hal_module_adapter.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551
  1. #include "bsp.h"
  2. #include "osasys.h"
  3. #include "ostask.h"
  4. #include "queue.h"
  5. #include "debug_log.h"
  6. #include "slpman_ec616.h"
  7. #include "plat_config.h"
  8. #include "hal_uart.h"
  9. #include "hal_adc.h"
  10. #include "adc_ec616.h"
  11. #include "gpio_ec616.h"
  12. #include "hal_module_adapter.h"
  13. #include <stdarg.h>
  14. /*
  15. gps
  16. */
  17. static posGGACallBack gGPSDataCBfunc =NULL;
  18. // GSENSOR device addr
  19. #define GSENSOR_DEVICE_ADDR (SC7A20_IIC_ADDRESS)
  20. #define ZM01_DEVICE_ADDR (0x2a)
  21. /*
  22. i2c
  23. */
  24. #define HAL_I2C_RECV_TASK_QUEUE_CREATED (0x1)
  25. #define I2C_RECV_QUEUE_BUF_SIZE (0x10)
  26. #define I2C_RECV_TASK_STACK_SIZE (1536)
  27. /*
  28. power control
  29. */
  30. // back power
  31. #define AON_GPS_POWER1 (8)
  32. //main power
  33. #define AON_GPS_POWER2 (4)
  34. #define AON_RELAY_DRV (5)
  35. #define AON_WAKEUP (8)
  36. #define GPIO_MOS_DRV1 (14)
  37. #define GPIO_MOS_DRV2 (15)
  38. #define GPIO_POWER_LED (9)
  39. /*GPS*/
  40. #define FEM_GPS_RSTN (6)
  41. #define FEM_GPS_BLK (7)
  42. #define FEM_GPS_PPS (9)
  43. /*CAN*/
  44. #define GPIO_CAN_POWER (9)
  45. /*
  46. I2C
  47. */
  48. #define I2C_RECV_CONTROL_FLAG (0x1)
  49. static UINT32 g_halI2CInitFlag = 0;
  50. static osEventFlagsId_t g_i2CRecvFlag;
  51. static StaticQueue_t i2c_recv_queue_cb;
  52. static StaticTask_t i2c_recv_task;
  53. static UINT8 i2c_recv_task_stack[I2C_RECV_TASK_STACK_SIZE];
  54. static UINT8 i2c_recv_queue_buf[I2C_RECV_QUEUE_BUF_SIZE*sizeof(i2c_recv_msgqueue_obj_t)];
  55. // message queue id
  56. static osMessageQueueId_t i2c_recv_msgqueue;
  57. /*
  58. adc
  59. */
  60. #define GPIO_AIO3_SEL (19)
  61. #define GPIO_AIO4_SEL (18)
  62. #define ADC_TASK_STACK_SIZE (512)
  63. #define ADC_MSG_MAX_NUM (7)
  64. #define ADC_AioResDivRatioDefault (ADC_AioResDivRatio14Over16)
  65. #define REV_AioResDivRatioDefault 16/14
  66. //#define ADC_ChannelAioVbat (1200)
  67. static UINT32 ADC_ChannelAioVbat=1200;
  68. #define ADC_ChannelAioRes (15000)
  69. #define NTC_FullAioValue (1200)
  70. #define ADC_AioResDivRatioExtra (ADC_AioResDivRatio8Over16)
  71. #define REV_AioResDivRatioExtra 16/8
  72. #define NTC_REQ_UPDATE_DATA (0x01)
  73. #define ADC_MSG_TIMEOUT (1000)
  74. #define ADC_CALIBRATION_VALUE (50900)
  75. static UINT32 ADC_InsideRES=500000;
  76. #define ADC_RECV_CONTROL_FLAG (0x1)
  77. typedef struct
  78. {
  79. UINT32 request;
  80. UINT32 NTCvalue[7];
  81. }NtcResult_t;
  82. NtcResult_t gNtcDev;
  83. volatile static UINT32 vbatChannelResult = 0;
  84. volatile static UINT32 thermalChannelResult = 0;
  85. volatile static UINT32 NTCChannelResult[NTC_ChannelMax];
  86. QueueHandle_t adcMsgHandle = NULL;
  87. static osEventFlagsId_t adcEvtHandle = NULL;
  88. static osEventFlagsId_t adcTrigerHandle = NULL;
  89. static osThreadId_t adcTaskHandle = NULL;
  90. static StaticTask_t adcTask = NULL;
  91. static UINT8 adcTaskStack[ADC_TASK_STACK_SIZE];
  92. /*
  93. gps
  94. */
  95. static QueueHandle_t gpsHandle = NULL;
  96. /*
  97. can
  98. */
  99. static osMessageQueueId_t can_recv_msgqueue;
  100. static StaticQueue_t can_recv_queue_cb;
  101. #define CAN_RECV_QUEUE_BUF_SIZE (0x10)
  102. static UINT8 can_recv_queue_buf[CAN_RECV_QUEUE_BUF_SIZE];
  103. #define CAN_RECV_CONTROL_FLAG (0x1)
  104. //#define SPI_ANALOG
  105. #ifdef SPI_ANALOG
  106. #define USING_SPI0 0
  107. #endif
  108. /*spi0*/
  109. #ifdef SPI_ANALOG
  110. #if USING_SPI0
  111. #define SPI_SSN_GPIO_INSTANCE RTE_SPI0_SSN_GPIO_INSTANCE
  112. #define SPI_SSN_GPIO_INDEX RTE_SPI0_SSN_GPIO_INDEX
  113. #define SPI_SSN_GPIO_PAD_ADDR 21
  114. #define SPI_CLK_GPIO_INSTANCE 0
  115. #define SPI_CLK_GPIO_INDEX 15
  116. #define SPI_CLK_GPIO_PAD_ADDR 24
  117. #define SPI_MOSI_GPIO_INSTANCE 0
  118. #define SPI_MOSI_GPIO_INDEX 11
  119. #define SPI_MOSI_GPIO_PAD_ADDR 22
  120. #define SPI_MISO_GPIO_INSTANCE 0
  121. #define SPI_MISO_GPIO_INDEX 14
  122. #define SPI_MISO_GPIO_PAD_ADDR 23
  123. #else //SPI1
  124. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  125. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  126. #define SPI_SSN_GPIO_PAD_ADDR 13
  127. #define SPI_CLK_GPIO_INSTANCE 0
  128. #define SPI_CLK_GPIO_INDEX 5
  129. #define SPI_CLK_GPIO_PAD_ADDR 16
  130. #define SPI_MOSI_GPIO_INSTANCE 0
  131. #define SPI_MOSI_GPIO_INDEX 3
  132. #define SPI_MOSI_GPIO_PAD_ADDR 14
  133. #define SPI_MISO_GPIO_INSTANCE 0
  134. #define SPI_MISO_GPIO_INDEX 4
  135. #define SPI_MISO_GPIO_PAD_ADDR 15
  136. #endif
  137. #else
  138. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  139. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  140. #endif
  141. extern ARM_DRIVER_I2C Driver_I2C0;
  142. extern ARM_DRIVER_SPI Driver_SPI0;
  143. extern ARM_DRIVER_SPI Driver_SPI1;
  144. extern ARM_DRIVER_USART Driver_USART2;
  145. extern ARM_DRIVER_USART Driver_USART1;
  146. uint8_t gps_uart_recv_buf[GPS_DATA_RECV_BUFFER_SIZE];
  147. static ARM_DRIVER_SPI *spiMasterDrv = &CREATE_SYMBOL(Driver_SPI, 1);
  148. static ARM_DRIVER_I2C *i2cDrvInstance = &CREATE_SYMBOL(Driver_I2C, 0);
  149. static ARM_DRIVER_USART *usartHandle = &CREATE_SYMBOL(Driver_USART, 2);
  150. static ARM_DRIVER_USART *printfHandle = &CREATE_SYMBOL(Driver_USART, 1);
  151. //LED define pin index
  152. #define LED_INX_MAX (5)
  153. #define LED_PORT_0 (0)
  154. #define LED_PORT_1 (1)
  155. /*
  156. pin1~pin4 for soc display
  157. pin5 for fault display
  158. */
  159. #define LED_GPIO_PIN_1 (6)
  160. #define LED_PAD_INDEX1 (17)
  161. #define LED_GPIO_PIN_2 (7)
  162. #define LED_PAD_INDEX2 (18)
  163. #define LED_GPIO_PIN_3 (0)
  164. #define LED_PAD_INDEX3 (21)
  165. #define LED_GPIO_PIN_4 (11)
  166. #define LED_PAD_INDEX4 (22)
  167. #define LED_GPIO_PIN_5 (1)
  168. #define LED_PAD_INDEX5 (27)
  169. led_pin_config_t gLedCfg[LED_INX_MAX]={{LED_PORT_0,LED_GPIO_PIN_1,LED_PAD_INDEX1, PAD_MuxAlt0},\
  170. {LED_PORT_0,LED_GPIO_PIN_2,LED_PAD_INDEX2, PAD_MuxAlt0},\
  171. {LED_PORT_1,LED_GPIO_PIN_3,LED_PAD_INDEX3, PAD_MuxAlt0},\
  172. {LED_PORT_0,LED_GPIO_PIN_4,LED_PAD_INDEX4, PAD_MuxAlt0},\
  173. {LED_PORT_1,LED_GPIO_PIN_5,LED_PAD_INDEX5, PAD_MuxAlt0}};
  174. void UTCToBeijing(UTC8TimeType* UTC8Time,unsigned int UTCyear,unsigned char UTCmonth,unsigned char UTCday,unsigned int UTChour,unsigned char UTCminute,unsigned char UTCsecond)
  175. {
  176. int year=0,month=0,day=0,hour=0;
  177. int lastday = 0;// ÔµÄ×îºóÒ»ÌìÈÕÆÚ
  178. int lastlastday = 0;//ÉÏÔµÄ×îºóÒ»ÌìÈÕÆÚ
  179. year=UTCyear;
  180. month=UTCmonth;
  181. day=UTCday;
  182. hour=UTChour+8;//UTC+8ת»»Îª±±¾©Ê±¼ä
  183. if(month==1 || month==3 || month==5 || month==7 || month==8 || month==10 || month==12)
  184. {
  185. lastday = 31;
  186. if(month == 3)
  187. {
  188. if((year%400 == 0)||(year%4 == 0 && year%100 != 0))//ÅжÏÊÇ·ñΪÈòÄê
  189. lastlastday = 29;//ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  190. else
  191. lastlastday = 28;
  192. }
  193. if(month == 8)
  194. lastlastday = 31;
  195. }
  196. else
  197. if(month == 4 || month == 6 || month == 9 || month == 11)
  198. {
  199. lastday = 30;
  200. lastlastday = 31;
  201. }
  202. else
  203. {
  204. lastlastday = 31;
  205. if((year%400 == 0)||(year%4 == 0 && year%100 != 0))//ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  206. lastday = 29;
  207. else
  208. lastday = 28;
  209. }
  210. if(hour >= 24)//µ±Ëã³öµÄʱ´óÓÚ»òµÈÓÚ24£º00ʱ£¬Ó¦¼õÈ¥24£º00£¬ÈÕÆÚ¼ÓÒ»Ìì
  211. {
  212. hour -= 24;
  213. day += 1;
  214. if(day > lastday)//µ±Ëã³öµÄÈÕÆÚ´óÓÚ¸ÃÔÂ×îºóÒ»Ììʱ£¬Ó¦¼õÈ¥¸ÃÔÂ×îºóÒ»ÌìµÄÈÕÆÚ£¬Ô·ݼÓÉÏÒ»¸öÔÂ
  215. {
  216. day -= lastday;
  217. month += 1;
  218. if(month > 12)//µ±Ëã³öµÄÔ·ݴóÓÚ12£¬Ó¦¼õÈ¥12£¬Äê·Ý¼ÓÉÏ1Äê
  219. {
  220. month -= 12;
  221. year += 1;
  222. }
  223. }
  224. }
  225. UTC8Time->year = year;
  226. UTC8Time->month = month;
  227. UTC8Time->day = day;
  228. UTC8Time->hour = hour;
  229. UTC8Time->minute = UTCminute;
  230. UTC8Time->second = UTCsecond;
  231. }
  232. #include <stdarg.h>
  233. #ifdef DEBUGLOG
  234. static osMutexId_t DebugFileMux;
  235. static void Debug_Write_Logfile(UINT8 * buf)
  236. {
  237. UINT32 Count;
  238. OSAFILE file;
  239. osMutexAcquire(DebugFileMux, osWaitForever);
  240. file = OsaFopen("DebugFile","wb");
  241. if(file!=NULL)
  242. {
  243. if(OsaFseek(file, 0, SEEK_END) == 0)
  244. {
  245. Count = OsaFwrite(buf, 1, strlen(buf), file);
  246. }
  247. OsaFclose(file);
  248. }
  249. osMutexRelease(DebugFileMux);
  250. return;
  251. }
  252. void Debug_printf(const UINT8 *format, ...)
