
  1145. default:
  1146. break;
  1147. }
  1148. /*
  1149. CAN_ReadReg(CANINTF,1, &temp1);
  1150. if((temp1&0x03) == (temp&0x03))
  1151. {
  1152. CAN_WriteReg(CANINTF,temp&0xFC);
  1153. break;
  1154. }
  1155. */
  1156. return ret;
  1157. // CAN_ReadReg(CANINTF,1,&temp);
  1158. // printf("CANINTF_1 = 0x%x\n",temp);
  1159. }
  1160. /**
  1161. \fn void CanHandleDataCallback(UINT32 event)
  1162. \param[in] event spi irq event
  1163. \brief base on event,handle different situation
  1164. \return
  1165. */
  1166. void CanHandleDataCallback(UINT32 event)
  1167. {
  1168. if (event & ARM_SPI_EVENT_TRANSFER_COMPLETE)
  1169. {
  1170. }
  1171. else if (event & ARM_SPI_EVENT_DATA_LOST)
  1172. {
  1173. }
  1174. else if (event & ARM_SPI_EVENT_MODE_FAULT)
  1175. {
  1176. }
  1177. #if 0
  1178. #ifdef USING_PRINTF
  1179. //printf("[%d] CanHandleDataCallback :%d\r\n",__LINE__,event);
  1180. #else
  1181. ECOMM_TRACE(UNILOG_PLA_APP,CAN_CB1, P_INFO, 1, "SPI event [%u] coming!",event);
  1182. #endif
  1183. #endif
  1184. }
  1185. /**
  1186. \fn void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event)
  1187. \param[in] cb_event :
  1188. \brief init spi module
  1189. \return
  1190. */
  1191. void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event, UINT8 mode, UINT8 dataBits, UINT32 spiRate)
  1192. {
  1193. #ifdef SPI_ANALOG
  1194. gpio_pin_config_t nGpioCfg = {0};
  1195. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  1196. nGpioCfg.misc.initOutput = 1;
  1197. pad_config_t padConfig;
  1198. PAD_GetDefaultConfig(&padConfig);
  1199. /*cs*/
  1200. padConfig.mux = PAD_MuxAlt0;
  1201. PAD_SetPinConfig(SPI_SSN_GPIO_PAD_ADDR, &padConfig);
  1202. PAD_SetPinPullConfig(SPI_SSN_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1203. GPIO_PinConfig(SPI_SSN_GPIO_INSTANCE, SPI_SSN_GPIO_INDEX, &nGpioCfg);
  1204. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 0);
  1205. /*
  1206. clk
  1207. */
  1208. padConfig.mux = PAD_MuxAlt0;
  1209. PAD_SetPinConfig(SPI_CLK_GPIO_PAD_ADDR, &padConfig);
  1210. PAD_SetPinPullConfig(SPI_CLK_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1211. GPIO_PinConfig(SPI_CLK_GPIO_INSTANCE, SPI_CLK_GPIO_INDEX, &nGpioCfg);
  1212. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1 << SPI_CLK_GPIO_INDEX, 0);
  1213. /*mosi*/
  1214. padConfig.mux = PAD_MuxAlt0;
  1215. PAD_SetPinConfig(SPI_MOSI_GPIO_PAD_ADDR, &padConfig);
  1216. PAD_SetPinPullConfig(SPI_MOSI_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1217. GPIO_PinConfig(SPI_MOSI_GPIO_INSTANCE, SPI_MOSI_GPIO_INDEX, &nGpioCfg);
  1218. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1 << SPI_MOSI_GPIO_INDEX, 0);
  1219. /*miso*/
  1220. nGpioCfg.pinDirection = GPIO_DirectionInput;
  1221. nGpioCfg.misc.initOutput = 0;
  1222. padConfig.mux = PAD_MuxAlt0;
  1223. padConfig.pullSelect = PAD_PullInternal;
  1224. padConfig.pullUpEnable = PAD_PullUpDisable;
  1225. padConfig.pullDownEnable = PAD_PullDownEnable;
  1226. PAD_SetPinConfig(SPI_MISO_GPIO_PAD_ADDR, &padConfig);
  1227. GPIO_PinConfig(SPI_MISO_GPIO_INSTANCE, SPI_MISO_GPIO_INDEX, &nGpioCfg);
  1228. #else
  1229. // Initialize master spi
  1230. spiMasterDrv->Initialize(NULL);
  1231. // Power on
  1232. spiMasterDrv->PowerControl(ARM_POWER_FULL);
  1233. // Configure slave spi bus
  1234. spiMasterDrv->Control(ARM_SPI_MODE_MASTER | mode | ARM_SPI_DATA_BITS(dataBits) | ARM_SPI_MSB_LSB | ARM_SPI_SS_MASTER_SW, spiRate);
  1235. #endif
  1236. }
  1237. /**
  1238. \fn INT32 ZM01RecvParam(UINT8 *param)
  1239. \param[in]
  1240. \brief read ZM01 register
  1241. \return execution_status
  1242. */
  1243. INT32 ZM01RecvParam(UINT8 *param)
  1244. {
  1245. INT32 res = 0;
  1246. UINT8 tempBuffer = 0xaa;
  1247. if (param == NULL)
  1248. return -7;
  1249. res = i2cDrvInstance->MasterTransmit(ZM01_DEVICE_ADDR, &tempBuffer, 1, true);
  1250. res = i2cDrvInstance->MasterReceive(ZM01_DEVICE_ADDR, param, 1, true);
  1251. return res;
  1252. }
  1253. /**
  1254. \fn INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1255. \param[in] addr GSENSOR register addr
  1256. \brief Write to GSENSOR register
  1257. \return
  1258. */
  1259. INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1260. {
  1261. UINT8 tempBuffer[2];
  1262. INT32 res = -1;
  1263. tempBuffer[0] = addr;
  1264. tempBuffer[1] = value;
  1265. return (i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, tempBuffer, sizeof(tempBuffer), true));
  1266. }
  1267. /**
  1268. \fn INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1269. \param[in] addr GSENSOR register addr
  1270. \brief read GSENSOR register
  1271. \return register value of GSENSOR
  1272. */
  1273. INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1274. {
