UartTask.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811
  1. /****************************************************************************
  2. *
  3. * Copy right: Qx.
  4. * File name: UartTask.c
  5. * Description: 串口任务
  6. * History: 2021-03-05
  7. *
  8. * 2021-04-11:可以通过Ota线路升级Bms保护板
  9. ****************************************************************************/
  10. #include "bsp.h"
  11. #include "bsp_custom.h"
  12. #include "osasys.h"
  13. #include "ostask.h"
  14. #include "queue.h"
  15. #include "ps_event_callback.h"
  16. #include "cmisim.h"
  17. #include "cmimm.h"
  18. #include "cmips.h"
  19. #include "sockets.h"
  20. #include "psifevent.h"
  21. #include "ps_lib_api.h"
  22. #include "lwip/netdb.h"
  23. //#include <cis_def.h>
  24. #include "debug_log.h"
  25. #include "slpman_ec616.h"
  26. #include "plat_config.h"
  27. #include "ec_tcpip_api.h"
  28. #include "hal_module_adapter.h"
  29. #include "UartTask.h"
  30. #include "MainTask.h"
  31. #include <stdlib.h>
  32. #include "app.h"
  33. #include "numeric.h"
  34. #include "Fota.h"
  35. //全局变量输入区
  36. extern UINT32 Timer_count;
  37. extern volatile bool Sleep_flag;
  38. extern AppNVMDataType AppNVMData;
  39. //全局变量输出区
  40. UartReadMsgType UartReadMsg;
  41. osMutexId_t UartMutex = NULL;//Uart数据锁
  42. QueueHandle_t UartWriteCmdHandle = NULL;
  43. UINT8 BattChrgEndFlag;
  44. //
  45. extern ARM_DRIVER_USART Driver_USART1;
  46. static ARM_DRIVER_USART *USARTdrv = &Driver_USART1;
  47. volatile bool isRecvTimeout = false;
  48. volatile bool isRecvComplete = false;
  49. //线程声明区
  50. static StaticTask_t gProcess_Uart_Task_t;
  51. static UINT8 gProcess_Uart_TaskStack[PROC_UART_TASK_STACK_SIZE];
  52. static osThreadId_t UartTaskId = NULL;
  53. static process_Uart gProcess_Uart_Task = PROCESS_UART_STATE_IDLE;
  54. #define PROC_UART_STATE_SWITCH(a) (gProcess_Uart_Task = a)
  55. //函数声明区
  56. void USART_callback(uint32_t event);
  57. UINT8 Uart_DataRecv_func(UINT8* Uart_Read_Msg,UINT8* Uart_Recv_Buffer);
  58. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData);
  59. UINT16 crc_chk(UINT8* data, UINT8 length);
  60. void battSOCDisplay(void);
  61. void battErrorStateDisplay(void);
  62. void battLockStateDisplay(UINT8 lockState);
  63. void SP_BMS_Update_Service(void);
  64. BOOL BattHeaterSwitch(UINT8* heaterSwitch);
  65. UINT16 encryptionAlgorithm (UINT16 plainText);
  66. UINT8 decryptionAlgorithm (UINT16 cipherText);
  67. UINT8 Uart_Encrypt_Send(void);
  68. //BMS升级函数声明
  69. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len);
  70. void SP_BMS_Update_Service();
  71. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout);
  72. //Uart线程任务区
  73. static void UartTask(void* arg)
  74. {
  75. USARTdrv->Initialize(USART_callback);
  76. USARTdrv->PowerControl(ARM_POWER_FULL);
  77. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  78. ARM_USART_DATA_BITS_8 |
  79. ARM_USART_PARITY_NONE |
  80. ARM_USART_STOP_BITS_1 |
  81. ARM_USART_FLOW_CONTROL_NONE, 9600);
  82. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_ENCRYPT);