  253. {
  254. UINT8 buf[128+1];
  255. va_list args;
  256. OsaUtcTimeTValue timeUtc;
  257. UINT16 year;
  258. UINT8 month,day,hour,minute,sec;
  259. appGetSystemTimeUtcSync(&timeUtc);
  260. year=(timeUtc.UTCtimer1&0xffff0000)>>16;
  261. month=(timeUtc.UTCtimer1&0xff00)>>8;
  262. day=timeUtc.UTCtimer1&0xff;
  263. hour=(timeUtc.UTCtimer2&0xff000000)>>24;
  264. minute=(timeUtc.UTCtimer2&0xff0000)>>16;
  265. sec=(timeUtc.UTCtimer2&0xff00)>>8;
  266. memset(buf,0,128+1);
  267. UTC8TimeType UTC8TimeStruct;
  268. UTCToBeijing((UTC8TimeType *)&UTC8TimeStruct,year,month,day,hour,minute,sec);
  269. sprintf((char *)buf,"%02d:%02d:%02d-",UTC8TimeStruct.hour,UTC8TimeStruct.minute,UTC8TimeStruct.second);
  270. va_start(args, format);
  271. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  272. va_end(args);
  273. Debug_Write_Logfile(buf);
  274. }
  275. UINT16 Debug_GetSize()
  276. {
  277. UINT16 FileSize;
  278. OSAFILE file;
  279. osMutexAcquire(DebugFileMux, osWaitForever);
  280. file = OsaFopen("DebugFile","rb");
  281. FileSize = OsaFsize(file);
  282. OsaFclose(file);
  283. osMutexRelease(DebugFileMux);
  284. return FileSize;
  285. }
  286. void Debug_Read_Logfile(UINT8 * rbuf,UINT16 FileSize)
  287. {
  288. UINT32 Count;
  289. OSAFILE file;
  290. printf("%s start\r\n",__FUNCTION__);
  291. osMutexAcquire(DebugFileMux, osWaitForever);
  292. file = OsaFopen("DebugFile","rb");
  293. if(file!=NULL)
  294. {
  295. if(OsaFseek(file, 0, SEEK_SET) == 0)
  296. {
  297. memset(rbuf,0,FileSize);
  298. Count = OsaFread(rbuf, 1, FileSize, file);
  299. printf("%s",rbuf);
  300. }
  301. OsaFclose(file);
  302. }
  303. printf("%s end! \r\n",__FUNCTION__);
  304. osMutexRelease(DebugFileMux);
  305. return;
  306. }
  307. void Debug_Del_Logfile(void)
  308. {
  309. osMutexAcquire(DebugFileMux, osWaitForever);
  310. OsaFremove("DebugFile");
  311. osMutexRelease(DebugFileMux);
  312. }
  313. #endif
  314. #ifdef BL_FILE_LOG
  315. static UINT8 blLogFileNux=0;
  316. static void bluejoy_write_logfile(UINT8 * buf)
  317. {
  318. int32_t err;
  319. UINT32 Count;
  320. OSAFILE file;
  321. while(blLogFileNux){
  322. osDelay(10/portTICK_PERIOD_MS);
  323. }
  324. blLogFileNux=1;
  325. file = OsaFopen("blLog","wb");
  326. if(file==NULL){
  327. //printf("blLog open fail!\r\n");
  328. blLogFileNux=0;
  329. return;
  330. }
  331. if(OsaFseek(file, 0, SEEK_END) != 0)
  332. {
  333. //printf("Seek file failed [%d] \r\n",__LINE__);
  334. OsaFclose(file);
  335. blLogFileNux=0;
  336. return;
  337. }
  338. Count = OsaFwrite(buf, 1, strlen(buf), file);
  339. if(Count != (strlen(buf))){
  340. //printf("blLog write fail!\r\n");
  341. }
  342. OsaFclose(file);
  343. blLogFileNux=0;
  344. }
  345. void bluejoy_read_logfile(void)
  346. {
  347. int32_t err;
  348. UINT32 Count;
  349. OSAFILE file;
  350. UINT8 rbuf[128+1]={0};
  351. UINT8 * flag_p;
  352. UINT16 pri_l;
  353. printf("%s start\r\n",__FUNCTION__);
  354. while(blLogFileNux){
  355. osDelay(10/portTICK_PERIOD_MS);
  356. }
  357. blLogFileNux=1;
  358. file = OsaFopen("blLog","rb");
  359. if(file==NULL){
  360. printf("blLog not exst!\r\n");
  361. blLogFileNux=0;
  362. return;
  363. }
  364. if(OsaFseek(file, 0, SEEK_SET) != 0)
  365. {
  366. printf("Seek file failed [%d] \r\n",__LINE__);
  367. OsaFclose(file);
  368. blLogFileNux=0;
  369. return;
  370. }
  371. do{
  372. memset(rbuf,0,128);
  373. Count = OsaFread(rbuf, 1, 128, file);
  374. printf("%s",rbuf);
  375. }while(Count==128);
  376. OsaFclose(file);
  377. blLogFileNux=0;
  378. printf("%s end! \r\n",__FUNCTION__);
  379. }
  380. void bluejoy_del_logfile(void)
  381. {
  382. UINT32 ret;
  383. //printf("%s start! \r\n",__FUNCTION__);
  384. while(blLogFileNux){
  385. osDelay(10/portTICK_PERIOD_MS);
  386. }
  387. blLogFileNux=1;
  388. OsaFremove("blLog");
  389. blLogFileNux=0;
  390. FaultDisplay(LED_TURN_OFF);
  391. osDelay(1000/portTICK_PERIOD_MS);
  392. FaultDisplay(LED_TURN_ON);
  393. osDelay(1000/portTICK_PERIOD_MS);
  394. FaultDisplay(LED_TURN_OFF);
  395. osDelay(1000/portTICK_PERIOD_MS);
  396. FaultDisplay(LED_TURN_ON);
  397. }
  398. void bluejoy_printf(BlLogLevel level, const UINT8 *format, ...)
  399. {
  400. UINT8 buf[128+1];
  401. va_list args;
  402. OsaUtcTimeTValue timeUtc;
  403. UINT16 year;
  404. UINT8 month,day,hour,minite,sec;
  405. if(level<BL_LEVEL2)
  406. return;
  407. appGetSystemTimeUtcSync(&timeUtc);
  408. year=(timeUtc.UTCtimer1&0xffff0000)>>16;
  409. month=(timeUtc.UTCtimer1&0xff00)>>8;
  410. day=timeUtc.UTCtimer1&0xff;
  411. hour=(timeUtc.UTCtimer2&0xff000000)>>24;
  412. minite=(timeUtc.UTCtimer2&0xff0000)>>16;
  413. sec=(timeUtc.UTCtimer2&0xff00)>>8;
  414. memset(buf,0,128+1);
  415. UTC8TimeType UTC8TimeStruct;
  416. UTCToBeijing(UTC8TimeStruct,year,month,day,hour,minite,sec);
  417. sprintf((char *)buf,"%04d-%02d-%02d %02d:%02d:%02d ",UTC8TimeStruct.year,UTC8TimeStruct.month,UTC8TimeStruct.day,UTC8TimeStruct.hour,UTC8TimeStruct.minute,UTC8TimeStruct.second);
  418. va_start(args, format);
  419. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  420. va_end(args);
  421. //printf("%s", buf);
  422. bluejoy_write_logfile(buf);
  423. }
  424. #endif
  425. #if 0
  426. /**
  427. \fn void NetSocDisplay(UINT8 soc)
  428. \param[in] void
  429. \brief RSSI display on led
  430. \return
  431. */
  432. #define RSSI_LEVEL_0 (0)
  433. #define RSSI_LEVEL_10 (10)
  434. #define RSSI_LEVEL_20 (20)
  435. #define RSSI_LEVEL_25 (25)
  436. #define RSSI_LEVEL_30 (30)
  437. void NetSocDisplay(UINT8 soc)
  438. {
  439. UINT16 pinLevel[LED_INX_MAX-1] ={0};
  440. gpio_pin_config_t nGpioCfg={0};
  441. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  442. nGpioCfg.misc.initOutput = 1;
  443. for(int8_t i=0;i< LED_INX_MAX-1;i++){
  444. GPIO_PinConfig(gLedCfg[i].pinPort, gLedCfg[i].pinInx, &nGpioCfg);
  445. }
  446. if(RSSI_LEVEL_0 < soc && soc <=RSSI_LEVEL_10)
  447. {
  448. pinLevel[0]=1;
  449. pinLevel[1]=pinLevel[2]=pinLevel[3]=0;
  450. }
  451. else if(RSSI_LEVEL_10 < soc && soc <=RSSI_LEVEL_20)
  452. {
  453. pinLevel[0]=pinLevel[1]=1;
  454. pinLevel[2]=pinLevel[3]=0;
  455. }
  456. else if(RSSI_LEVEL_20 < soc && soc <=RSSI_LEVEL_25)
  457. {
  458. pinLevel[0]=pinLevel[1]=pinLevel[2]=1;
  459. pinLevel[3]=0;
  460. }
  461. else if(RSSI_LEVEL_25 < soc && soc <=RSSI_LEVEL_30)
  462. {
  463. pinLevel[0]=pinLevel[1]=pinLevel[2]=pinLevel[3]=1;
  464. }
  465. for(UINT8 i=0; i<LED_INX_MAX-1; i++)
  466. {
  467. GPIO_PinWrite(gLedCfg[i].pinPort, 1<<gLedCfg[i].pinInx, pinLevel[i]<<gLedCfg[i].pinInx);
  468. }
  469. }
  470. #endif
  471. void NetSocDisplay(ledInx_t Inx , ledStaus_t level)
  472. {
  473. UINT16 pinLevel[LED_INX_MAX-1] ={0};
  474. gpio_pin_config_t nGpioCfg={0};
  475. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  476. nGpioCfg.misc.initOutput = 1;
  477. pad_config_t padConfig;
  478. PAD_GetDefaultConfig(&padConfig);
  479. padConfig.mux = gLedCfg[Inx].padMutex;
  480. PAD_SetPinConfig(gLedCfg[Inx].padInx, &padConfig);
  481. PAD_SetPinPullConfig(gLedCfg[Inx].padInx, PAD_InternalPullDown);
  482. GPIO_PinConfig(gLedCfg[Inx].pinPort, gLedCfg[Inx].pinInx, &nGpioCfg);
  483. GPIO_PinWrite(gLedCfg[Inx].pinPort, 1<<gLedCfg[Inx].pinInx, level <<gLedCfg[Inx].pinInx);
  484. }
  485. /**
  486. \fn void FaultDisplay(ledStaus_t status)
  487. \param[in] status equal to 1 ,turn on red led ; status equal to 0 ,turn off red led
  488. \brief RSSI display on led
  489. \return
  490. */
  491. void FaultDisplay(ledStaus_t status)
  492. {
  493. #ifdef USING_PRINTF
  494. printf("[%d]-4-%d\n",__LINE__,status);
  495. #endif
  496. gpio_pin_config_t nGpioCfg={0};
  497. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  498. nGpioCfg.misc.initOutput = 1;
  499. pad_config_t padConfig;
  500. PAD_GetDefaultConfig(&padConfig);
  501. padConfig.mux = gLedCfg[4].padMutex;
  502. PAD_SetPinConfig(gLedCfg[4].padInx, &padConfig);
  503. PAD_SetPinPullConfig(gLedCfg[4].padInx, PAD_InternalPullDown);
  504. GPIO_PinConfig(gLedCfg[4].pinPort, gLedCfg[4].pinInx, &nGpioCfg);
  505. GPIO_PinWrite(gLedCfg[4].pinPort, 1<<gLedCfg[4].pinInx, status<<gLedCfg[4].pinInx);
  506. }
  507. /**
  508. * @brief
  509. * @param
  510. * @return
  511. */
  512. void SPI_CS_High(void)
  513. {
  514. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 1 << SPI_SSN_GPIO_INDEX);
  515. }
  516. /**
  517. * @brief
  518. * @param
  519. * @return
  520. */
  521. void SPI_CS_Low(void)
  522. {
  523. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 0);
  524. }
  525. #ifdef SPI_ANALOG
  526. /**
  527. * @brief
  528. * @param
  529. * @return
  530. */
  531. void SPI_Clk_High(void)
  532. {
  533. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,1<<SPI_CLK_GPIO_INDEX);
  534. }
  535. /**
  536. * @brief
  537. * @param
  538. * @return
  539. */
  540. void SPI_Clk_Low(void)
  541. {
  542. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,0);
  543. }
  544. /**
  545. * @brief
  546. * @param
  547. * @return
  548. */
  549. void SPI_Mosi_High(void)
  550. {
  551. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,1<<SPI_MOSI_GPIO_INDEX);
  552. }
  553. /**
  554. * @brief
  555. * @param
  556. * @return
  557. */
  558. void SPI_Mosi_Low(void)
  559. {
  560. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,0);
  561. }
  562. /**
  563. * @brief
  564. * @param
  565. * @return
  566. */
  567. UINT8 SPI_MISO_Read(void)
  568. {
  569. return GPIO_PinRead(SPI_MISO_GPIO_INSTANCE,SPI_MISO_GPIO_INDEX);
  570. }
  571. #endif
  572. /**
  573. * @brief Software SPI_Flash bus driver basic function, send a single byte to MOSI,
  574. * and accept MISO data at the same time.