  1275. INT32 res = -1;
  1276. if (len > 8 || buf == NULL)
  1277. return -1;
  1278. res = i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, &reg, 1, true);
  1279. res = i2cDrvInstance->MasterReceive(GSENSOR_DEVICE_ADDR, buf, len, true);
  1280. return res;
  1281. }
  1282. /**
  1283. \fn void GsensorI2CCallback(UINT32 event)
  1284. \param[in] event : i2c irq event
  1285. \brief i2c irq event ,callback function
  1286. \return
  1287. */
  1288. void GsensorI2CCallback(UINT32 event)
  1289. {
  1290. switch (event)
  1291. {
  1292. case ARM_I2C_EVENT_TRANSFER_DONE:
  1293. break;
  1294. case ARM_I2C_EVENT_TRANSFER_INCOMPLETE:
  1295. break;
  1296. case ARM_I2C_EVENT_ADDRESS_NACK:
  1297. break;
  1298. case ARM_I2C_EVENT_BUS_ERROR:
  1299. break;
  1300. case ARM_I2C_EVENT_BUS_CLEAR:
  1301. break;
  1302. default:
  1303. break;
  1304. }
  1305. }
  1306. /**
  1307. \fn void HAL_I2C_CreateRecvTaskAndQueue(uint32_t event)
  1308. \param[in]
  1309. \brief RECV data
  1310. \return
  1311. */
  1312. void HAL_I2C_RecvControl(bool on)
  1313. {
  1314. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1315. if (on == true)
  1316. {
  1317. osEventFlagsClear(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1318. }
  1319. else
  1320. {
  1321. osEventFlagsSet(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1322. }
  1323. }
  1324. void GsensorTriggerEvent(UINT32 event, UINT32 data)
  1325. {
  1326. osStatus_t status;
  1327. i2c_recv_msgqueue_obj_t msg = {0};
  1328. msg.event = event;
  1329. msg.value = data;
  1330. status = osMessageQueuePut(i2c_recv_msgqueue, &msg, 0, 0);
  1331. if (status == osErrorResource)
  1332. {
  1333. ECOMM_TRACE(UNILOG_PLA_DRIVER, GsensorTriggerEvent_0, P_WARNING, 0, "I2C recv queue error");
  1334. }
  1335. }
  1336. static INT32 I2CEvtProcess(uint32_t evt)
  1337. {
  1338. INT32 ret;
  1339. #if SL_SC7A20_16BIT_8BIT
  1340. INT16 xyzData[7];
  1341. #else
  1342. INT8 xyzData[7];
  1343. #endif
  1344. HAL_I2C_RecvControl(true);
  1345. if (evt & I2C_INT1_REQ_BITMAP)
  1346. {
  1347. }
  1348. if (evt & I2C_INT2_REQ_BITMAP)
  1349. {
  1350. SL_SC7A20_Read_XYZ_Data(xyzData);
  1351. }
  1352. return 0;
  1353. }
  1354. static void HAL_I2C_RecvTaskEntry(void)
  1355. {
  1356. while (1)
  1357. {
  1358. uint32_t flag, mask;
  1359. osStatus_t status;
  1360. i2c_recv_msgqueue_obj_t msg;
  1361. flag = osEventFlagsWait(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG, osFlagsNoClear | osFlagsWaitAll, osWaitForever);
  1362. EC_ASSERT(flag == I2C_RECV_CONTROL_FLAG, flag, 0, 0);
  1363. status = osMessageQueueGet(i2c_recv_msgqueue, &msg, 0, osWaitForever);
  1364. if (status == osOK)
  1365. {
  1366. mask = SaveAndSetIRQMask();
  1367. //handle data
  1368. //I2CEvtProcess(msg.event);
  1369. #ifdef USING_PRINTF
  1370. //printf("[%d]i2c recv event\r\n",__LINE__);
  1371. #else
  1372. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_D, P_INFO, 0, "i2c recv event");
  1373. #endif
  1374. RestoreIRQMask(mask);
  1375. }
  1376. }
  1377. }
  1378. static void HAL_I2C_CreateRecvTaskAndQueue(void)
  1379. {
  1380. if (g_halI2CInitFlag & HAL_I2C_RECV_TASK_QUEUE_CREATED)
  1381. {
  1382. return;
  1383. }
  1384. /*
  1385. for task create
  1386. */
  1387. osThreadId_t threadId;
  1388. osThreadAttr_t task_attr;
  1389. /*for msg queue create*/
  1390. osMessageQueueAttr_t queue_attr;
  1391. g_i2CRecvFlag = osEventFlagsNew(NULL);
  1392. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1393. memset(&queue_attr, 0, sizeof(queue_attr));
  1394. queue_attr.cb_mem = &i2c_recv_queue_cb;
  1395. queue_attr.cb_size = sizeof(i2c_recv_queue_cb);
  1396. queue_attr.mq_mem = i2c_recv_queue_buf;
  1397. queue_attr.mq_size = sizeof(i2c_recv_queue_buf);
  1398. i2c_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE, sizeof(i2c_recv_msgqueue_obj_t), &queue_attr);
  1399. EC_ASSERT(i2c_recv_msgqueue, i2c_recv_msgqueue, 0, 0);
  1400. memset(&task_attr, 0, sizeof(task_attr));
  1401. memset(i2c_recv_task_stack, 0xA5, I2C_RECV_TASK_STACK_SIZE);
  1402. task_attr.name = "GsensorRecv";
  1403. task_attr.stack_size = I2C_RECV_TASK_STACK_SIZE;
  1404. task_attr.stack_mem = i2c_recv_task_stack;
  1405. task_attr.priority = osPriorityNormal;
  1406. task_attr.cb_mem = &i2c_recv_task;
  1407. task_attr.cb_size = sizeof(StaticTask_t);
  1408. threadId = osThreadNew(HAL_I2C_RecvTaskEntry, NULL, &task_attr);
  1409. EC_ASSERT(threadId, threadId, 0, 0);
  1410. g_halI2CInitFlag |= HAL_I2C_RECV_TASK_QUEUE_CREATED;
  1411. }
  1412. /**
  1413. \fn void Usart1Handler(uint8_t* strPtr, uint16_t strLen)
  1414. \param[in] PrintfSendStr for usart port;
  1415. \brief config usart port
  1416. \return
  1417. */
  1418. void PrintfSendStr(const UINT8 *format, ...)