  83. UINT16 Reg_Num = 0;
  84. UINT16 Uart_Uds_LEN;
  85. UINT16 Uart_Recv_LEN;
  86. UINT32 currentTimerCount=0;
  87. BOOL uartReadSuccessFlag = false;
  88. Uart_Read_Msg_Type Uart_Read_Msg;
  89. Uart_Write_Data_Type UartWriteData; //Uart控制命令
  90. if(UartWriteCmdHandle == NULL)//Uart控制命令传输指针
  91. {
  92. UartWriteCmdHandle = osMessageQueueNew(3,sizeof(Uart_Write_Data_Type), NULL);
  93. }
  94. if(UartMutex == NULL)
  95. {
  96. UartMutex = osMutexNew(NULL);
  97. }
  98. //上电起始控制区域
  99. while (1)
  100. {
  101. switch (gProcess_Uart_Task)
  102. {
  103. case PROCESS_UART_STATE_ENCRYPT:
  104. {
  105. UINT8 EncryptFlag=0x00;
  106. UINT8 EncryptCount=0;
  107. while(EncryptFlag!=0x01&&EncryptCount<=3)
  108. {
  109. EncryptFlag = Uart_Encrypt_Send();
  110. EncryptCount++;
  111. }
  112. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  113. break;
  114. }
  115. case PROCESS_UART_STATE_IDLE:
  116. {
  117. osDelay(100);
  118. if(Sleep_flag)
  119. {
  120. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_SLEEP);
  121. }
  122. else if(Timer_count%10==0)
  123. {
  124. #ifdef USING_PRINTF
  125. printf("[%d]Uart Timer 5s:%d,Header:%x\n",__LINE__,Timer_count,UartReadMsg.Header[2]);
  126. #endif
  127. if(osMessageQueueGet(UartWriteCmdHandle,&UartWriteData,0,0)==osOK)
  128. {
  129. #ifdef USING_PRINTF
  130. printf("[%d]UartWriteCmdHandle :%x\n",__LINE__,UartWriteData.WriteCmd);
  131. #endif
  132. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_WRITE);
  133. }
  134. else
  135. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_READ);
  136. }
  137. if(UartReadMsg.Header[2]>0)
  138. {
  139. uartReadSuccessFlag = true;
  140. }
  141. if(Timer_count-currentTimerCount >= 1)
  142. {
  143. if(AppNVMData.isBattLocked != 0)
  144. {
  145. battLockStateDisplay(TRUE);
  146. }
  147. if(uartReadSuccessFlag)
  148. {
  149. battSOCDisplay();
  150. battErrorStateDisplay();
  151. }
  152. }
  153. currentTimerCount = Timer_count;
  154. if(BMS_Fota_update_flag)
  155. {
  156. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_UPDATE);
  157. }
  158. if(AppNVMData.isBattLocked==TRUE && ((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1])>>1)&0x03!=0x00)
  159. {
  160. UartWriteData.WriteCmd = 0x01;
  161. UartWriteData.Data[0] = 0x00;
  162. UartWriteData.Data[1] = 0x00;
  163. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  164. }
  165. else if (AppNVMData.isBattLocked==FALSE && ((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1])>>1)&0x03==0x00)
  166. {
  167. UartWriteData.WriteCmd = 0x01;
  168. UartWriteData.Data[0] = 0x00;
  169. UartWriteData.Data[1] = 0x03;
  170. osMessageQueuePut(UartWriteCmdHandle,&UartWriteData,0,1000);
  171. }
  172. break;
  173. }
  174. case PROCESS_UART_STATE_READ:
  175. {
  176. osStatus_t result = osMutexAcquire(UartMutex, osWaitForever);
  177. Reg_Num = 0x21+BATT_CELL_VOL_NUM+BATT_TEMP_NUM + 2;//按照协议里面的0x21+X+N的结束地址
  178. Uart_Read_Msg.Bms_Address = BMS_ADDRESS_CODE;
  179. Uart_Read_Msg.Bms_Funcode = UART_READ_CODE;