  575. * @param[in] u8Data:Data sent on the MOSI data line
  576. * @return u8Out: Data received on the MISO data line
  577. */
  578. UINT8 SPI_Write_Byte(UINT8 u8Data)
  579. {
  580. UINT8 data = u8Data;
  581. #ifdef SPI_ANALOG
  582. UINT8 i=0;
  583. for(i=0;i<8;i++){
  584. SPI_Clk_Low();
  585. if((u8Data<<i)&0x80)
  586. SPI_Mosi_High();
  587. else
  588. SPI_Mosi_Low();
  589. SPI_Clk_High();
  590. }
  591. SPI_Clk_Low();
  592. #else
  593. spiMasterDrv->Transfer(&u8Data,&data,1);
  594. #endif
  595. return 0;
  596. }
  597. #ifdef SPI_ANALOG
  598. /**
  599. * @brief
  600. * @param
  601. * @return
  602. */
  603. UINT8 SPI_Read_Byte(void)
  604. {
  605. UINT8 i=0;
  606. UINT8 rByte=0;
  607. SPI_Clk_Low();
  608. for(i=0;i<8;i++){
  609. SPI_Clk_High();
  610. rByte<<=1;
  611. rByte |= SPI_MISO_Read();
  612. SPI_Clk_Low();
  613. }
  614. return rByte;
  615. }
  616. #endif
  617. /**
  618. \fn INT32 CAN_ReadReg(UINT8 addr)
  619. \param[in] addr CAN register addr
  620. \brief write can register
  621. \return
  622. */
  623. INT32 CAN_WriteReg(UINT8 addr, UINT8 value)
  624. {
  625. SPI_CS_Low();
  626. SPI_Write_Byte(CAN_WRITE);
  627. SPI_Write_Byte(addr);
  628. SPI_Write_Byte(value);
  629. SPI_CS_High();
  630. return 0;
  631. }
  632. /**
  633. \fn INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  634. \param[in] reg: can register addr
  635. \brief read can register
  636. \return
  637. */
  638. INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  639. {
  640. UINT8 i =0;
  641. UINT8 data=0;
  642. INT32 res;
  643. if(buf == NULL) return -1;
  644. SPI_CS_Low();
  645. SPI_Write_Byte(CAN_READ);
  646. SPI_Write_Byte(reg);
  647. #ifdef SPI_ANALOG
  648. for(i=0;i<len;i++){
  649. buf[i]= SPI_Read_Byte();
  650. }
  651. #else
  652. for(i=0;i<len;i++){
  653. spiMasterDrv->Transfer(&data,&buf[i],1);
  654. }
  655. #endif
  656. SPI_CS_High();
  657. return i;
  658. }
  659. /**
  660. \fn UINT8 CanTriggerEvtInit(void)
  661. \param[in]
  662. \brief generate irq,then notify app
  663. \return 1 fail; 0 ok;
  664. */
  665. UINT8 CanTriggerEvtInit(void)
  666. {
  667. /*for msg queue create*/
  668. osMessageQueueAttr_t queue_attr;
  669. memset(&queue_attr, 0, sizeof(queue_attr));
  670. queue_attr.cb_mem = &can_recv_queue_cb;
  671. queue_attr.cb_size = sizeof(can_recv_queue_cb);
  672. queue_attr.mq_mem = can_recv_queue_buf;
  673. queue_attr.mq_size = sizeof(can_recv_queue_buf);
  674. can_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE,1, &queue_attr);
  675. //printf("CanTriggerEvtInit \r\n");
  676. return 0;
  677. }
  678. /**
  679. \fn void CanWaitEvt(UINT32 timeout)
  680. \param[in]
  681. \brief
  682. \return
  683. */
  684. void CanWaitEvt(UINT32 timeout)
  685. {
  686. osStatus_t status;
  687. UINT8 msg = 0;
  688. UINT32 mask;
  689. status = osMessageQueueGet(can_recv_msgqueue, &msg, 0 , osWaitForever);
  690. //printf("msg = %#x\r\n",msg);
  691. }
  692. /**
  693. \fn void CanTiggerEvt(UINT8 cmd)
  694. \param[in]
  695. \brief
  696. \return
  697. */
  698. void CanTiggerEvt(UINT8 cmd)
  699. {
  700. osStatus_t status;
  701. UINT8 msg = cmd;
  702. status = osMessageQueuePut(can_recv_msgqueue, &msg, 0, 0);
  703. }
  704. /*******************************************************************************
  705. * o����y?? : MCP2515_Reset
  706. * ?����? : ����?��?��????��?����?t?��??MCP2515
  707. * ��?��? : ?T
  708. * ��?3? : ?T
  709. * ����???�� : ?T
  710. * ?��?�� : ???��2???��??��?��???a������?���䨬?,2��???��?t����?��?a?????�꨺?
  711. *******************************************************************************/
  712. INT32 HAL_Can_Reset(void)
  713. {
  714. SPI_CS_Low();
  715. SPI_Write_Byte(CAN_RESET);
  716. SPI_CS_High();
  717. return 0;
  718. }
  719. /*******************************************************************************
  720. * o����y?? : MCP2515_Init
  721. * ?����? : MCP25153?��??��????
  722. * ��?��? : ?T
  723. * ��?3? : ?T
  724. * ����???�� : ?T
  725. * ?��?�� : 3?��??���㨹������o����?t?��???��1�����2����??������???�������?��??��1?????�̨�?��
  726. *******************************************************************************/
  727. void HAL_Can_Init(Can_InitType param)
  728. {
  729. UINT8 temp=0,temp1=0;
  730. INT32 res = -1;
  731. gpio_pin_config_t config;
  732. config.pinDirection = GPIO_DirectionOutput;
  733. config.misc.initOutput = 1;
  734. pad_config_t padConfig;
  735. PAD_GetDefaultConfig(&padConfig);
  736. //POWER
  737. padConfig.mux = PAD_MuxAlt0;
  738. PAD_SetPinConfig(28, &padConfig);
  739. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 1 << GPIO_CAN_POWER);
  740. HAL_Can_Reset(); //¡¤¡é?¨ª?¡ä????¨¢?¨¨¨ª?t?¡ä??MCP2515
  741. osDelay(100/portTICK_PERIOD_MS);
  742. CAN_WriteReg(CANCTRL,OPMODE_CONFIG |CLKOUT_ENABLED);
  743. // CAN_ReadReg(CANCTRL,1,&temp);//?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  744. #ifdef USING_PRINTF
  745. //printf("[%d] CANCTRL = %#x \r\n",__LINE__,temp);
  746. #endif
  747. CAN_WriteReg(CNF1,param.baudrate);
  748. CAN_WriteReg(CNF2,BTLMODE_CNF3|PHSEG1_3TQ|PRSEG_1TQ);
  749. CAN_WriteReg(CNF3,PHSEG2_3TQ);
  750. if(param.packType == STD_PACK){
  751. /*?����???2��??��??��*/
  752. CAN_WriteReg(TXB0SIDH,0xFF&(param.TxStdIDH));//����?��?o3??��0������?������?��?????
  753. CAN_WriteReg(TXB0SIDL,0xE0&(param.TxStdIDL));//����?��?o3??��0������?������?��?�̨�??
  754. CAN_WriteReg(RXM0SIDH,0x00);
  755. CAN_WriteReg(RXM0SIDL,0x00);
  756. CAN_WriteReg(RXM1SIDH,0x00);
  757. CAN_WriteReg(RXM1SIDL,0x00);
  758. /*?����???2��??��??��*/
  759. CAN_WriteReg(RXF0SIDH,0xFF&(param.RxStdIDH[0]));
  760. CAN_WriteReg(RXF0SIDL,0xE0&(param.RxStdIDL[0]));
  761. CAN_WriteReg(RXF1SIDH,0xFF&(param.RxStdIDH[1]));
  762. CAN_WriteReg(RXF1SIDL,0xE0&(param.RxStdIDL[1]));
  763. #if 0
  764. CAN_WriteReg(RXF2SIDH,0x00);
  765. CAN_WriteReg(RXF2SIDL,0xa0);
  766. CAN_WriteReg(RXF3SIDH,0x00);
  767. CAN_WriteReg(RXF3SIDL,0x40);
  768. CAN_WriteReg(RXF4SIDH,0x00);
  769. CAN_WriteReg(RXF4SIDL,0x60);
  770. CAN_WriteReg(RXF5SIDH,0x00);
  771. CAN_WriteReg(RXF5SIDL,0x80);
  772. #else
  773. CAN_WriteReg(RXF2SIDH,0xFF&(param.RxStdIDH[2]));
  774. CAN_WriteReg(RXF2SIDL,0xE0&(param.RxStdIDL[2]));
  775. CAN_WriteReg(RXF3SIDH,0xFF&(param.RxStdIDH[3]));
  776. CAN_WriteReg(RXF3SIDL,0xE0&(param.RxStdIDL[3]));
  777. CAN_WriteReg(RXF4SIDH,0xFF&(param.RxStdIDH[4]));
  778. CAN_WriteReg(RXF4SIDL,0xE0&(param.RxStdIDL[4]));
  779. CAN_WriteReg(RXF5SIDH,0xFF&(param.RxStdIDH[5]));
  780. CAN_WriteReg(RXF5SIDL,0xE0&(param.RxStdIDL[5]));
  781. #endif
  782. CAN_WriteReg(RXB0CTRL,RXM_RCV_ALL|BUKT_ROLLOVER);
  783. CAN_WriteReg(RXB0DLC,DLC_8);
  784. CAN_WriteReg(RXB1CTRL,RXM_RCV_ALL);
  785. CAN_WriteReg(RXB1DLC,DLC_8);
  786. }
  787. else if(param.packType == EXT_PACK)
  788. {
  789. /*TXB0*/
  790. CAN_WriteReg(TXB0SIDH,0xFF&(param.TxStdIDH));
  791. CAN_WriteReg(TXB0SIDL,(0xEB&(param.TxStdIDL))|0x08);
  792. CAN_WriteReg(TXB0EID8,0xFF&(param.TxExtIDH));
  793. CAN_WriteReg(TXB0EID0,0xFF&(param.TxExtIDL));
  794. /*?����???2��??��??��*/
  795. CAN_WriteReg(RXM0SIDH,0x00); //FF->00 zhengchao
  796. CAN_WriteReg(RXM0SIDL,0x00); //E3->00 zhengchao
  797. CAN_WriteReg(RXM0EID8,0x00); //FF->00 zhengchao
  798. CAN_WriteReg(RXM0EID0,0x00); //FF->00 zhengchao
  799. /*?����???2��??��??��*/
  800. CAN_WriteReg(RXF0SIDH,0xFF&(param.RxStdIDH[0]));
  801. CAN_WriteReg(RXF0SIDL,(0xEB&(param.RxStdIDL[0]))|0x08);
  802. CAN_WriteReg(RXF0EID8,0xFF&(param.RxExtIDH[0]));
  803. CAN_WriteReg(RXF0EID8,0xFF&(param.RxExtIDL[0]));
  804. CAN_WriteReg(RXF1SIDH,0xFF&(param.RxStdIDH[1]));
  805. CAN_WriteReg(RXF1SIDL,(0xEB&(param.RxStdIDL[1]))|0x08);
  806. CAN_WriteReg(RXF1EID8,0xFF&(param.RxExtIDH[1]));
  807. CAN_WriteReg(RXF1EID8,0xFF&(param.RxExtIDL[1]));
  808. CAN_WriteReg(RXF2SIDH,0xFF&(param.RxStdIDH[2]));
  809. CAN_WriteReg(RXF2SIDL,(0xEB&(param.RxStdIDL[2]))|0x08);
  810. CAN_WriteReg(RXF2EID8,0xFF&(param.RxExtIDH[2]));
  811. CAN_WriteReg(RXF2EID8,0xFF&(param.RxExtIDL[2]));
  812. CAN_WriteReg(RXF3SIDH,0xFF&(param.RxStdIDH[3]));
  813. CAN_WriteReg(RXF3SIDL,(0xEB&(param.RxStdIDL[3]))|0x08);
  814. CAN_WriteReg(RXF3EID8,0xFF&(param.RxExtIDH[3]));
  815. CAN_WriteReg(RXF3EID8,0xFF&(param.RxExtIDL[3]));
  816. CAN_WriteReg(RXF4SIDH,0xFF&(param.RxStdIDH[4]));
  817. CAN_WriteReg(RXF4SIDL,(0xEB&(param.RxStdIDL[4]))|0x08);
  818. CAN_WriteReg(RXF4EID8,0xFF&(param.RxExtIDH[4]));
  819. CAN_WriteReg(RXF4EID8,0xFF&(param.RxExtIDL[4]));
  820. CAN_WriteReg(RXF5SIDH,0xFF&(param.RxStdIDH[5]));
  821. CAN_WriteReg(RXF5SIDL,(0xEB&(param.RxStdIDL[5]))|0x08);
  822. CAN_WriteReg(RXF5EID8,0xFF&(param.RxExtIDH[5]));
  823. CAN_WriteReg(RXF5EID8,0xFF&(param.RxExtIDL[5]));
  824. CAN_WriteReg(RXB0CTRL,RXM_VALID_EXT|BUKT_ROLLOVER);
  825. CAN_WriteReg(RXB0DLC,DLC_8);
  826. CAN_WriteReg(RXB1CTRL,RXM_VALID_EXT|FILHIT1_FLTR_2);
  827. CAN_WriteReg(RXB1DLC,DLC_8);
  828. }
  829. CAN_WriteReg(BFPCTRL,0x3F);//zhengchao20210304 add
  830. CAN_WriteReg(CANINTE,RX0IF|RX1IF); //zhengchao20210304 0x43 -> 0x03
  831. CAN_WriteReg(CANINTF,0x00);
  832. CAN_WriteReg(CANCTRL,param.mode |CLKOUT_ENABLED);//??MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º? REQOP_NORMAL|CLKOUT_ENABLED
  833. CAN_ReadReg(CANSTAT,1,&temp);//?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  834. if(param.mode !=(temp&0xE0))//?D??MCP2515¨º?¡¤?¨°??-??¨¨??y3¡ê?¡ê¨º?