  1419. {
  1420. va_list args;
  1421. UINT8 buf[128 + 1] = {0};
  1422. va_start(args, format);
  1423. vsnprintf(buf + strlen(buf), 128 - strlen(buf), format, args);
  1424. va_end(args);
  1425. HAL_UART_SendStr(PORT_USART_1, buf, strlen(buf));
  1426. }
  1427. #define PRINTF_DATA_RECV_BUFFER_SIZE (200)
  1428. uint8_t printf_uart_recv_buf[PRINTF_DATA_RECV_BUFFER_SIZE];
  1429. /**
  1430. \fn void PrintfDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1431. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1432. \ dataPtr : Point to receive data buff
  1433. \ dataLen : Received data length
  1434. \brief i2c irq event ,callback function
  1435. \return
  1436. */
  1437. void UartDataRecvCallback(UINT32 event, void *dataPtr, UINT32 dataLen)
  1438. {
  1439. if ((event == ARM_USART_EVENT_RX_TIMEOUT) || (event == ARM_USART_EVENT_RECEIVE_COMPLETE))
  1440. {
  1441. if (uartDataHandle != NULL && dataLen > 0)
  1442. {
  1443. UartBuffer UartDataBuffer = {0};
  1444. memcpy((UINT8 *)&UartDataBuffer, dataPtr, dataLen);
  1445. UartDataBuffer.len = dataLen;
  1446. osMessageQueuePut(uartDataHandle, &UartDataBuffer, 0, 10);
  1447. }
  1448. }
  1449. slpManStartWaitATTimer();
  1450. }
  1451. void printfPostSendCallback(hal_uart_send_msg_type_t msgType, void *dataPtr, uint32_t dataLen)
  1452. {
  1453. // ECOMM_TRACE(UNILOG_PLA_APP, printfPostSendCallback, P_SIG, 3, "msgType=%d, dataPtr=%s, dataLen=%d",msgType,dataPtr,dataLen);
  1454. }
  1455. /**
  1456. \fn void Usart1Handler(UINT32 baudRate)
  1457. \param[in] baudRate for usart port;
  1458. \brief config usart port
  1459. \return
  1460. */
  1461. void Usart1Handler(UINT32 baudRate)
  1462. {
  1463. hal_uart_config_t halUartConfig = {0};
  1464. hal_uart_hardware_config_t hwConfig = {
  1465. ARM_POWER_FULL,
  1466. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1467. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1468. ARM_USART_FLOW_CONTROL_NONE,
  1469. baudRate};
  1470. halUartConfig.uartDriverHandler = printfHandle;
  1471. halUartConfig.recv_cb = UartDataRecvCallback;
  1472. halUartConfig.recvBuffPtr = printf_uart_recv_buf;
  1473. halUartConfig.recvBuffSize = PRINTF_DATA_RECV_BUFFER_SIZE;
  1474. halUartConfig.post_send_cb = printfPostSendCallback;
  1475. HAL_UART_InitHandler(PORT_USART_1, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1476. HAL_UART_RecvFlowControl(false);
  1477. }
  1478. /**
  1479. \fn void GsensorI2CCallback(uint32_t event)
  1480. \param[in] event : i2c irq event
  1481. \brief i2c irq event ,callback function
  1482. \return
  1483. */
  1484. void GsensorI2CHandler(ARM_I2C_SignalEvent_t cb_event)
  1485. {
  1486. // Initialize with callback
  1487. i2cDrvInstance->Initialize(cb_event);
  1488. // Power on
  1489. i2cDrvInstance->PowerControl(ARM_POWER_FULL);
  1490. // Configure I2C bus
  1491. i2cDrvInstance->Control(ARM_I2C_BUS_SPEED, ARM_I2C_BUS_SPEED_STANDARD);
  1492. i2cDrvInstance->Control(ARM_I2C_BUS_CLEAR, 0);
  1493. HAL_I2C_CreateRecvTaskAndQueue();
  1494. #ifdef USING_PRINTF
  1495. //printf("[%d] i2c config ok\r\n",__LINE__);
  1496. #else
  1497. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_I, P_INFO, 0, "i2c config ok");
  1498. #endif
  1499. }
  1500. /**
  1501. \fn void GPSSendStr(uint8_t* strPtr, uint16_t strLen)
  1502. \param[in] strPtr for gps usart port;
  1503. \brief
  1504. \return
  1505. */
  1506. void GPSSendStr(uint8_t *strPtr, uint16_t strLen)
  1507. {
  1508. HAL_UART_SendStr(PORT_USART_2, strPtr, strLen);
  1509. }
  1510. /**
  1511. \fn void GpsDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1512. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1513. \ dataPtr : Point to receive data buff
  1514. \ dataLen : Received data length
  1515. \brief i2c irq event ,callback function
  1516. \return
  1517. */
  1518. void GpsDataRecvCallback(UINT32 event, void *dataPtr, UINT32 dataLen)
  1519. {
  1520. if ((event == ARM_USART_EVENT_RX_TIMEOUT) || (event == ARM_USART_EVENT_RECEIVE_COMPLETE))
  1521. {
  1522. #ifdef USING_PRINTF
  1523. //printf("GpsDataRecvCallback [%d] %s\r\n",dataLen,dataPtr);
  1524. #endif
  1525. if (gpsHandle != NULL && dataLen > 0)
  1526. {
  1527. gpsReqMsg gpsInfo;
  1528. gpsInfo.dataPtr = malloc(dataLen + 1);
  1529. if (gpsInfo.dataPtr)
  1530. {
  1531. memcpy(gpsInfo.dataPtr, dataPtr, dataLen);
  1532. gpsInfo.len = dataLen;
  1533. osMessageQueuePut(gpsHandle, &gpsInfo, 0, 60000U);
  1534. }
  1535. }
  1536. }
  1537. slpManStartWaitATTimer();
  1538. }
  1539. /**
  1540. \fn void GPSUsartHandler(ARM_DRIVER_USART * uartDriverHandler, uint32_t baudRate)
  1541. \param[in] baudRate for gps usart port;
  1542. \brief config gps usart port
  1543. \return
  1544. */
  1545. void GPSUsartHandler(UINT32 baudRate)
  1546. {
  1547. hal_uart_config_t halUartConfig = {0};
  1548. hal_uart_hardware_config_t hwConfig = {
  1549. ARM_POWER_FULL,
  1550. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1551. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1552. ARM_USART_FLOW_CONTROL_NONE,
  1553. baudRate};
  1554. halUartConfig.uartDriverHandler = usartHandle;
  1555. halUartConfig.recv_cb = GpsDataRecvCallback;
  1556. halUartConfig.recvBuffPtr = gps_uart_recv_buf;
  1557. halUartConfig.recvBuffSize = GPS_DATA_RECV_BUFFER_SIZE;
  1558. HAL_UART_InitHandler(PORT_USART_2, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1559. HAL_UART_RecvFlowControl(false);
  1560. }
  1561. /**
  1562. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1563. \param[in] req : NTCvalue
  1564. \brief
  1565. \return Resvalue
  1566. */
  1567. static INT32 AdcGetRes(UINT32 NTCvalue)
  1568. {
  1569. UINT32 Resvalue;