  180. Uart_Read_Msg.Reg_Begin_H = 0x00;
  181. Uart_Read_Msg.Reg_Begin_L= 0x00;
  182. Uart_Read_Msg.Reg_Num_H = Reg_Num>>8;
  183. Uart_Read_Msg.Reg_Num_L = Reg_Num;
  184. Uart_Uds_LEN = Reg_Num*2;
  185. Uart_Recv_LEN = Uart_DataRecv_func((UINT8 *)&Uart_Read_Msg,UartReadMsg.Header);
  186. osMutexRelease(UartMutex);
  187. if(Uart_Recv_LEN>0)
  188. {
  189. UartReadMsg.UartFlag = TRUE;
  190. }
  191. else
  192. {
  193. UartReadMsg.UartFlag = FALSE;
  194. }
  195. UartReadMsg.len = Uart_Recv_LEN;
  196. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  197. if((UartReadMsg.data[(0x03+BATT_CELL_VOL_NUM)*2+1]&0x03)==0x02)
  198. {
  199. BattChrgEndFlag=TRUE;
  200. }
  201. else
  202. {
  203. BattChrgEndFlag=FALSE;
  204. }
  205. #ifdef USING_PRINTF1
  206. printf("\nUart_Recv_buffer: ");
  207. for(int i=0;i<Uart_Recv_LEN;i++)
  208. {
  209. printf("%x ",*((UINT8 *)&UartReadMsg.Header+i));
  210. }
  211. printf("\n");
  212. #endif
  213. break;
  214. }
  215. case PROCESS_UART_STATE_WRITE:
  216. {
  217. Uart_WriteCmd_func(UartWriteData);
  218. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  219. break;
  220. }
  221. case PROCESS_UART_STATE_UPDATE:
  222. SP_BMS_Update_Service();
  223. PROC_UART_STATE_SWITCH(PROCESS_UART_STATE_IDLE);
  224. BMS_Fota_update_flag = FALSE;
  225. break;
  226. case PROCESS_UART_STATE_SLEEP:
  227. {
  228. USARTdrv->PowerControl(ARM_POWER_LOW);
  229. while(TRUE)
  230. {
  231. osDelay(60000/portTICK_PERIOD_MS);
  232. }
  233. osThreadExit();
  234. break;
  235. }
  236. }
  237. }
  238. }
  239. //Uart线程初始化
  240. void UartTaskInit(void *arg)
  241. {
  242. osThreadAttr_t task_attr;
  243. memset(&task_attr,0,sizeof(task_attr));
  244. memset(gProcess_Uart_TaskStack, 0xA5, PROC_UART_TASK_STACK_SIZE);
  245. task_attr.name = "Uart_Task";
  246. task_attr.stack_mem = gProcess_Uart_TaskStack;
  247. task_attr.stack_size = PROC_UART_TASK_STACK_SIZE;
  248. task_attr.priority = osPriorityBelowNormal7;
  249. task_attr.cb_mem = &gProcess_Uart_Task_t;
  250. task_attr.cb_size = sizeof(StaticTask_t);
  251. UartTaskId = osThreadNew(UartTask, NULL, &task_attr);
  252. }
  253. void UartTaskDeInit(void *arg)
  254. {
  255. osThreadTerminate(UartTaskId);
  256. UartTaskId = NULL;
  257. }
  258. //函数区
  259. //Uart回调程序
  260. void USART_callback(uint32_t event)
  261. {
  262. if(event & ARM_USART_EVENT_RX_TIMEOUT)
  263. {
  264. isRecvTimeout = true;
  265. }
  266. if(event & ARM_USART_EVENT_RECEIVE_COMPLETE)
  267. {
  268. isRecvComplete = true;
  269. }
  270. }
  271. //Uart校验程序
  272. UINT16 crc_chk(UINT8* data, UINT8 length)
  273. {
  274. UINT8 j;
  275. UINT16 reg_crc=0xFFFF;
  276. while(length--)
  277. {
  278. reg_crc ^= *data++;
  279. for(j=0;j<8;j++)
  280. {
  281. if(reg_crc & 0x01)
  282. {
  283. reg_crc=(reg_crc>>1) ^ 0xA001;
  284. }
  285. else
  286. {
  287. reg_crc=reg_crc >>1;
  288. }
  289. }
  290. }
  291. return reg_crc;
  292. }
  293. //Uart写命令函数
  294. UINT8 Uart_WriteCmd_func(Uart_Write_Data_Type UartWriteData)
  295. {
  296. Uart_Write_Msg_Type Uart_Write_Msg;