  835. {
  836. CAN_WriteReg(CANCTRL,param.mode|CLKOUT_ENABLED);//?¨´¡ä???MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º?REQOP_NORMAL
  837. }
  838. }
  839. /*******************************************************************************
  840. * : HAL_Can_Sleep
  841. *
  842. *
  843. *
  844. *
  845. *
  846. *******************************************************************************/
  847. void HAL_Can_Sleep(void)
  848. {
  849. UINT8 temp=0,temp2=0,t=0;
  850. do{
  851. CAN_WriteReg(CANCTRL,OPMODE_CONFIG);
  852. CAN_WriteReg(CANINTE,WAKIE|RX0IE|RX1IE);
  853. //CAN_WriteReg(CNF3, WAKFIL);
  854. CAN_ReadReg(CANSTAT,1,&temp);
  855. CAN_WriteReg(CANCTRL,OPMODE_SLEEP |CLKOUT_DISABLED);
  856. #ifdef USING_PRINTF
  857. //printf("%s[%d] [%#x]\r\n",__FUNCTION__, __LINE__,temp);
  858. #endif
  859. if(OPMODE_SLEEP ==(temp&0xE0)){
  860. #ifdef USING_PRINTF
  861. //printf("SLEEP SUC \r\n");
  862. #endif
  863. break;
  864. }
  865. }while(t++<3);
  866. //POWER
  867. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 0);
  868. }
  869. /*******************************************************************************
  870. * o¡¥¨ºy?? : HAL_Can_Transmit
  871. * ?¨¨¨º? : CAN¡¤¡é?¨ª???¡§3¡è?¨¨¦Ì?¨ºy?Y
  872. * ¨º?¨¨? : *CAN_TX_Buf(¡äy¡¤¡é?¨ª¨ºy?Y?o3???????),len(¡äy¡¤¡é?¨ª¨ºy?Y3¡è?¨¨)
  873. * ¨º?3? : ?T
  874. * ¡¤¦Ì???¦Ì : ?T
  875. * ?¦Ì?¡Â : ?T
  876. *******************************************************************************/
  877. INT8 HAL_Can_Transmit(CAN_Msg_Type Can_TxMsg)
  878. {
  879. UINT8 tryTim,count,value,i,temp,TXBufferCase = 0;
  880. INT8 ret = 0;
  881. UINT8 TXB0CTRLvalue,TXB1CTRLvalue,TXB2CTRLvalue,CANINTFValue=0;
  882. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  883. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  884. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  885. if((TXB0CTRLvalue&TXREQ)==0)
  886. TXBufferCase = 0;
  887. else if((TXB1CTRLvalue&TXREQ)==0)
  888. TXBufferCase =1;
  889. else if((TXB2CTRLvalue&TXREQ)==0)
  890. TXBufferCase =2;
  891. else
  892. {
  893. CAN_WriteReg(TXB0CTRL, TXB0CTRLvalue&(~TXREQ));
  894. TXBufferCase = 0;
  895. }
  896. switch(TXBufferCase)
  897. {
  898. case 0:
  899. {
  900. //tryTim=0;
  901. //CAN_RseadReg(TXB0CTRL,1,&value);
  902. //while((value&0x08) && (tryTim<50))//?��?��?��?3D?���䨬???��?,�̨���yTXREQ����????��?
  903. //{
  904. // CAN_ReadReg(TXB0CTRL,1,&value);
  905. // osDelay(1/portTICK_PERIOD_MS);
  906. // tryTim++;
  907. //}
  908. /*TXB0*/
  909. CAN_WriteReg(TXB0SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  910. CAN_WriteReg(TXB0SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  911. for(i=0;i<Can_TxMsg.DLC;i++)
  912. {
  913. CAN_WriteReg(TXB0D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  914. }
  915. CAN_WriteReg(TXB0DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  916. SPI_CS_Low();
  917. CAN_WriteReg(TXB0CTRL,TXREQ);//???������?������??
  918. //SPI_CS_High();
  919. ret = 0;
  920. break;
  921. }
  922. case 1:
  923. {
  924. /*TXB0*/
  925. CAN_WriteReg(TXB1SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  926. CAN_WriteReg(TXB1SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  927. for(i=0;i<Can_TxMsg.DLC;i++)
  928. {
  929. CAN_WriteReg(TXB1D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  930. }
  931. CAN_WriteReg(TXB1DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  932. SPI_CS_Low();
  933. CAN_WriteReg(TXB1CTRL,TXREQ);//???������?������??
  934. //SPI_CS_High();
  935. ret = 1;
  936. break;
  937. }
  938. case 2:
  939. {
  940. /*TXB0*/
  941. CAN_WriteReg(TXB2SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  942. CAN_WriteReg(TXB2SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  943. for(i=0;i<Can_TxMsg.DLC;i++)
  944. {
  945. CAN_WriteReg(TXB2D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  946. }
  947. CAN_WriteReg(TXB2DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  948. SPI_CS_Low();
  949. CAN_WriteReg(TXB2CTRL,TXREQ);//???������?������??
  950. //SPI_CS_High();
  951. ret = 2;
  952. break;
  953. }
  954. default:
  955. {
  956. ret = -1;
  957. break;
  958. }
  959. }
  960. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  961. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  962. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  963. tryTim = 0;
  964. while((TXB0CTRLvalue&TXREQ) && (TXB1CTRLvalue&TXREQ) && (TXB1CTRLvalue&TXREQ) && (tryTim<50))
  965. {
  966. //SPI_CS_High();
  967. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  968. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  969. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  970. osDelay(1);
  971. tryTim++;
  972. }
  973. CAN_ReadReg(CANINTF, 1, &CANINTFValue);
  974. SPI_CS_High();
  975. if((TXB0CTRLvalue&0x20)||(TXB1CTRLvalue&0x20)||(TXB2CTRLvalue&0x20)||(CANINTFValue&0x80))
  976. {
  977. ret = -1;
  978. }
  979. return ret;
  980. }
  981. /*******************************************************************************
  982. * o����y?? : HAL_Can_Receive(UINT8 *CAN_RX_Buf)
  983. * ?����? : CAN?����?��???��y?Y
  984. * ��?��? : *CAN_TX_Buf(��y?����?��y?Y?o3???????)
  985. * ��?3? : ?T
  986. * ����???�� : len(?����?��?��y?Y��?3��?��,0~8��??��)
  987. * ?��?�� : ?T
  988. *******************************************************************************/
  989. UINT8 HAL_Can_Receive(CAN_Msg_Type* CanRxMsgBuffer)
  990. {
  991. UINT8 j=0,len=0,temp=0;
  992. UINT8 SIdH,SIdL,EId8,EId0;
  993. //static UINT16 counterBuff0,counterBuff1 = 0;
  994. UINT8 ret = 0;
  995. CAN_ReadReg(CANINTF,1,&temp);
  996. ret = temp&0x03;
  997. switch(ret)
  998. {
  999. case 0x00:
  1000. return ret;
  1001. break;
  1002. case 0x01:
  1003. /*get the id information*/
  1004. CAN_ReadReg(RXB0SIDH,1,&SIdH);
  1005. CAN_ReadReg(RXB0SIDL,1,&SIdL);
  1006. CAN_ReadReg(RXB0EID8,1,&EId8);
  1007. CAN_ReadReg(RXB0EID0,1,&EId0);
  1008. CAN_ReadReg(RXB0DLC,1,&len);
  1009. len = len&0x0F;
  1010. CanRxMsgBuffer[0].DLC = len;
  1011. if(SIdL & 0x8) // if SIdL.3 = 1, the id belongs to ExtID
  1012. {
  1013. (CanRxMsgBuffer[0]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1014. }
  1015. else
  1016. {
  1017. (CanRxMsgBuffer[0]).Id = SIdH<<3 | SIdL>>5;
  1018. }
  1019. j = 0;
  1020. while(j<len)
  1021. {
  1022. CAN_ReadReg(RXB0D0+j,1,&((CanRxMsgBuffer[0]).Data[j]));
  1023. j++;
  1024. }
  1025. #ifdef USING_PRINTF1
  1026. printf("buffer0 ID = %x\n",CanRxMsgBuffer[0].Id);
  1027. for(j=0;j<8;j++)
  1028. {
  1029. printf("%x ",CanRxMsgBuffer[0].Data[j]);
  1030. }
  1031. printf("\n");
  1032. #endif
  1033. CAN_WriteReg(CANINTF,temp&0xFE);
  1034. return ret;
  1035. break;
  1036. case 0x02:
  1037. /*get the id information*/
  1038. CAN_ReadReg(RXB1SIDH,1,&SIdH);
  1039. CAN_ReadReg(RXB1SIDL,1,&SIdL);
  1040. CAN_ReadReg(RXB1EID8,1,&EId8);
  1041. CAN_ReadReg(RXB1EID0,1,&EId0);
  1042. CAN_ReadReg(RXB1DLC,1,&len);
  1043. len = len & 0x0F;
  1044. CanRxMsgBuffer[1].DLC = len;
  1045. if(SIdL & 0x8) // SIdL.3 = 1, ExtID
  1046. {
  1047. (CanRxMsgBuffer[1]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1048. }
  1049. else
  1050. {
  1051. (CanRxMsgBuffer[1]).Id = SIdH<<3 | SIdL>>5;
  1052. }
  1053. j = 0 ;
  1054. while(j<len)
  1055. {
  1056. CAN_ReadReg(RXB1D0+j,1,&((CanRxMsgBuffer[1]).Data[j]));
  1057. j++;
  1058. }
  1059. #ifdef USING_PRINTF1
  1060. printf("buffer1 ID = %x\n",CanRxMsgBuffer[1].Id);
  1061. for(j=0;j<8;j++)
  1062. {
  1063. printf("%x ",CanRxMsgBuffer[1].Data[j]);
  1064. }
  1065. printf("\n");
  1066. #endif
  1067. CAN_WriteReg(CANINTF,temp&0xFD);
  1068. return ret;
  1069. break;
  1070. case 0x03:
  1071. /*get the id information*/
  1072. CAN_ReadReg(RXB0SIDH,1,&SIdH);
  1073. CAN_ReadReg(RXB0SIDL,1,&SIdL);
  1074. CAN_ReadReg(RXB0EID8,1,&EId8);
  1075. CAN_ReadReg(RXB0EID0,1,&EId0);
  1076. CAN_ReadReg(RXB0DLC,1,&len);
  1077. len = len&0x0F;
  1078. CanRxMsgBuffer[0].DLC = len;
  1079. if(SIdL & 0x8) // if SIdL.3 = 1, the id belongs to ExtID
  1080. {
  1081. (CanRxMsgBuffer[0]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1082. }
  1083. else
  1084. {
  1085. (CanRxMsgBuffer[0]).Id = SIdH<<3 | SIdL>>5;
  1086. }
  1087. j = 0;
  1088. while(j<len)
  1089. {
  1090. CAN_ReadReg(RXB0D0+j,1,&((CanRxMsgBuffer[0]).Data[j]));
  1091. j++;
  1092. }
  1093. #ifdef USING_PRINTF1
  1094. printf("buffer0 ID = %x\n",CanRxMsgBuffer[0].Id);
  1095. for(j=0;j<8;j++)
  1096. {
  1097. printf("%x ",CanRxMsgBuffer[0].Data[j]);
  1098. }
  1099. printf("\n");
  1100. #endif
  1101. /*get the id information*/
  1102. CAN_ReadReg(RXB1SIDH,1,&SIdH);
  1103. CAN_ReadReg(RXB1SIDL,1,&SIdL);
  1104. CAN_ReadReg(RXB1EID8,1,&EId8);
  1105. CAN_ReadReg(RXB1EID0,1,&EId0);
  1106. CAN_ReadReg(RXB1DLC,1,&len);
  1107. len = len & 0x0F;
  1108. CanRxMsgBuffer[1].DLC = len;
  1109. if(SIdL & 0x8) // SIdL.3 = 1, ExtID
  1110. {
  1111. (CanRxMsgBuffer[1]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1112. }
  1113. else
  1114. {
  1115. (CanRxMsgBuffer[1]).Id = SIdH<<3 | SIdL>>5;
  1116. }
  1117. j = 0 ;
  1118. while(j<len)
  1119. {
  1120. CAN_ReadReg(RXB1D0+j,1,&((CanRxMsgBuffer[1]).Data[j]));
  1121. j++;
  1122. }
  1123. #ifdef USING_PRINTF1
  1124. printf("buffer1 ID = %x\n",CanRxMsgBuffer[1].Id);
  1125. for(j=0;j<8;j++)
  1126. {
  1127. printf("%x ",CanRxMsgBuffer[1].Data[j]);
  1128. }
  1129. printf("\n");
  1130. #endif
  1131. CAN_WriteReg(CANINTF,temp&0xFC);
  1132. return ret;