  1570. if (NTCvalue >= (ADC_ChannelAioVbat - 10))
  1571. Resvalue = 1000000;
  1572. else
  1573. {
  1574. Resvalue = (long long)ADC_ChannelAioRes * (long long)NTCvalue / (ADC_ChannelAioVbat - NTCvalue);
  1575. }
  1576. return Resvalue;
  1577. }
  1578. /**
  1579. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1580. \param[in] req : NTCvalue
  1581. \brief
  1582. \return Resvalue
  1583. */
  1584. static INT32 AdcGetResFromInres(UINT32 NTCvalue)
  1585. {
  1586. UINT32 Resvalue, ResvalueCount;
  1587. if (NTCvalue >= (ADC_ChannelAioVbat - 10))
  1588. ResvalueCount = 1000000;
  1589. else
  1590. {
  1591. ResvalueCount = ADC_ChannelAioRes * NTCvalue / (ADC_ChannelAioVbat - NTCvalue);
  1592. }
  1593. #ifdef USING_PRINTF
  1594. //printf("%s[%d][%d][%d]\r\n",__FUNCTION__, __LINE__,ADC_InsideRES,ResvalueCount);
  1595. #endif
  1596. if (ResvalueCount >= ADC_InsideRES)
  1597. Resvalue = 1000000;
  1598. else
  1599. Resvalue = (long long)ADC_InsideRES * (long long)ResvalueCount / (ADC_InsideRES - ResvalueCount);
  1600. #ifdef USING_PRINTF
  1601. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,Resvalue);
  1602. #endif
  1603. return Resvalue;
  1604. }
  1605. /**
  1606. \fn INT32 AdcVbatCali(UINT32 NTCvalue)
  1607. \param[in] req : NTCvalue
  1608. \brief
  1609. \return Resvalue
  1610. */
  1611. static INT32 AdcVbatCali(UINT32 NTCvalue)
  1612. {
  1613. UINT32 Resvalue;
  1614. if (NTCvalue >= (ADC_ChannelAioVbat - 10))
  1615. Resvalue = 1000000;
  1616. else
  1617. {
  1618. Resvalue = (long long)(ADC_ChannelAioRes + ADC_CALIBRATION_VALUE) * (long long)NTCvalue / ADC_CALIBRATION_VALUE; //ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1619. }
  1620. if (Resvalue < 1300 && Resvalue > 1100)
  1621. ADC_ChannelAioVbat = Resvalue;
  1622. return Resvalue;
  1623. }
  1624. /**
  1625. \fn INT32 AdcInresCali(UINT32 NTCvalue)
  1626. \param[in] req : NTCvalue
  1627. \brief
  1628. \return Resvalue
  1629. */
  1630. static INT32 AdcInresCali(UINT32 NTCvalue)
  1631. {
  1632. UINT32 Resvalue, ResvalueCount;
  1633. if (NTCvalue >= (ADC_ChannelAioVbat - 10))
  1634. ResvalueCount = 1000000;
  1635. else
  1636. {
  1637. ResvalueCount = ADC_ChannelAioRes * NTCvalue / (ADC_ChannelAioVbat - NTCvalue);
  1638. }
  1639. #ifdef USING_PRINTF
  1640. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,ResvalueCount);
  1641. #endif
  1642. if (ResvalueCount >= ADC_CALIBRATION_VALUE)
  1643. Resvalue = 1000000;
  1644. else
  1645. Resvalue = (long long)ADC_CALIBRATION_VALUE * (long long)ResvalueCount / (ADC_CALIBRATION_VALUE - ResvalueCount);
  1646. if (Resvalue >= 200000 && Resvalue < 1000000)
  1647. ADC_InsideRES = Resvalue;
  1648. return Resvalue;
  1649. }
  1650. /**
  1651. \fn INT32 AdcSendReq(UINT32 req,UINT32 * param ,UINT32 timeout)
  1652. \param[in] req : ADC_REQ_BITMAP_VBAT ADC_REQ_BITMAP_TEMP; timeout = 0 at irq ,otherwize equal to ADC_MSG_TIMEOUT
  1653. \brief return bat value ,trigger deinit
  1654. \return 1 FAIL , 0 OK
  1655. */
  1656. INT32 AdcSendReq(UINT32 req, UINT32 *param, UINT8 len, UINT32 timeout)
  1657. {
  1658. INT32 ret;
  1659. adcReqMsg ReqMsg;
  1660. ReqMsg.request = req;
  1661. ReqMsg.param[NTC_Channel1] = ReqMsg.param[NTC_Channel2] = ReqMsg.param[NTC_Channel30] = ReqMsg.param[NTC_Channel31] = ReqMsg.param[NTC_Channel4] = ReqMsg.param[NTC_Channel4_InresCali] = ADC_AioResDivRatioDefault;
  1662. ret = osMessageQueuePut(adcMsgHandle, &ReqMsg, 0, timeout);
  1663. if (ret != osOK)
  1664. {
  1665. return ret;
  1666. }
  1667. else
  1668. {
  1669. ret = osEventFlagsWait(adcTrigerHandle, ADC_RECV_CONTROL_FLAG, osFlagsWaitAll, timeout);
  1670. //to do
  1671. switch (req)
  1672. {
  1673. case ADC_REQ_BITMAP_VBAT:
  1674. param[0] = gNtcDev.NTCvalue[0];
  1675. break;
  1676. case ADC_REQ_BITMAP_TEMP:
  1677. param[0] = gNtcDev.NTCvalue[1];
  1678. break;
  1679. case ADC_REQ_BITMAP_CH1:
  1680. param[0] = AdcGetResFromInres(gNtcDev.NTCvalue[2 + NTC_Channel1]);
  1681. break;
  1682. case ADC_REQ_BITMAP_CH2:
  1683. param[0] = AdcGetResFromInres(gNtcDev.NTCvalue[2 + NTC_Channel2]);
  1684. break;
  1685. case ADC_REQ_BITMAP_CH30:
  1686. param[0] = AdcGetResFromInres(gNtcDev.NTCvalue[2 + NTC_Channel30]);
  1687. break;
  1688. case ADC_REQ_BITMAP_CH31:
  1689. param[0] = AdcGetResFromInres(gNtcDev.NTCvalue[2 + NTC_Channel31]);
  1690. break;
  1691. case ADC_REQ_BITMAP_CH4:
  1692. param[0] = gNtcDev.NTCvalue[2 + NTC_Channel4] * 101 + 600;
  1693. break;
  1694. case ADC_REQ_BITMAP_VBAT_CALI:
  1695. param[0] = AdcVbatCali(gNtcDev.NTCvalue[2 + NTC_Channel4_VbatCali]);
  1696. break;
  1697. case ADC_REQ_BITMAP_INRES_CALI:
  1698. param[0] = AdcInresCali(gNtcDev.NTCvalue[2 + NTC_Channel4_InresCali]);
  1699. break;
  1700. }
  1701. osEventFlagsClear(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  1702. return ret;
  1703. }
  1704. }
  1705. /**
  1706. \fn static void ADC_VbatChannelCallback(uint32_t result)
  1707. \param[in]
  1708. \brief return bat value ,trigger deinit
  1709. \return
  1710. */
  1711. static void ADC_VbatChannelCallback(uint32_t result)
  1712. {
  1713. vbatChannelResult = result;
  1714. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT);
  1715. }
  1716. /**
  1717. \fn static void ADC_ThermalChannelCallback(uint32_t result)
  1718. \param[in]
  1719. \brief return thermal value ,trigger deinit
  1720. \return
  1721. */
  1722. static void ADC_ThermalChannelCallback(uint32_t result)
  1723. {
  1724. thermalChannelResult = result;
  1725. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_TEMP);
  1726. }
  1727. static void ADC_NTC1ChannelCallback(uint32_t result)
  1728. {