  297. UINT16 RegAddress = 0x0000;
  298. UINT16 CRC_chk_buffer;
  299. UINT8 timeout = 0x00;
  300. UINT8 Uart_Recv_Buffer[8];
  301. switch (UartWriteData.WriteCmd)
  302. {
  303. case 0x01:
  304. {
  305. RegAddress = 0x1B + BATT_CELL_VOL_NUM+BATT_TEMP_NUM+BATT_OTHER_TEMP_NUM;
  306. Uart_Write_Msg.Bms_Address = BMS_ADDRESS_CODE;
  307. Uart_Write_Msg.Bms_Funcode = UART_WRITE_CODE;
  308. Uart_Write_Msg.Reg_Begin_H = RegAddress>>8;
  309. Uart_Write_Msg.Reg_Begin_L = RegAddress;
  310. Uart_Write_Msg.Reg_Num_H = 0x00;
  311. Uart_Write_Msg.Reg_Num_L = 0x01;
  312. Uart_Write_Msg.Data_Count = 0x02;//要写入的字节数
  313. memcpy(Uart_Write_Msg.Data,UartWriteData.Data,2);
  314. CRC_chk_buffer = crc_chk((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg)-2);
  315. Uart_Write_Msg.CRC_L = CRC_chk_buffer;
  316. Uart_Write_Msg.CRC_H = CRC_chk_buffer>>8;
  317. break;
  318. }
  319. default:
  320. {
  321. UartWriteData.WriteCmd = 0x00;
  322. return 0;
  323. break;
  324. }
  325. }
  326. USARTdrv->Send((UINT8 *)&Uart_Write_Msg,sizeof(Uart_Write_Msg));
  327. #ifdef USING_PRINTF
  328. printf("Uart_Send_buffer: ");
  329. for(int i=0;i<sizeof(Uart_Write_Msg);i++)
  330. {
  331. printf("%x ",*((UINT8 *)&Uart_Write_Msg+i));
  332. }
  333. printf("\n");
  334. #endif
  335. USARTdrv->Receive(Uart_Recv_Buffer,8);
  336. while((isRecvTimeout == false) && (isRecvComplete == false))
  337. {
  338. timeout++;
  339. osDelay(100);
  340. if (timeout>=10)
  341. {
  342. timeout =0;
  343. isRecvTimeout = true;
  344. break;
  345. }
  346. }
  347. if (isRecvComplete == true)
  348. {
  349. #ifdef USING_PRINTF
  350. printf("Uart_Rece_buffer: ");
  351. for(int i=0;i<8;i++)
  352. {
  353. printf("%x ",Uart_Recv_Buffer[i]);
  354. }
  355. printf("n");
  356. #endif
  357. isRecvComplete = false;
  358. if(Uart_Recv_Buffer[1]==0x10)
  359. {
  360. return UartWriteData.WriteCmd;
  361. }
  362. else
  363. {
  364. return 0x00;
  365. }
  366. }
  367. else
  368. {
  369. isRecvTimeout = false;
  370. return 0x00;
  371. }
  372. }
  373. //Uart发送接收函数
  374. UINT8 Uart_DataRecv_func(UINT8* Uart_Read_Msg,UINT8* Uart_Recv_Buffer)
  375. {
  376. UINT16 CRC_Rece_buffer;
  377. UINT16 CRC_chk_buffer;
  378. UINT16 Data_Len ;
  379. UINT8 timeout = 0x00;
  380. Data_Len = (*(Uart_Read_Msg+4)|*(Uart_Read_Msg+5))*2+5;
  381. CRC_chk_buffer = crc_chk(Uart_Read_Msg,6);
  382. *(Uart_Read_Msg+6) = CRC_chk_buffer;
  383. *(Uart_Read_Msg+7) = CRC_chk_buffer>>8;
  384. USARTdrv->Send(Uart_Read_Msg,8);
  385. #ifdef USING_PRINTF
  386. printf("Uart_Send_buffer: ");
  387. for(int i=0;i<8;i++)
  388. {
  389. printf("%x ",*(Uart_Read_Msg+i));
  390. }
  391. printf("\n");
  392. #endif
  393. USARTdrv->Receive(Uart_Recv_Buffer,Data_Len);
  394. while(true)
  395. {
  396. timeout++;
  397. if((isRecvTimeout == true) || (isRecvComplete == true))
  398. {
  399. break;
  400. }
  401. else
  402. {
  403. osDelay(100);
  404. if (timeout>=50)
  405. {
  406. timeout =0;
  407. isRecvTimeout = true;
  408. }
  409. }
  410. }