  1133. break;
  1134. default:
  1135. break;
  1136. }
  1137. /*
  1138. CAN_ReadReg(CANINTF,1, &temp1);
  1139. if((temp1&0x03) == (temp&0x03))
  1140. {
  1141. CAN_WriteReg(CANINTF,temp&0xFC);
  1142. break;
  1143. }
  1144. */
  1145. return ret;
  1146. // CAN_ReadReg(CANINTF,1,&temp);
  1147. // printf("CANINTF_1 = 0x%x\n",temp);
  1148. }
  1149. /**
  1150. \fn void CanHandleDataCallback(UINT32 event)
  1151. \param[in] event spi irq event
  1152. \brief base on event,handle different situation
  1153. \return
  1154. */
  1155. void CanHandleDataCallback(UINT32 event)
  1156. {
  1157. if(event & ARM_SPI_EVENT_TRANSFER_COMPLETE)
  1158. {
  1159. }
  1160. else if(event & ARM_SPI_EVENT_DATA_LOST)
  1161. {
  1162. }
  1163. else if(event & ARM_SPI_EVENT_MODE_FAULT)
  1164. {
  1165. }
  1166. #if 0
  1167. #ifdef USING_PRINTF
  1168. //printf("[%d] CanHandleDataCallback :%d\r\n",__LINE__,event);
  1169. #else
  1170. ECOMM_TRACE(UNILOG_PLA_APP,CAN_CB1, P_INFO, 1, "SPI event [%u] coming!",event);
  1171. #endif
  1172. #endif
  1173. }
  1174. /**
  1175. \fn void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event)
  1176. \param[in] cb_event :
  1177. \brief init spi module
  1178. \return
  1179. */
  1180. void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event,UINT8 mode,UINT8 dataBits, UINT32 spiRate )
  1181. {
  1182. #ifdef SPI_ANALOG
  1183. gpio_pin_config_t nGpioCfg={0};
  1184. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  1185. nGpioCfg.misc.initOutput = 1;
  1186. pad_config_t padConfig;
  1187. PAD_GetDefaultConfig(&padConfig);
  1188. /*cs*/
  1189. padConfig.mux = PAD_MuxAlt0;
  1190. PAD_SetPinConfig(SPI_SSN_GPIO_PAD_ADDR, &padConfig);
  1191. PAD_SetPinPullConfig(SPI_SSN_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1192. GPIO_PinConfig(SPI_SSN_GPIO_INSTANCE, SPI_SSN_GPIO_INDEX, &nGpioCfg);
  1193. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1<<SPI_SSN_GPIO_INDEX,0);
  1194. /*
  1195. clk
  1196. */
  1197. padConfig.mux = PAD_MuxAlt0;
  1198. PAD_SetPinConfig(SPI_CLK_GPIO_PAD_ADDR, &padConfig);
  1199. PAD_SetPinPullConfig(SPI_CLK_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1200. GPIO_PinConfig(SPI_CLK_GPIO_INSTANCE, SPI_CLK_GPIO_INDEX, &nGpioCfg);
  1201. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,0);
  1202. /*mosi*/
  1203. padConfig.mux = PAD_MuxAlt0;
  1204. PAD_SetPinConfig(SPI_MOSI_GPIO_PAD_ADDR, &padConfig);
  1205. PAD_SetPinPullConfig(SPI_MOSI_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1206. GPIO_PinConfig(SPI_MOSI_GPIO_INSTANCE, SPI_MOSI_GPIO_INDEX, &nGpioCfg);
  1207. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,0);
  1208. /*miso*/
  1209. nGpioCfg.pinDirection = GPIO_DirectionInput;
  1210. nGpioCfg.misc.initOutput = 0;
  1211. padConfig.mux = PAD_MuxAlt0;
  1212. padConfig.pullSelect = PAD_PullInternal;
  1213. padConfig.pullUpEnable = PAD_PullUpDisable;
  1214. padConfig.pullDownEnable = PAD_PullDownEnable;
  1215. PAD_SetPinConfig(SPI_MISO_GPIO_PAD_ADDR, &padConfig);
  1216. GPIO_PinConfig(SPI_MISO_GPIO_INSTANCE, SPI_MISO_GPIO_INDEX, &nGpioCfg);
  1217. #else
  1218. // Initialize master spi
  1219. spiMasterDrv->Initialize(NULL);
  1220. // Power on
  1221. spiMasterDrv->PowerControl(ARM_POWER_FULL);
  1222. // Configure slave spi bus
  1223. spiMasterDrv->Control(ARM_SPI_MODE_MASTER | mode | ARM_SPI_DATA_BITS(dataBits) |ARM_SPI_MSB_LSB | ARM_SPI_SS_MASTER_SW, spiRate);
  1224. #endif
  1225. }
  1226. /**
  1227. \fn INT32 ZM01RecvParam(UINT8 *param)
  1228. \param[in]
  1229. \brief read ZM01 register
  1230. \return execution_status
  1231. */
  1232. INT32 ZM01RecvParam(UINT8 *param)
  1233. {
  1234. INT32 res = 0;
  1235. UINT8 tempBuffer = 0xaa;
  1236. if(param == NULL) return -7;
  1237. res = i2cDrvInstance->MasterTransmit(ZM01_DEVICE_ADDR, &tempBuffer, 1, true);
  1238. res = i2cDrvInstance->MasterReceive(ZM01_DEVICE_ADDR, param, 1, true);
  1239. return res;
  1240. }
  1241. /**
  1242. \fn INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1243. \param[in] addr GSENSOR register addr
  1244. \brief Write to GSENSOR register
  1245. \return
  1246. */
  1247. INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1248. {
  1249. UINT8 tempBuffer[2];
  1250. INT32 res = -1;
  1251. tempBuffer[0] = addr;
  1252. tempBuffer[1] = value;
  1253. return (i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, tempBuffer, sizeof(tempBuffer), true));
  1254. }
  1255. /**
  1256. \fn INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1257. \param[in] addr GSENSOR register addr
  1258. \brief read GSENSOR register
  1259. \return register value of GSENSOR
  1260. */
  1261. INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1262. {
  1263. INT32 res = -1;
  1264. if(len > 8 || buf == NULL) return -1;
  1265. res = i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, &reg, 1, true);
  1266. res = i2cDrvInstance->MasterReceive(GSENSOR_DEVICE_ADDR, buf, len, true);
  1267. return res;
  1268. }
  1269. /**
  1270. \fn void GsensorI2CCallback(UINT32 event)
  1271. \param[in] event : i2c irq event
  1272. \brief i2c irq event ,callback function
  1273. \return
  1274. */
  1275. void GsensorI2CCallback(UINT32 event)
  1276. {
  1277. switch(event)
  1278. {
  1279. case ARM_I2C_EVENT_TRANSFER_DONE:
  1280. break;
  1281. case ARM_I2C_EVENT_TRANSFER_INCOMPLETE:
  1282. break;
  1283. case ARM_I2C_EVENT_ADDRESS_NACK:
  1284. break;
  1285. case ARM_I2C_EVENT_BUS_ERROR:
  1286. break;
  1287. case ARM_I2C_EVENT_BUS_CLEAR:
  1288. break;
  1289. default:
  1290. break;
  1291. }
  1292. }
  1293. /**
  1294. \fn void HAL_I2C_CreateRecvTaskAndQueue(uint32_t event)
  1295. \param[in]
  1296. \brief RECV data
  1297. \return
  1298. */
  1299. void HAL_I2C_RecvControl(bool on)
  1300. {
  1301. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1302. if(on == true)
  1303. {
  1304. osEventFlagsClear(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1305. }
  1306. else
  1307. {
  1308. osEventFlagsSet(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1309. }
  1310. }
  1311. void GsensorTriggerEvent(UINT32 event ,UINT32 data)
  1312. {
  1313. osStatus_t status;
  1314. i2c_recv_msgqueue_obj_t msg={0};
  1315. msg.event = event;
  1316. msg.value = data;
  1317. status = osMessageQueuePut(i2c_recv_msgqueue, &msg, 0, 0);
  1318. if(status == osErrorResource)
  1319. {
  1320. ECOMM_TRACE(UNILOG_PLA_DRIVER, GsensorTriggerEvent_0, P_WARNING, 0, "I2C recv queue error");
  1321. }
  1322. }
  1323. static INT32 I2CEvtProcess(uint32_t evt)
  1324. {
  1325. INT32 ret;
  1326. #if SL_SC7A20_16BIT_8BIT
  1327. INT16 xyzData[7];
  1328. #else
  1329. INT8 xyzData[7];
  1330. #endif
  1331. HAL_I2C_RecvControl(true);
  1332. if(evt & I2C_INT1_REQ_BITMAP)
  1333. {
  1334. }
  1335. if(evt & I2C_INT2_REQ_BITMAP)
  1336. {
  1337. SL_SC7A20_Read_XYZ_Data(xyzData);
  1338. }
  1339. return 0;
  1340. }
  1341. static void HAL_I2C_RecvTaskEntry(void)
  1342. {
  1343. while(1)
  1344. {
  1345. uint32_t flag,mask;
  1346. osStatus_t status;
  1347. i2c_recv_msgqueue_obj_t msg;
  1348. flag = osEventFlagsWait(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG, osFlagsNoClear | osFlagsWaitAll, osWaitForever);
  1349. EC_ASSERT(flag == I2C_RECV_CONTROL_FLAG, flag, 0, 0);
  1350. status = osMessageQueueGet(i2c_recv_msgqueue, &msg, 0 , osWaitForever);
  1351. if(status == osOK)
  1352. {
  1353. mask = SaveAndSetIRQMask();
  1354. //handle data
  1355. //I2CEvtProcess(msg.event);
  1356. #ifdef USING_PRINTF
  1357. //printf("[%d]i2c recv event\r\n",__LINE__);
  1358. #else
  1359. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_D, P_INFO, 0, "i2c recv event");
  1360. #endif
  1361. RestoreIRQMask(mask);
  1362. }
  1363. }
  1364. }
  1365. static void HAL_I2C_CreateRecvTaskAndQueue(void)
  1366. {
  1367. if(g_halI2CInitFlag & HAL_I2C_RECV_TASK_QUEUE_CREATED)
  1368. {
  1369. return;
  1370. }
  1371. /*
  1372. for task create
  1373. */
  1374. osThreadId_t threadId;
  1375. osThreadAttr_t task_attr;
  1376. /*for msg queue create*/
  1377. osMessageQueueAttr_t queue_attr;
  1378. g_i2CRecvFlag = osEventFlagsNew(NULL);
  1379. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1380. memset(&queue_attr, 0, sizeof(queue_attr));
  1381. queue_attr.cb_mem = &i2c_recv_queue_cb;
  1382. queue_attr.cb_size = sizeof(i2c_recv_queue_cb);
  1383. queue_attr.mq_mem = i2c_recv_queue_buf;
  1384. queue_attr.mq_size = sizeof(i2c_recv_queue_buf);
  1385. i2c_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE,sizeof(i2c_recv_msgqueue_obj_t), &queue_attr);
  1386. EC_ASSERT(i2c_recv_msgqueue, i2c_recv_msgqueue, 0, 0);
  1387. memset(& task_attr, 0, sizeof(task_attr));
  1388. memset(i2c_recv_task_stack, 0xA5, I2C_RECV_TASK_STACK_SIZE);
  1389. task_attr.name = "GsensorRecv";
  1390. task_attr.stack_size = I2C_RECV_TASK_STACK_SIZE;
  1391. task_attr.stack_mem = i2c_recv_task_stack;
  1392. task_attr.priority = osPriorityNormal;
  1393. task_attr.cb_mem = &i2c_recv_task;
  1394. task_attr.cb_size = sizeof(StaticTask_t);
  1395. threadId = osThreadNew(HAL_I2C_RecvTaskEntry, NULL, &task_attr);
  1396. EC_ASSERT(threadId, threadId, 0, 0);
  1397. g_halI2CInitFlag |= HAL_I2C_RECV_TASK_QUEUE_CREATED;
  1398. }
  1399. /**
  1400. \fn void Usart1Handler(uint8_t* strPtr, uint16_t strLen)
  1401. \param[in] PrintfSendStr for usart port;
  1402. \brief config usart port
  1403. \return
  1404. */
  1405. void PrintfSendStr(const UINT8 *format, ...)