  1729. NTCChannelResult[NTC_Channel1] = result;
  1730. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH1);
  1731. }
  1732. static void ADC_NTC2ChannelCallback(uint32_t result)
  1733. {
  1734. NTCChannelResult[NTC_Channel2] = result;
  1735. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH2);
  1736. }
  1737. static void ADC_NTC30ChannelCallback(uint32_t result)
  1738. {
  1739. NTCChannelResult[NTC_Channel30] = result;
  1740. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH30);
  1741. }
  1742. static void ADC_NTC31ChannelCallback(uint32_t result)
  1743. {
  1744. NTCChannelResult[NTC_Channel31] = result;
  1745. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH31);
  1746. }
  1747. static void ADC_NTC4ChannelCallback(uint32_t result)
  1748. {
  1749. NTCChannelResult[NTC_Channel4] = result;
  1750. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH4);
  1751. }
  1752. static void ADC_NTCVbatCaliChannelCallback(uint32_t result)
  1753. {
  1754. NTCChannelResult[NTC_Channel4_VbatCali] = result;
  1755. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT_CALI);
  1756. }
  1757. static void ADC_NTCInresCaliChannelCallback(uint32_t result)
  1758. {
  1759. NTCChannelResult[NTC_Channel4_InresCali] = result;
  1760. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_INRES_CALI);
  1761. }
  1762. /**
  1763. \fn void AdcProcess(void* arg)
  1764. \param[in]
  1765. \brief handle adc init ,deinit and convert process
  1766. \return
  1767. */
  1768. static void AdcProcess(void *arg)
  1769. {
  1770. adcReqMsg regMsg;
  1771. INT32 ret;
  1772. while (1)
  1773. {
  1774. /*
  1775. */
  1776. osMessageQueueGet(adcMsgHandle, &regMsg, 0, osWaitForever);
  1777. /*
  1778. handle event
  1779. */
  1780. adc_config_t adcConfig;
  1781. INT8 times = 1;
  1782. ADC_GetDefaultConfig(&adcConfig);
  1783. osEventFlagsClear(adcEvtHandle, regMsg.request);
  1784. retry:
  1785. if (regMsg.request & ADC_REQ_BITMAP_VBAT)
  1786. {
  1787. adcConfig.channelConfig.vbatResDiv = ADC_VbatResDivRatio3Over16;
  1788. ADC_ChannelInit(ADC_ChannelVbat, ADC_UserAPP, &adcConfig, ADC_VbatChannelCallback);
  1789. //delay_us(1000*1000);
  1790. ADC_StartConversion(ADC_ChannelVbat, ADC_UserAPP);
  1791. }
  1792. else if (regMsg.request & ADC_REQ_BITMAP_TEMP)
  1793. {
  1794. adcConfig.channelConfig.thermalInput = ADC_ThermalInputVbat;
  1795. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_ThermalChannelCallback);
  1796. //delay_us(1000*1000);
  1797. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1798. }
  1799. else if (regMsg.request & ADC_REQ_BITMAP_CH1)
  1800. {
  1801. if (regMsg.param[NTC_Channel1] >= ADC_AioResDivRatio1 && regMsg.param[NTC_Channel1] <= ADC_AioResDivRatio1Over16)
  1802. {
  1803. #ifdef USING_PRINTF
  1804. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1805. #endif
  1806. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel1];
  1807. }
  1808. else
  1809. {
  1810. #ifdef USING_PRINTF
  1811. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1812. #endif
  1813. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1814. }
  1815. ADC_ChannelInit(ADC_ChannelAio1, ADC_UserAPP, &adcConfig, ADC_NTC1ChannelCallback);
  1816. //delay_us(1000*1000);
  1817. ADC_StartConversion(ADC_ChannelAio1, ADC_UserAPP);
  1818. }
  1819. else if (regMsg.request & ADC_REQ_BITMAP_CH2)
  1820. {
  1821. if (regMsg.param[NTC_Channel2] >= ADC_AioResDivRatio1 && regMsg.param[NTC_Channel2] <= ADC_AioResDivRatio1Over16)
  1822. {
  1823. #ifdef USING_PRINTF
  1824. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1825. #endif
  1826. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel2];
  1827. }
  1828. else
  1829. {
  1830. #ifdef USING_PRINTF
  1831. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1832. #endif
  1833. }
  1834. ADC_ChannelInit(ADC_ChannelAio2, ADC_UserAPP, &adcConfig, ADC_NTC2ChannelCallback);
  1835. //delay_us(1000*1000);
  1836. ADC_StartConversion(ADC_ChannelAio2, ADC_UserAPP);
  1837. }
  1838. else if (regMsg.request & ADC_REQ_BITMAP_CH30)
  1839. {
  1840. GPIO_PinWrite(GPIO_AIO3_SEL / 16, 1 << (GPIO_AIO3_SEL % 16), 0);
  1841. if (regMsg.param[NTC_Channel30] >= ADC_AioResDivRatio1 && regMsg.param[NTC_Channel30] <= ADC_AioResDivRatio1Over16)
  1842. {
  1843. #ifdef USING_PRINTF
  1844. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1845. #endif
  1846. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel30];
  1847. }
  1848. else
  1849. {
  1850. #ifdef USING_PRINTF
  1851. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1852. #endif
  1853. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1854. }
  1855. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC30ChannelCallback);
  1856. //osDelay(2000/portTICK_PERIOD_MS);
  1857. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1858. }
  1859. else if (regMsg.request & ADC_REQ_BITMAP_CH31)
  1860. {
  1861. GPIO_PinWrite(GPIO_AIO3_SEL / 16, 1 << (GPIO_AIO3_SEL % 16), 1 << (GPIO_AIO3_SEL % 16));
  1862. if (regMsg.param[NTC_Channel31] >= ADC_AioResDivRatio1 && regMsg.param[NTC_Channel31] <= ADC_AioResDivRatio1Over16)
  1863. {
  1864. #ifdef USING_PRINTF
  1865. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1866. #endif
  1867. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel31];
  1868. }
  1869. else
  1870. {
  1871. #ifdef USING_PRINTF
  1872. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1873. #endif
  1874. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1875. }
  1876. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC31ChannelCallback);
  1877. //osDelay(2000/portTICK_PERIOD_MS);
  1878. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1879. }