  1406. {
  1407. va_list args;
  1408. UINT8 buf[128+1]={0};
  1409. va_start(args, format);
  1410. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  1411. va_end(args);
  1412. HAL_UART_SendStr(PORT_USART_1,buf,strlen(buf));
  1413. }
  1414. #define PRINTF_DATA_RECV_BUFFER_SIZE (64)
  1415. uint8_t printf_uart_recv_buf[PRINTF_DATA_RECV_BUFFER_SIZE];
  1416. /**
  1417. \fn void PrintfDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1418. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1419. \ dataPtr : Point to receive data buff
  1420. \ dataLen : Received data length
  1421. \brief i2c irq event ,callback function
  1422. \return
  1423. */
  1424. void PrintfDataRecvCallback(UINT32 event, void* dataPtr, UINT32 dataLen)
  1425. {
  1426. //ECOMM_TRACE(UNILOG_PLA_APP, PrintfDataRecvCallback, P_SIG, 3, "event=%d, dataPtr=%s, dataLen=%d",event,dataPtr,dataLen);
  1427. slpManStartWaitATTimer();
  1428. }
  1429. void printfPostSendCallback(hal_uart_send_msg_type_t msgType, void* dataPtr, uint32_t dataLen){
  1430. // ECOMM_TRACE(UNILOG_PLA_APP, printfPostSendCallback, P_SIG, 3, "msgType=%d, dataPtr=%s, dataLen=%d",msgType,dataPtr,dataLen);
  1431. }
  1432. /**
  1433. \fn void Usart1Handler(UINT32 baudRate)
  1434. \param[in] baudRate for usart port;
  1435. \brief config usart port
  1436. \return
  1437. */
  1438. void Usart1Handler(UINT32 baudRate)
  1439. {
  1440. hal_uart_config_t halUartConfig = {0};
  1441. hal_uart_hardware_config_t hwConfig = {
  1442. ARM_POWER_FULL,
  1443. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1444. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1445. ARM_USART_FLOW_CONTROL_NONE,
  1446. baudRate
  1447. };
  1448. halUartConfig.uartDriverHandler = printfHandle;
  1449. halUartConfig.recv_cb = PrintfDataRecvCallback;
  1450. halUartConfig.recvBuffPtr = printf_uart_recv_buf;
  1451. halUartConfig.recvBuffSize = PRINTF_DATA_RECV_BUFFER_SIZE;
  1452. halUartConfig.post_send_cb = printfPostSendCallback;
  1453. HAL_UART_InitHandler(PORT_USART_1, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1454. HAL_UART_RecvFlowControl(false);
  1455. }
  1456. /**
  1457. \fn void GsensorI2CCallback(uint32_t event)
  1458. \param[in] event : i2c irq event
  1459. \brief i2c irq event ,callback function
  1460. \return
  1461. */
  1462. void GsensorI2CHandler(ARM_I2C_SignalEvent_t cb_event)
  1463. {
  1464. // Initialize with callback
  1465. i2cDrvInstance->Initialize(cb_event);
  1466. // Power on
  1467. i2cDrvInstance->PowerControl(ARM_POWER_FULL);
  1468. // Configure I2C bus
  1469. i2cDrvInstance->Control(ARM_I2C_BUS_SPEED, ARM_I2C_BUS_SPEED_STANDARD);
  1470. i2cDrvInstance->Control(ARM_I2C_BUS_CLEAR, 0);
  1471. HAL_I2C_CreateRecvTaskAndQueue();
  1472. #ifdef USING_PRINTF
  1473. //printf("[%d] i2c config ok\r\n",__LINE__);
  1474. #else
  1475. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_I, P_INFO, 0, "i2c config ok");
  1476. #endif
  1477. }
  1478. /**
  1479. \fn void GPSSendStr(uint8_t* strPtr, uint16_t strLen)
  1480. \param[in] strPtr for gps usart port;
  1481. \brief
  1482. \return
  1483. */
  1484. void GPSSendStr(uint8_t* strPtr, uint16_t strLen)
  1485. {
  1486. HAL_UART_SendStr(PORT_USART_2,strPtr,strLen);
  1487. }
  1488. /**
  1489. \fn void GpsDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1490. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1491. \ dataPtr : Point to receive data buff
  1492. \ dataLen : Received data length
  1493. \brief i2c irq event ,callback function
  1494. \return
  1495. */
  1496. void GpsDataRecvCallback(UINT32 event, void* dataPtr, UINT32 dataLen)
  1497. {
  1498. if((event == ARM_USART_EVENT_RX_TIMEOUT) || (event == ARM_USART_EVENT_RECEIVE_COMPLETE)){
  1499. #ifdef USING_PRINTF
  1500. // //printf("GpsDataRecvCallback [%d] %s\r\n",dataLen,dataPtr);
  1501. #endif
  1502. if(gpsHandle!=NULL && dataLen>0){
  1503. gpsReqMsg gpsInfo;
  1504. gpsInfo.dataPtr=malloc(dataLen+1);
  1505. if(gpsInfo.dataPtr){
  1506. memcpy(gpsInfo.dataPtr,dataPtr,dataLen);
  1507. gpsInfo.len=dataLen;
  1508. osMessageQueuePut(gpsHandle, &gpsInfo, 0, 2000);
  1509. }
  1510. }
  1511. }
  1512. slpManStartWaitATTimer();
  1513. }
  1514. /**
  1515. \fn void GPSUsartHandler(ARM_DRIVER_USART * uartDriverHandler, uint32_t baudRate)
  1516. \param[in] baudRate for gps usart port;
  1517. \brief config gps usart port
  1518. \return
  1519. */
  1520. void GPSUsartHandler(UINT32 baudRate)
  1521. {
  1522. hal_uart_config_t halUartConfig = {0};
  1523. hal_uart_hardware_config_t hwConfig = {
  1524. ARM_POWER_FULL,
  1525. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1526. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1527. ARM_USART_FLOW_CONTROL_NONE,
  1528. baudRate
  1529. };
  1530. halUartConfig.uartDriverHandler = usartHandle;
  1531. halUartConfig.recv_cb = GpsDataRecvCallback;
  1532. halUartConfig.recvBuffPtr = gps_uart_recv_buf;
  1533. halUartConfig.recvBuffSize = GPS_DATA_RECV_BUFFER_SIZE;
  1534. HAL_UART_InitHandler(PORT_USART_2, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1535. HAL_UART_RecvFlowControl(false);
  1536. }
  1537. /**
  1538. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1539. \param[in] req : NTCvalue
  1540. \brief
  1541. \return Resvalue
  1542. */
  1543. static INT32 AdcGetRes(UINT32 NTCvalue){
  1544. UINT32 Resvalue;
  1545. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1546. Resvalue=1000000;
  1547. else{
  1548. Resvalue=(long long)ADC_ChannelAioRes*(long long)NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1549. }
  1550. return Resvalue;
  1551. }
  1552. /**
  1553. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1554. \param[in] req : NTCvalue
  1555. \brief
  1556. \return Resvalue
  1557. */
  1558. static INT32 AdcGetResFromInres(UINT32 NTCvalue){
  1559. UINT32 Resvalue,ResvalueCount;
  1560. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1561. ResvalueCount=1000000;
  1562. else{
  1563. ResvalueCount=ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1564. }
  1565. #ifdef USING_PRINTF
  1566. //printf("%s[%d][%d][%d]\r\n",__FUNCTION__, __LINE__,ADC_InsideRES,ResvalueCount);
  1567. #endif
  1568. if(ResvalueCount>=ADC_InsideRES)
  1569. Resvalue=1000000;
  1570. else
  1571. Resvalue=(long long)ADC_InsideRES*(long long)ResvalueCount/(ADC_InsideRES-ResvalueCount);
  1572. #ifdef USING_PRINTF
  1573. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,Resvalue);
  1574. #endif
  1575. return Resvalue;
  1576. }
  1577. /**
  1578. \fn INT32 AdcVbatCali(UINT32 NTCvalue)
  1579. \param[in] req : NTCvalue
  1580. \brief
  1581. \return Resvalue
  1582. */
  1583. static INT32 AdcVbatCali(UINT32 NTCvalue){
  1584. UINT32 Resvalue;
  1585. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1586. Resvalue=1000000;
  1587. else{
  1588. Resvalue=(long long)(ADC_ChannelAioRes+ADC_CALIBRATION_VALUE)*(long long)NTCvalue/ADC_CALIBRATION_VALUE; //ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1589. }
  1590. if(Resvalue<1300&&Resvalue>1100)
  1591. ADC_ChannelAioVbat=Resvalue;
  1592. return Resvalue;
  1593. }
  1594. /**
  1595. \fn INT32 AdcInresCali(UINT32 NTCvalue)
  1596. \param[in] req : NTCvalue
  1597. \brief
  1598. \return Resvalue
  1599. */
  1600. static INT32 AdcInresCali(UINT32 NTCvalue){
  1601. UINT32 Resvalue,ResvalueCount;
  1602. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1603. ResvalueCount=1000000;
  1604. else{
  1605. ResvalueCount=ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1606. }
  1607. #ifdef USING_PRINTF
  1608. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,ResvalueCount);
  1609. #endif
  1610. if(ResvalueCount>=ADC_CALIBRATION_VALUE)
  1611. Resvalue=1000000;
  1612. else
  1613. Resvalue=(long long)ADC_CALIBRATION_VALUE*(long long)ResvalueCount/(ADC_CALIBRATION_VALUE-ResvalueCount);
  1614. if(Resvalue>=200000&&Resvalue<1000000)
  1615. ADC_InsideRES=Resvalue;
  1616. return Resvalue;
  1617. }
  1618. /**
  1619. \fn INT32 AdcSendReq(UINT32 req,UINT32 * param ,UINT32 timeout)
  1620. \param[in] req : ADC_REQ_BITMAP_VBAT ADC_REQ_BITMAP_TEMP; timeout = 0 at irq ,otherwize equal to ADC_MSG_TIMEOUT
  1621. \brief return bat value ,trigger deinit
  1622. \return 1 FAIL , 0 OK
  1623. */
  1624. INT32 AdcSendReq(UINT32 req,UINT32 * param , UINT8 len ,UINT32 timeout)
  1625. {
  1626. INT32 ret;
  1627. adcReqMsg ReqMsg;
  1628. ReqMsg.request = req;
  1629. ReqMsg.param[NTC_Channel1] = ReqMsg.param[NTC_Channel2] = ReqMsg.param[NTC_Channel30] = ReqMsg.param[NTC_Channel31] = ReqMsg.param[NTC_Channel4] = ReqMsg.param[NTC_Channel4_InresCali] =ADC_AioResDivRatioDefault ;
  1630. ret = osMessageQueuePut(adcMsgHandle, &ReqMsg, 0, timeout);
  1631. if(ret != osOK)
  1632. {
  1633. return ret;
  1634. }
  1635. else
  1636. {
  1637. ret = osEventFlagsWait(adcTrigerHandle, ADC_RECV_CONTROL_FLAG, osFlagsWaitAll, timeout);
  1638. //to do
  1639. switch(req)
  1640. {
  1641. case ADC_REQ_BITMAP_VBAT:
  1642. param[0] = gNtcDev.NTCvalue[0];
  1643. break;
  1644. case ADC_REQ_BITMAP_TEMP:
  1645. param[0] = gNtcDev.NTCvalue[1];
  1646. break;
  1647. case ADC_REQ_BITMAP_CH1:
  1648. param[0] = AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel1]);
  1649. break;
  1650. case ADC_REQ_BITMAP_CH2:
  1651. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel2]);
  1652. break;
  1653. case ADC_REQ_BITMAP_CH30:
  1654. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel30]);
  1655. break;
  1656. case ADC_REQ_BITMAP_CH31:
  1657. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel31]);
  1658. break;
  1659. case ADC_REQ_BITMAP_CH4:
  1660. param[0] = gNtcDev.NTCvalue[2+NTC_Channel4]*101+600;
  1661. break;
  1662. case ADC_REQ_BITMAP_VBAT_CALI:
  1663. param[0] = AdcVbatCali(gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]);
  1664. break;
  1665. case ADC_REQ_BITMAP_INRES_CALI:
  1666. param[0] = AdcInresCali(gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]);
  1667. break;
  1668. }
  1669. osEventFlagsClear(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  1670. return ret;
  1671. }
  1672. }
  1673. /**
  1674. \fn static void ADC_VbatChannelCallback(uint32_t result)
  1675. \param[in]
  1676. \brief return bat value ,trigger deinit
  1677. \return
  1678. */
  1679. static void ADC_VbatChannelCallback(uint32_t result)
  1680. {
  1681. vbatChannelResult = result;
  1682. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT);
  1683. }
  1684. /**
  1685. \fn static void ADC_ThermalChannelCallback(uint32_t result)
  1686. \param[in]
  1687. \brief return thermal value ,trigger deinit
  1688. \return
  1689. */
  1690. static void ADC_ThermalChannelCallback(uint32_t result)
  1691. {
  1692. thermalChannelResult = result;
  1693. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_TEMP);
  1694. }
  1695. static void ADC_NTC1ChannelCallback(uint32_t result)
  1696. {
  1697. NTCChannelResult[NTC_Channel1] = result;
  1698. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH1);
  1699. }
  1700. static void ADC_NTC2ChannelCallback(uint32_t result)
  1701. {
  1702. NTCChannelResult[NTC_Channel2] = result;
  1703. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH2);
  1704. }
  1705. static void ADC_NTC30ChannelCallback(uint32_t result)
  1706. {
  1707. NTCChannelResult[NTC_Channel30] = result;
  1708. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH30);
  1709. }
  1710. static void ADC_NTC31ChannelCallback(uint32_t result)
  1711. {
  1712. NTCChannelResult[NTC_Channel31] = result;
  1713. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH31);
  1714. }
  1715. static void ADC_NTC4ChannelCallback(uint32_t result)
  1716. {
  1717. NTCChannelResult[NTC_Channel4] = result;
  1718. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH4);
  1719. }
  1720. static void ADC_NTCVbatCaliChannelCallback(uint32_t result)
  1721. {
  1722. NTCChannelResult[NTC_Channel4_VbatCali] = result;
  1723. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT_CALI);
  1724. }
  1725. static void ADC_NTCInresCaliChannelCallback(uint32_t result)
  1726. {
  1727. NTCChannelResult[NTC_Channel4_InresCali] = result;
  1728. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_INRES_CALI);
  1729. }
  1730. /**
  1731. \fn void AdcProcess(void* arg)
  1732. \param[in]
  1733. \brief handle adc init ,deinit and convert process
  1734. \return
  1735. */
  1736. static void AdcProcess(void* arg)
  1737. {
  1738. adcReqMsg regMsg;
  1739. INT32 ret;
  1740. while(1)
  1741. {
  1742. /*
  1743. */
  1744. osMessageQueueGet(adcMsgHandle, &regMsg, 0, osWaitForever);
  1745. /*
  1746. handle event
  1747. */
  1748. adc_config_t adcConfig;
  1749. INT8 times=1;
  1750. ADC_GetDefaultConfig(&adcConfig);
  1751. osEventFlagsClear(adcEvtHandle, regMsg.request);
  1752. retry:
  1753. if(regMsg.request & ADC_REQ_BITMAP_VBAT)
  1754. {
  1755. adcConfig.channelConfig.vbatResDiv = ADC_VbatResDivRatio3Over16;
  1756. ADC_ChannelInit(ADC_ChannelVbat, ADC_UserAPP, &adcConfig, ADC_VbatChannelCallback);
  1757. //delay_us(1000*1000);
  1758. ADC_StartConversion(ADC_ChannelVbat, ADC_UserAPP);
  1759. }
  1760. else if(regMsg.request & ADC_REQ_BITMAP_TEMP)
  1761. {
  1762. adcConfig.channelConfig.thermalInput = ADC_ThermalInputVbat;
  1763. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_ThermalChannelCallback);
  1764. //delay_us(1000*1000);
  1765. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1766. }
  1767. else if(regMsg.request & ADC_REQ_BITMAP_CH1)
  1768. {
  1769. if(regMsg.param[NTC_Channel1]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel1]<=ADC_AioResDivRatio1Over16){
  1770. #ifdef USING_PRINTF
  1771. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1772. #endif
  1773. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel1];
  1774. }else{
  1775. #ifdef USING_PRINTF
  1776. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1777. #endif
  1778. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1779. }
  1780. ADC_ChannelInit(ADC_ChannelAio1, ADC_UserAPP, &adcConfig, ADC_NTC1ChannelCallback);
  1781. //delay_us(1000*1000);
  1782. ADC_StartConversion(ADC_ChannelAio1, ADC_UserAPP);
  1783. }
  1784. else if(regMsg.request & ADC_REQ_BITMAP_CH2)
  1785. {
  1786. if(regMsg.param[NTC_Channel2]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel2]<=ADC_AioResDivRatio1Over16){
  1787. #ifdef USING_PRINTF
  1788. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1789. #endif
  1790. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel2];
  1791. }else{
  1792. #ifdef USING_PRINTF
  1793. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1794. #endif
  1795. }
  1796. ADC_ChannelInit(ADC_ChannelAio2, ADC_UserAPP, &adcConfig, ADC_NTC2ChannelCallback);
  1797. //delay_us(1000*1000);
  1798. ADC_StartConversion(ADC_ChannelAio2, ADC_UserAPP);
  1799. }
  1800. else if(regMsg.request & ADC_REQ_BITMAP_CH30)
  1801. {
  1802. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  1803. if(regMsg.param[NTC_Channel30]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel30]<=ADC_AioResDivRatio1Over16){
  1804. #ifdef USING_PRINTF
  1805. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1806. #endif
  1807. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel30];
  1808. }else{
  1809. #ifdef USING_PRINTF
  1810. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1811. #endif
  1812. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1813. }
  1814. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC30ChannelCallback);
  1815. //osDelay(2000/portTICK_PERIOD_MS);
  1816. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1817. }
  1818. else if(regMsg.request & ADC_REQ_BITMAP_CH31)
  1819. {
  1820. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 1<<(GPIO_AIO3_SEL%16));
  1821. if(regMsg.param[NTC_Channel31]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel31]<=ADC_AioResDivRatio1Over16){
  1822. #ifdef USING_PRINTF
  1823. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1824. #endif
  1825. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel31];
  1826. }else{
  1827. #ifdef USING_PRINTF
  1828. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1829. #endif
  1830. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1831. }
  1832. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC31ChannelCallback);
  1833. //osDelay(2000/portTICK_PERIOD_MS);
  1834. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1835. }
  1836. else if(regMsg.request & ADC_REQ_BITMAP_CH4)
  1837. {
  1838. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1839. ADC_GetDefaultConfig(&adcConfig);
  1840. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1841. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTC4ChannelCallback);
  1842. osDelay(100/portTICK_PERIOD_MS); //zhengchao 20210312
  1843. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1844. }
  1845. else if(regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  1846. {
  1847. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1848. ADC_GetDefaultConfig(&adcConfig);
  1849. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1850. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTCVbatCaliChannelCallback);
  1851. //osDelay(2000/portTICK_PERIOD_MS);
  1852. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1853. }
  1854. else if(regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  1855. {
  1856. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1857. if(regMsg.param[NTC_Channel4_InresCali]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel4_InresCali]<=ADC_AioResDivRatio1Over16){
  1858. #ifdef USING_PRINTF
  1859. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1860. #endif
  1861. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel4_InresCali];
  1862. }else{
  1863. #ifdef USING_PRINTF
  1864. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1865. #endif
  1866. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1867. }
  1868. ADC_ChannelInit(ADC_ChannelAio4, ADC_UserAPP, &adcConfig, ADC_NTCInresCaliChannelCallback);
  1869. //osDelay(2000/portTICK_PERIOD_MS);
  1870. ADC_StartConversion(ADC_ChannelAio4, ADC_UserAPP);
  1871. }
  1872. ret = osEventFlagsWait(adcEvtHandle, regMsg.request, osFlagsWaitAll, ADC_GET_RESULT_TIMOUT);
  1873. if(regMsg.request & ADC_REQ_BITMAP_VBAT)
  1874. {
  1875. ADC_ChannelDeInit(ADC_ChannelVbat, ADC_UserAPP);
  1876. gNtcDev.NTCvalue[0] = HAL_ADC_CalibrateRawCode(vbatChannelResult) * 16 / 3;
  1877. }
  1878. else if(regMsg.request & ADC_REQ_BITMAP_TEMP)
  1879. {
  1880. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1881. gNtcDev.NTCvalue[1] = HAL_ADC_ConvertThermalRawCodeToTemperature(thermalChannelResult);
  1882. }
  1883. else if(regMsg.request & ADC_REQ_BITMAP_CH1)
  1884. {
  1885. ADC_ChannelDeInit(ADC_ChannelAio1, ADC_UserAPP);
  1886. if(times==1){
  1887. gNtcDev.NTCvalue[2+NTC_Channel1]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1])*REV_AioResDivRatioDefault;
  1888. #ifdef USING_PRINTF
  1889. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel1]);
  1890. #endif
  1891. if(gNtcDev.NTCvalue[2+NTC_Channel1]>(NTC_FullAioValue-10)){
  1892. regMsg.param[NTC_Channel1]=ADC_AioResDivRatioExtra;
  1893. times++;
  1894. goto retry;
  1895. }
  1896. }else{
  1897. gNtcDev.NTCvalue[2+NTC_Channel1]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1])*REV_AioResDivRatioExtra;
  1898. }
  1899. }
  1900. else if(regMsg.request & ADC_REQ_BITMAP_CH2)
  1901. {
  1902. ADC_ChannelDeInit(ADC_ChannelAio2, ADC_UserAPP);
  1903. if(times==1){
  1904. gNtcDev.NTCvalue[2+NTC_Channel2]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2])*REV_AioResDivRatioDefault;
  1905. #ifdef USING_PRINTF
  1906. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel2]);
  1907. #endif
  1908. if(gNtcDev.NTCvalue[2+NTC_Channel2]>(NTC_FullAioValue-10)){
  1909. regMsg.param[NTC_Channel2]=ADC_AioResDivRatioExtra;
  1910. times++;
  1911. goto retry;
  1912. }
  1913. }else{
  1914. gNtcDev.NTCvalue[2+NTC_Channel2]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2])*REV_AioResDivRatioExtra;
  1915. }
  1916. }
  1917. else if(regMsg.request & ADC_REQ_BITMAP_CH30)
  1918. {
  1919. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 1<<(GPIO_AIO3_SEL%16));
  1920. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1921. if(times==1){
  1922. gNtcDev.NTCvalue[2+NTC_Channel30]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30])*REV_AioResDivRatioDefault;
  1923. #ifdef USING_PRINTF
  1924. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel30]);
  1925. #endif
  1926. if(gNtcDev.NTCvalue[2+NTC_Channel30]>(NTC_FullAioValue-10)){
  1927. regMsg.param[NTC_Channel30]=ADC_AioResDivRatioExtra;
  1928. times++;
  1929. goto retry;
  1930. }
  1931. }else{
  1932. gNtcDev.NTCvalue[2+NTC_Channel30]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30])*REV_AioResDivRatioExtra;
  1933. }
  1934. }
  1935. else if(regMsg.request & ADC_REQ_BITMAP_CH31)
  1936. {
  1937. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  1938. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1939. if(times==1){
  1940. gNtcDev.NTCvalue[2+NTC_Channel31]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31])*REV_AioResDivRatioDefault;
  1941. #ifdef USING_PRINTF
  1942. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel31]);
  1943. #endif
  1944. if(gNtcDev.NTCvalue[2+NTC_Channel31]>(NTC_FullAioValue-10)){
  1945. regMsg.param[NTC_Channel31]=ADC_AioResDivRatioExtra;
  1946. times++;
  1947. goto retry;
  1948. }
  1949. }else{
  1950. gNtcDev.NTCvalue[2+NTC_Channel31]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31])*REV_AioResDivRatioExtra;
  1951. }
  1952. }
  1953. else if(regMsg.request & ADC_REQ_BITMAP_CH4)
  1954. {