  1880. else if (regMsg.request & ADC_REQ_BITMAP_CH4)
  1881. {
  1882. GPIO_PinWrite(GPIO_AIO4_SEL / 16, 1 << (GPIO_AIO4_SEL % 16), 0);
  1883. ADC_GetDefaultConfig(&adcConfig);
  1884. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1885. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTC4ChannelCallback);
  1886. osDelay(100 / portTICK_PERIOD_MS); //zhengchao 20210312
  1887. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1888. }
  1889. else if (regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  1890. {
  1891. GPIO_PinWrite(GPIO_AIO4_SEL / 16, 1 << (GPIO_AIO4_SEL % 16), 1 << (GPIO_AIO4_SEL % 16));
  1892. ADC_GetDefaultConfig(&adcConfig);
  1893. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1894. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTCVbatCaliChannelCallback);
  1895. //osDelay(2000/portTICK_PERIOD_MS);
  1896. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1897. }
  1898. else if (regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  1899. {
  1900. GPIO_PinWrite(GPIO_AIO4_SEL / 16, 1 << (GPIO_AIO4_SEL % 16), 1 << (GPIO_AIO4_SEL % 16));
  1901. if (regMsg.param[NTC_Channel4_InresCali] >= ADC_AioResDivRatio1 && regMsg.param[NTC_Channel4_InresCali] <= ADC_AioResDivRatio1Over16)
  1902. {
  1903. #ifdef USING_PRINTF
  1904. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1905. #endif
  1906. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel4_InresCali];
  1907. }
  1908. else
  1909. {
  1910. #ifdef USING_PRINTF
  1911. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1912. #endif
  1913. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1914. }
  1915. ADC_ChannelInit(ADC_ChannelAio4, ADC_UserAPP, &adcConfig, ADC_NTCInresCaliChannelCallback);
  1916. //osDelay(2000/portTICK_PERIOD_MS);
  1917. ADC_StartConversion(ADC_ChannelAio4, ADC_UserAPP);
  1918. }
  1919. ret = osEventFlagsWait(adcEvtHandle, regMsg.request, osFlagsWaitAll, ADC_GET_RESULT_TIMOUT);
  1920. if (regMsg.request & ADC_REQ_BITMAP_VBAT)
  1921. {
  1922. ADC_ChannelDeInit(ADC_ChannelVbat, ADC_UserAPP);
  1923. gNtcDev.NTCvalue[0] = HAL_ADC_CalibrateRawCode(vbatChannelResult) * 16 / 3;
  1924. }
  1925. else if (regMsg.request & ADC_REQ_BITMAP_TEMP)
  1926. {
  1927. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1928. gNtcDev.NTCvalue[1] = HAL_ADC_ConvertThermalRawCodeToTemperature(thermalChannelResult);
  1929. }
  1930. else if (regMsg.request & ADC_REQ_BITMAP_CH1)
  1931. {
  1932. ADC_ChannelDeInit(ADC_ChannelAio1, ADC_UserAPP);
  1933. if (times == 1)
  1934. {
  1935. gNtcDev.NTCvalue[2 + NTC_Channel1] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1]) * REV_AioResDivRatioDefault;
  1936. #ifdef USING_PRINTF
  1937. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel1]);
  1938. #endif
  1939. if (gNtcDev.NTCvalue[2 + NTC_Channel1] > (NTC_FullAioValue - 10))
  1940. {
  1941. regMsg.param[NTC_Channel1] = ADC_AioResDivRatioExtra;
  1942. times++;
  1943. goto retry;
  1944. }
  1945. }
  1946. else
  1947. {
  1948. gNtcDev.NTCvalue[2 + NTC_Channel1] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1]) * REV_AioResDivRatioExtra;
  1949. }
  1950. }
  1951. else if (regMsg.request & ADC_REQ_BITMAP_CH2)
  1952. {
  1953. ADC_ChannelDeInit(ADC_ChannelAio2, ADC_UserAPP);
  1954. if (times == 1)
  1955. {
  1956. gNtcDev.NTCvalue[2 + NTC_Channel2] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2]) * REV_AioResDivRatioDefault;
  1957. #ifdef USING_PRINTF
  1958. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel2]);
  1959. #endif
  1960. if (gNtcDev.NTCvalue[2 + NTC_Channel2] > (NTC_FullAioValue - 10))
  1961. {
  1962. regMsg.param[NTC_Channel2] = ADC_AioResDivRatioExtra;
  1963. times++;
  1964. goto retry;
  1965. }
  1966. }
  1967. else
  1968. {
  1969. gNtcDev.NTCvalue[2 + NTC_Channel2] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2]) * REV_AioResDivRatioExtra;
  1970. }
  1971. }
  1972. else if (regMsg.request & ADC_REQ_BITMAP_CH30)
  1973. {
  1974. GPIO_PinWrite(GPIO_AIO3_SEL / 16, 1 << (GPIO_AIO3_SEL % 16), 1 << (GPIO_AIO3_SEL % 16));
  1975. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1976. if (times == 1)
  1977. {
  1978. gNtcDev.NTCvalue[2 + NTC_Channel30] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30]) * REV_AioResDivRatioDefault;
  1979. #ifdef USING_PRINTF
  1980. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel30]);
  1981. #endif
  1982. if (gNtcDev.NTCvalue[2 + NTC_Channel30] > (NTC_FullAioValue - 10))
  1983. {
  1984. regMsg.param[NTC_Channel30] = ADC_AioResDivRatioExtra;
  1985. times++;
  1986. goto retry;
  1987. }
  1988. }
  1989. else
  1990. {
  1991. gNtcDev.NTCvalue[2 + NTC_Channel30] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30]) * REV_AioResDivRatioExtra;
  1992. }
  1993. }
  1994. else if (regMsg.request & ADC_REQ_BITMAP_CH31)
  1995. {
  1996. GPIO_PinWrite(GPIO_AIO3_SEL / 16, 1 << (GPIO_AIO3_SEL % 16), 0);
  1997. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1998. if (times == 1)
  1999. {
  2000. gNtcDev.NTCvalue[2 + NTC_Channel31] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31]) * REV_AioResDivRatioDefault;
  2001. #ifdef USING_PRINTF
  2002. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel31]);
  2003. #endif
  2004. if (gNtcDev.NTCvalue[2 + NTC_Channel31] > (NTC_FullAioValue - 10))
  2005. {
  2006. regMsg.param[NTC_Channel31] = ADC_AioResDivRatioExtra;
  2007. times++;
  2008. goto retry;
  2009. }
  2010. }
  2011. else
  2012. {
  2013. gNtcDev.NTCvalue[2 + NTC_Channel31] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31]) * REV_AioResDivRatioExtra;
  2014. }
  2015. }
  2016. else if (regMsg.request & ADC_REQ_BITMAP_CH4)
  2017. {