  1955. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1956. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1957. gNtcDev.NTCvalue[2+NTC_Channel4]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4]);
  1958. }
  1959. else if(regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  1960. {
  1961. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1962. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1963. if(times==1){
  1964. gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  1965. #ifdef USING_PRINTF
  1966. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]);
  1967. #endif
  1968. if(gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]>(NTC_FullAioValue-10)){
  1969. regMsg.param[NTC_Channel4_VbatCali]=ADC_AioResDivRatioExtra;
  1970. times++;
  1971. goto retry;
  1972. }
  1973. }else{
  1974. gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  1975. }
  1976. }
  1977. else if(regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  1978. {
  1979. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1980. ADC_ChannelDeInit(ADC_ChannelAio4, ADC_UserAPP);
  1981. if(times==1){
  1982. gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali])*REV_AioResDivRatioDefault;
  1983. #ifdef USING_PRINTF
  1984. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]);
  1985. #endif
  1986. if(gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]>(NTC_FullAioValue-10)){
  1987. regMsg.param[NTC_Channel4_InresCali]=ADC_AioResDivRatioExtra;
  1988. times++;
  1989. goto retry;
  1990. }
  1991. }else{
  1992. gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali])*REV_AioResDivRatioExtra;
  1993. }
  1994. }
  1995. osEventFlagsSet(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  1996. }
  1997. }
  1998. /**
  1999. \fn INT32 AdcTaskInit(void)
  2000. \param[in]
  2001. \brief create task for checking bat level
  2002. \return
  2003. */
  2004. INT32 AdcTaskInit(void)
  2005. {
  2006. gpio_pin_config_t config;
  2007. config.pinDirection = GPIO_DirectionOutput;
  2008. config.misc.initOutput = 1;
  2009. pad_config_t padConfig;
  2010. PAD_GetDefaultConfig(&padConfig);
  2011. //power
  2012. padConfig.mux = PAD_MuxAlt0;
  2013. PAD_SetPinConfig(11, &padConfig);
  2014. GPIO_PinConfig(0, 0, &config);
  2015. GPIO_PinWrite(0, 1, 1);
  2016. padConfig.mux = PAD_MuxAlt7;
  2017. PAD_SetPinConfig(9, &padConfig);
  2018. PAD_SetPinConfig(10, &padConfig);
  2019. GPIO_PinConfig(GPIO_AIO3_SEL/16, GPIO_AIO3_SEL%16, &config);
  2020. GPIO_PinConfig(GPIO_AIO4_SEL/16, GPIO_AIO4_SEL%16, &config);
  2021. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  2022. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  2023. memset(&gNtcDev , 0 ,sizeof(NtcResult_t));
  2024. if(adcMsgHandle == NULL)
  2025. {
  2026. adcMsgHandle = osMessageQueueNew(ADC_MSG_MAX_NUM,sizeof(adcReqMsg), NULL);
  2027. if(adcMsgHandle == NULL)
  2028. return 1;
  2029. }
  2030. if(adcTrigerHandle == NULL)
  2031. {
  2032. adcTrigerHandle = osEventFlagsNew(NULL);
  2033. if(adcTrigerHandle == NULL)
  2034. return 1;
  2035. }
  2036. if(adcEvtHandle == NULL)
  2037. {
  2038. adcEvtHandle = osEventFlagsNew(NULL);
  2039. if(adcEvtHandle == NULL)
  2040. return 1;
  2041. }
  2042. if(adcTaskHandle == NULL)
  2043. {
  2044. osThreadAttr_t task_attr;
  2045. memset(&task_attr , 0 , sizeof(task_attr));
  2046. task_attr.name = "batAdc";
  2047. task_attr.priority = osPriorityNormal;
  2048. task_attr.cb_mem = &adcTask;
  2049. task_attr.cb_size = sizeof(StaticTask_t);
  2050. task_attr.stack_mem = adcTaskStack;
  2051. task_attr.stack_size =ADC_TASK_STACK_SIZE;
  2052. memset(& adcTaskStack, 0xa5, ADC_TASK_STACK_SIZE);
  2053. adcTaskHandle = osThreadNew(AdcProcess , NULL,&task_attr);
  2054. if(adcTaskHandle == NULL)
  2055. return 1;
  2056. }
  2057. return 0;
  2058. }
  2059. /**
  2060. \fn void PowerPinConfig(IOType iotype)
  2061. \param[in]
  2062. \brief config PWR pin to gpiol
  2063. \return
  2064. */
  2065. void PowerPinConfig(IOType iotype)
  2066. {
  2067. gpio_pin_config_t config;
  2068. config.pinDirection = GPIO_DirectionOutput;
  2069. config.misc.initOutput = 1;
  2070. pad_config_t padConfig;
  2071. PAD_GetDefaultConfig(&padConfig);
  2072. if(iotype == AON_IO)
  2073. {
  2074. slpManAONIOVoltSet(IOVOLT_3_30V);//zhengchao 20200412 add
  2075. padConfig.mux = PAD_MuxAlt0;
  2076. PAD_SetPinConfig(35, &padConfig);
  2077. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  2078. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  2079. PAD_SetPinConfig(31, &padConfig);
  2080. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  2081. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1 << AON_GPS_POWER2);
  2082. PAD_SetPinConfig(32, &padConfig);
  2083. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  2084. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //zhengchao 20200412 modify 1-->0
  2085. PAD_SetPinConfig(35, &padConfig);
  2086. GPIO_PinConfig(1, AON_WAKEUP, &config);
  2087. GPIO_PinWrite(1, 1 << AON_WAKEUP, 1 << AON_WAKEUP);
  2088. padConfig.mux = PAD_MuxAlt7;
  2089. PAD_SetPinConfig(5, &padConfig);
  2090. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2091. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  2092. #if 1
  2093. padConfig.mux = PAD_MuxAlt7;
  2094. padConfig.pullSelect = PAD_PullInternal;
  2095. padConfig.pullUpEnable = PAD_PullUpEnable;
  2096. padConfig.pullDownEnable = PAD_PullDownDisable;
  2097. PAD_SetPinConfig(8, &padConfig);
  2098. config.pinDirection = GPIO_DirectionInput;
  2099. config.misc.initOutput = 0;
  2100. GPIO_PinConfig(1, FEM_GPS_PPS, &config);
  2101. #else
  2102. padConfig.mux = PAD_MuxAlt7;
  2103. PAD_SetPinConfig(8, &padConfig);
  2104. GPIO_PinWrite(1, 1 << FEM_GPS_PPS, 1 << FEM_GPS_PPS);
  2105. #endif
  2106. }
  2107. else
  2108. {
  2109. /*Normal IO*/
  2110. #if 0
  2111. GPIO_PinConfig(0, GPIO_MOS_DRV1, &config);
  2112. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV1, 1 << GPIO_MOS_DRV1);
  2113. GPIO_PinConfig(0, GPIO_MOS_DRV2, &config);
  2114. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV2, 1 << GPIO_MOS_DRV2);
  2115. #endif
  2116. padConfig.mux = PAD_MuxAlt0;
  2117. PAD_SetPinConfig(28, &padConfig);
  2118. GPIO_PinConfig(0, GPIO_POWER_LED, &config);
  2119. GPIO_PinWrite(0, 1 << GPIO_POWER_LED, 1 << GPIO_POWER_LED);
  2120. }
  2121. }
  2122. /**
  2123. \fn void relayConfigInit(void)
  2124. \param[in]
  2125. \brief init the relay, while switch on default
  2126. \return
  2127. */
  2128. void relayConfigInit()
  2129. {
  2130. gpio_pin_config_t config;
  2131. config.pinDirection = GPIO_DirectionOutput;
  2132. config.misc.initOutput = 1;
  2133. pad_config_t padConfig;
  2134. PAD_GetDefaultConfig(&padConfig);
  2135. PAD_SetPinConfig(32, &padConfig);
  2136. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  2137. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //the relay default is off(disconnected)
  2138. //printf("switch off\n");
  2139. }
  2140. /**
  2141. \fn void relayControl(BOOL onOrOff)
  2142. \param[in] onOrOff
  2143. \brief switch the relay on or off
  2144. \return
  2145. */
  2146. void relayControl(BOOL onOrOff)
  2147. {
  2148. if(onOrOff == TRUE)
  2149. {
  2150. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 1 << AON_RELAY_DRV); //switch on
  2151. printf("switcht on\n");
  2152. }
  2153. else
  2154. {
  2155. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //switch off
  2156. printf("switch off\n");
  2157. }
  2158. }
  2159. /**
  2160. \fn void posGGAReset(void)
  2161. \param[in]
  2162. \brief reset gps
  2163. \return
  2164. */
  2165. void posGGAReset(void)
  2166. {
  2167. gpio_pin_config_t config;
  2168. config.pinDirection = GPIO_DirectionOutput;
  2169. config.misc.initOutput = 1;
  2170. pad_config_t padConfig;
  2171. PAD_GetDefaultConfig(&padConfig);
  2172. padConfig.mux = PAD_MuxAlt7;
  2173. PAD_SetPinConfig(5, &padConfig);
  2174. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2175. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 0);
  2176. osDelay(1000/portTICK_PERIOD_MS);
  2177. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2178. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  2179. config.pinDirection = GPIO_DirectionInput;
  2180. config.misc.initOutput = 0;
  2181. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2182. }
  2183. /**
  2184. \fn void GPSPowerCtr(bool )
  2185. \param[in]
  2186. \brief reset gps
  2187. \return
  2188. */
  2189. void GPSPowerCtr(bool on)
  2190. {
  2191. gpio_pin_config_t config;
  2192. config.pinDirection = GPIO_DirectionOutput;
  2193. config.misc.initOutput = 1;
  2194. pad_config_t padConfig;
  2195. PAD_GetDefaultConfig(&padConfig);
  2196. padConfig.mux = PAD_MuxAlt0;
  2197. PAD_SetPinConfig(35, &padConfig);
  2198. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  2199. PAD_SetPinConfig(31, &padConfig);
  2200. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  2201. if(on){
  2202. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 0);
  2203. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 1 << AON_GPS_POWER1);
  2204. }else{
  2205. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1<<AON_GPS_POWER2);
  2206. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  2207. }
  2208. }
  2209. /**
  2210. \fn void posGGAServiceStart(QueueHandle_t handle)
  2211. \param[in]
  2212. \brief powr on gps
  2213. \return
  2214. */
  2215. INT32 posGGAServiceStart(QueueHandle_t handle)
  2216. {
  2217. if(handle == NULL){
  2218. return -1;
  2219. }else{
  2220. GPSPowerCtr(true);
  2221. gpsHandle = handle;
  2222. return 0;
  2223. }
  2224. }
  2225. /**
  2226. \fn void posGGAServiceStop(void )
  2227. \param[in]
  2228. \brief stop gps
  2229. \return
  2230. */
  2231. void posGGAServiceStop( void)
  2232. {
  2233. GPSPowerCtr(false);
  2234. gpsHandle = NULL;
  2235. }
  2236. BOOL NB_ADC_Get(UINT32* adcValue, ADC_CHANNEL_TYPE adcChannel)
  2237. {
  2238. //UINT32 NTCR2,NTCR3,NTCR4,NTCR5,Vbat = 0;
  2239. //*adcValue = 0xFFFFFFFF;
  2240. INT32 ret = 1;
  2241. switch(adcChannel)
  2242. {
  2243. case FAST_CHARGE_TEMP: //P2-7
  2244. ret = AdcSendReq(ADC_REQ_BITMAP_CH1,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2245. break;
  2246. case NORMAL_CHARGE_TEMP: //P2-9
  2247. ret = AdcSendReq(ADC_REQ_BITMAP_CH2,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2248. break;
  2249. case OTHER_TEMP_1: //P2-11
  2250. ret = AdcSendReq(ADC_REQ_BITMAP_CH31,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2251. break;
  2252. case OTHER_TEMP_2: //P2-13
  2253. ret = AdcSendReq(ADC_REQ_BITMAP_CH30,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2254. break;
  2255. case VBAT: //Vbat
  2256. ret = AdcSendReq(ADC_REQ_BITMAP_CH4,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2257. break;
  2258. default:
  2259. break;
  2260. }
  2261. if(ret == 0)
  2262. return TRUE;
  2263. else
  2264. return FALSE;
  2265. }