  2018. GPIO_PinWrite(GPIO_AIO4_SEL / 16, 1 << (GPIO_AIO4_SEL % 16), 1 << (GPIO_AIO4_SEL % 16));
  2019. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  2020. gNtcDev.NTCvalue[2 + NTC_Channel4] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4]);
  2021. }
  2022. else if (regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  2023. {
  2024. GPIO_PinWrite(GPIO_AIO4_SEL / 16, 1 << (GPIO_AIO4_SEL % 16), 0);
  2025. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  2026. if (times == 1)
  2027. {
  2028. gNtcDev.NTCvalue[2 + NTC_Channel4_VbatCali] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  2029. #ifdef USING_PRINTF
  2030. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]);
  2031. #endif
  2032. if (gNtcDev.NTCvalue[2 + NTC_Channel4_VbatCali] > (NTC_FullAioValue - 10))
  2033. {
  2034. regMsg.param[NTC_Channel4_VbatCali] = ADC_AioResDivRatioExtra;
  2035. times++;
  2036. goto retry;
  2037. }
  2038. }
  2039. else
  2040. {
  2041. gNtcDev.NTCvalue[2 + NTC_Channel4_VbatCali] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  2042. }
  2043. }
  2044. else if (regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  2045. {
  2046. GPIO_PinWrite(GPIO_AIO4_SEL / 16, 1 << (GPIO_AIO4_SEL % 16), 0);
  2047. ADC_ChannelDeInit(ADC_ChannelAio4, ADC_UserAPP);
  2048. if (times == 1)
  2049. {
  2050. gNtcDev.NTCvalue[2 + NTC_Channel4_InresCali] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali]) * REV_AioResDivRatioDefault;
  2051. #ifdef USING_PRINTF
  2052. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]);
  2053. #endif
  2054. if (gNtcDev.NTCvalue[2 + NTC_Channel4_InresCali] > (NTC_FullAioValue - 10))
  2055. {
  2056. regMsg.param[NTC_Channel4_InresCali] = ADC_AioResDivRatioExtra;
  2057. times++;
  2058. goto retry;
  2059. }
  2060. }
  2061. else
  2062. {
  2063. gNtcDev.NTCvalue[2 + NTC_Channel4_InresCali] = HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali]) * REV_AioResDivRatioExtra;
  2064. }
  2065. }
  2066. osEventFlagsSet(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  2067. }
  2068. }
  2069. /**
  2070. \fn INT32 AdcTaskInit(void)
  2071. \param[in]
  2072. \brief create task for checking bat level
  2073. \return
  2074. */
  2075. INT32 AdcTaskInit(void)
  2076. {
  2077. gpio_pin_config_t config;
  2078. config.pinDirection = GPIO_DirectionOutput;
  2079. config.misc.initOutput = 1;
  2080. pad_config_t padConfig;
  2081. PAD_GetDefaultConfig(&padConfig);
  2082. //power
  2083. padConfig.mux = PAD_MuxAlt0;
  2084. PAD_SetPinConfig(11, &padConfig);
  2085. GPIO_PinConfig(0, 0, &config);
  2086. GPIO_PinWrite(0, 1, 1);
  2087. padConfig.mux = PAD_MuxAlt7;
  2088. PAD_SetPinConfig(9, &padConfig);
  2089. PAD_SetPinConfig(10, &padConfig);
  2090. GPIO_PinConfig(GPIO_AIO3_SEL / 16, GPIO_AIO3_SEL % 16, &config);
  2091. GPIO_PinConfig(GPIO_AIO4_SEL / 16, GPIO_AIO4_SEL % 16, &config);
  2092. GPIO_PinWrite(GPIO_AIO3_SEL / 16, 1 << (GPIO_AIO3_SEL % 16), 0);
  2093. GPIO_PinWrite(GPIO_AIO4_SEL / 16, 1 << (GPIO_AIO4_SEL % 16), 0);
  2094. memset(&gNtcDev, 0, sizeof(NtcResult_t));
  2095. if (adcMsgHandle == NULL)
  2096. {
  2097. adcMsgHandle = osMessageQueueNew(ADC_MSG_MAX_NUM, sizeof(adcReqMsg), NULL);
  2098. if (adcMsgHandle == NULL)
  2099. return 1;
  2100. }
  2101. if (adcTrigerHandle == NULL)
  2102. {
  2103. adcTrigerHandle = osEventFlagsNew(NULL);
  2104. if (adcTrigerHandle == NULL)
  2105. return 1;
  2106. }
  2107. if (adcEvtHandle == NULL)
  2108. {
  2109. adcEvtHandle = osEventFlagsNew(NULL);
  2110. if (adcEvtHandle == NULL)
  2111. return 1;
  2112. }
  2113. if (adcTaskHandle == NULL)
  2114. {
  2115. osThreadAttr_t task_attr;
  2116. memset(&task_attr, 0, sizeof(task_attr));
  2117. task_attr.name = "batAdc";
  2118. task_attr.priority = osPriorityNormal;
  2119. task_attr.cb_mem = &adcTask;
  2120. task_attr.cb_size = sizeof(StaticTask_t);
  2121. task_attr.stack_mem = adcTaskStack;
  2122. task_attr.stack_size = ADC_TASK_STACK_SIZE;
  2123. memset(&adcTaskStack, 0xa5, ADC_TASK_STACK_SIZE);
  2124. adcTaskHandle = osThreadNew(AdcProcess, NULL, &task_attr);
  2125. if (adcTaskHandle == NULL)
  2126. return 1;
  2127. }
  2128. return 0;
  2129. }
  2130. /**
  2131. \fn void PowerPinConfig(IOType iotype)
  2132. \param[in]
  2133. \brief config PWR pin to gpiol
  2134. \return
  2135. */
  2136. void PowerPinConfig(IOType iotype)
  2137. {
  2138. gpio_pin_config_t config;
  2139. config.pinDirection = GPIO_DirectionOutput;
  2140. config.misc.initOutput = 1;
  2141. pad_config_t padConfig;
  2142. PAD_GetDefaultConfig(&padConfig);
  2143. if (iotype == AON_IO)
  2144. {
  2145. slpManAONIOVoltSet(IOVOLT_3_30V); //zhengchao 20200412 add
  2146. padConfig.mux = PAD_MuxAlt0;
  2147. PAD_SetPinConfig(35, &padConfig);
  2148. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  2149. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  2150. PAD_SetPinConfig(31, &padConfig);
  2151. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  2152. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1 << AON_GPS_POWER2);
  2153. PAD_SetPinConfig(32, &padConfig);
  2154. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  2155. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //zhengchao 20200412 modify 1-->0
  2156. PAD_SetPinConfig(35, &padConfig);
  2157. GPIO_PinConfig(1, AON_WAKEUP, &config);
  2158. GPIO_PinWrite(1, 1 << AON_WAKEUP, 1 << AON_WAKEUP);
  2159. padConfig.mux = PAD_MuxAlt7;
  2160. PAD_SetPinConfig(5, &padConfig);
  2161. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2162. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  2163. #if 1
  2164. padConfig.mux = PAD_MuxAlt7;
  2165. padConfig.pullSelect = PAD_PullInternal;
  2166. padConfig.pullUpEnable = PAD_PullUpEnable;
  2167. padConfig.pullDownEnable = PAD_PullDownDisable;
  2168. PAD_SetPinConfig(8, &padConfig);
  2169. config.pinDirection = GPIO_DirectionInput;
  2170. config.misc.initOutput = 0;
  2171. GPIO_PinConfig(1, FEM_GPS_PPS, &config);
  2172. #else
  2173. padConfig.mux = PAD_MuxAlt7;
  2174. PAD_SetPinConfig(8, &padConfig);
  2175. GPIO_PinWrite(1, 1 << FEM_GPS_PPS, 1 << FEM_GPS_PPS);
  2176. #endif
  2177. }
  2178. else
  2179. {
  2180. /*Normal IO*/
  2181. #if 0
  2182. GPIO_PinConfig(0, GPIO_MOS_DRV1, &config);
  2183. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV1, 1 << GPIO_MOS_DRV1);
  2184. GPIO_PinConfig(0, GPIO_MOS_DRV2, &config);
  2185. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV2, 1 << GPIO_MOS_DRV2);
  2186. #endif
  2187. padConfig.mux = PAD_MuxAlt0;
  2188. PAD_SetPinConfig(28, &padConfig);
  2189. GPIO_PinConfig(0, GPIO_POWER_LED, &config);
  2190. GPIO_PinWrite(0, 1 << GPIO_POWER_LED, 1 << GPIO_POWER_LED);
  2191. }
  2192. }
  2193. /**
  2194. \fn void relayConfigInit(void)
  2195. \param[in]
  2196. \brief init the relay, while switch on default
  2197. \return
  2198. */
  2199. void relayConfigInit()
  2200. {
  2201. gpio_pin_config_t config;
  2202. config.pinDirection = GPIO_DirectionOutput;
  2203. config.misc.initOutput = 1;
  2204. pad_config_t padConfig;
  2205. PAD_GetDefaultConfig(&padConfig);
  2206. PAD_SetPinConfig(32, &padConfig);
  2207. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  2208. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //the relay default is off(disconnected)
  2209. //printf("switch off\n");
  2210. }
  2211. /**
  2212. \fn void relayControl(BOOL onOrOff)
  2213. \param[in] onOrOff
  2214. \brief switch the relay on or off
  2215. \return
  2216. */
  2217. void relayControl(BOOL onOrOff)
  2218. {
  2219. if (onOrOff == TRUE)
  2220. {
  2221. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 1 << AON_RELAY_DRV); //switch on
  2222. printf("switcht on\n");
  2223. }
  2224. else
  2225. {
  2226. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //switch off
  2227. printf("switch off\n");
  2228. }
  2229. }
  2230. /**
  2231. \fn void posGGAReset(void)
  2232. \param[in]
  2233. \brief reset gps
  2234. \return
  2235. */
  2236. void posGGAReset(void)
  2237. {
  2238. gpio_pin_config_t config;
  2239. config.pinDirection = GPIO_DirectionOutput;
  2240. config.misc.initOutput = 1;
  2241. pad_config_t padConfig;
  2242. PAD_GetDefaultConfig(&padConfig);
  2243. padConfig.mux = PAD_MuxAlt7;
  2244. PAD_SetPinConfig(5, &padConfig);
  2245. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2246. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 0);
  2247. osDelay(1000 / portTICK_PERIOD_MS);
  2248. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2249. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  2250. config.pinDirection = GPIO_DirectionInput;
  2251. config.misc.initOutput = 0;
  2252. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2253. }
  2254. /**
  2255. \fn void GPSPowerCtr(bool )
  2256. \param[in]
  2257. \brief reset gps
  2258. \return
  2259. */
  2260. void GPSPowerCtr(bool on)
  2261. {
  2262. gpio_pin_config_t config;
  2263. config.pinDirection = GPIO_DirectionOutput;
  2264. config.misc.initOutput = 1;
  2265. pad_config_t padConfig;
  2266. PAD_GetDefaultConfig(&padConfig);
  2267. padConfig.mux = PAD_MuxAlt0;
  2268. PAD_SetPinConfig(35, &padConfig);
  2269. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  2270. PAD_SetPinConfig(31, &padConfig);
  2271. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  2272. if (on)
  2273. {
  2274. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 0);
  2275. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 1 << AON_GPS_POWER1);
  2276. }
  2277. else
  2278. {
  2279. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1 << AON_GPS_POWER2);
  2280. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  2281. }
  2282. }
  2283. /**
  2284. \fn void posGGAServiceStart(QueueHandle_t handle)
  2285. \param[in]
  2286. \brief powr on gps
  2287. \return
  2288. */
  2289. INT32 posGGAServiceStart(QueueHandle_t handle)
  2290. {
  2291. if (handle == NULL)
  2292. {
  2293. return -1;
  2294. }
  2295. else
  2296. {
  2297. GPSPowerCtr(true);
  2298. gpsHandle = handle;
  2299. return 0;
  2300. }
  2301. }
  2302. /**
  2303. \fn void posGGAServiceStop(void )
  2304. \param[in]
  2305. \brief stop gps
  2306. \return
  2307. */
  2308. void posGGAServiceStop(void)
  2309. {
  2310. GPSPowerCtr(false);
  2311. gpsHandle = NULL;
  2312. }
  2313. BOOL NB_ADC_Get(UINT32 *adcValue, ADC_CHANNEL_TYPE adcChannel)
  2314. {
  2315. //UINT32 NTCR2,NTCR3,NTCR4,NTCR5,Vbat = 0;
  2316. //*adcValue = 0xFFFFFFFF;
  2317. INT32 ret = 1;
  2318. switch (adcChannel)
  2319. {
  2320. case FAST_CHARGE_TEMP: //P2-7
  2321. ret = AdcSendReq(ADC_REQ_BITMAP_CH1, adcValue, 01, ADC_GET_RESULT_TIMOUT);
  2322. break;
  2323. case NORMAL_CHARGE_TEMP: //P2-9
  2324. ret = AdcSendReq(ADC_REQ_BITMAP_CH2, adcValue, 01, ADC_GET_RESULT_TIMOUT);
  2325. break;
  2326. case OTHER_TEMP_1: //P2-11
  2327. ret = AdcSendReq(ADC_REQ_BITMAP_CH31, adcValue, 01, ADC_GET_RESULT_TIMOUT);
  2328. break;
  2329. case OTHER_TEMP_2: //P2-13
  2330. ret = AdcSendReq(ADC_REQ_BITMAP_CH30, adcValue, 01, ADC_GET_RESULT_TIMOUT);
  2331. break;
  2332. case VBAT: //Vbat
  2333. ret = AdcSendReq(ADC_REQ_BITMAP_CH4, adcValue, 01, ADC_GET_RESULT_TIMOUT);
  2334. break;
  2335. default:
  2336. break;
  2337. }
  2338. if (ret == 0)
  2339. return TRUE;
  2340. else
  2341. return FALSE;
  2342. }