  411. #ifdef USING_PRINTF
  412. printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  413. printf("timeout = %d\n",timeout);
  414. #endif
  415. #ifdef USING_PRINTF1
  416. printf("Uart_Rece_buffer: ");
  417. for(int i=0;i<Data_Len;i++)
  418. {
  419. printf("%x ",*(Uart_Recv_Buffer+i));
  420. }
  421. #endif
  422. if (isRecvComplete == true)
  423. {
  424. isRecvComplete = false;
  425. CRC_Rece_buffer =*(Uart_Recv_Buffer+Data_Len-1)<<8|*(Uart_Recv_Buffer+Data_Len-2);
  426. CRC_chk_buffer = crc_chk(Uart_Recv_Buffer,Data_Len-2);
  427. // #ifdef USING_PRINTF
  428. // printf("Uart_Rece_buffer after Crc: ");
  429. // for(int i=0;i<Data_Len;i++)
  430. // {
  431. // printf("%x ",*(Uart_Recv_Buffer+i));
  432. // }
  433. // printf("\tcrcchk:%x,%x\n ",CRC_chk_buffer,CRC_Rece_buffer);
  434. // #endif
  435. if (CRC_Rece_buffer == CRC_chk_buffer)//满足校验
  436. {
  437. return Data_Len;//此处指针移位出现重启问题
  438. }
  439. else //接收数据的校验不过
  440. {
  441. USARTdrv->Uninitialize();
  442. osDelay(1000);
  443. USARTdrv->Initialize(USART_callback);
  444. USARTdrv->PowerControl(ARM_POWER_FULL);
  445. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  446. ARM_USART_DATA_BITS_8 |
  447. ARM_USART_PARITY_NONE |
  448. ARM_USART_STOP_BITS_1 |
  449. ARM_USART_FLOW_CONTROL_NONE, 9600);
  450. memset(Uart_Recv_Buffer,0xff,Data_Len);
  451. return 0;
  452. }
  453. }
  454. else
  455. {
  456. memset(Uart_Recv_Buffer,0x00,Data_Len);
  457. isRecvTimeout = false;
  458. return 0;
  459. }
  460. }
  461. /**
  462. \fn BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  463. \param[in] (UINT8*) heaterSwitch: the heater switch state
  464. \brief according to the current switch state and all the cell temp, it will turn on/off the switch
  465. \return (BOOL) isNeedtoSwitch: true: need to send cmd to turn on/off the switch
  466. false: do not need to do anything
  467. */
  468. BOOL BattHeaterSwitch(UINT8* heaterSwitch)
  469. {
  470. BOOL isNeedtoSwitch = FALSE;
  471. UINT8 battCellTemp[BATT_TEMP_NUM];
  472. UINT8 maxCellTemp,minCellTemp;
  473. UINT8 i =0;
  474. UINT8 currentSwitchState = 0;
  475. //get the current switch state and the cell temp
  476. currentSwitchState = UartReadMsg.data[(0x1C+BATT_CELL_VOL_NUM+(BATT_TEMP_NUM+2))*2+1]&0x01;
  477. for(int i=0; i<BATT_TEMP_NUM; i++)
  478. {
  479. battCellTemp[i] = UartReadMsg.data[(0x06+BATT_CELL_VOL_NUM+i)*2+1];
  480. }
  481. //cal the maxtemp and mintemp
  482. maxCellTemp = battCellTemp[0];
  483. minCellTemp = battCellTemp[0];
  484. for(i=1;i<BATT_TEMP_NUM;i++)
  485. {
  486. maxCellTemp = max(maxCellTemp,battCellTemp[i]);
  487. minCellTemp = min(minCellTemp,battCellTemp[i]);
  488. }
  489. if(currentSwitchState==0) //当前状态为关闭,判断是否应该开启
  490. {
  491. if(minCellTemp<=5+40 && maxCellTemp<25+40)//温度偏移为40
  492. {
  493. *heaterSwitch = 1;
  494. isNeedtoSwitch = true;
  495. }
  496. }
  497. else //当前状态为开启,判断是否应该关闭
  498. {
  499. if(minCellTemp>10+40||maxCellTemp>30+40)
  500. {
  501. *heaterSwitch = 0;
  502. isNeedtoSwitch= true;
  503. }
  504. }
  505. return isNeedtoSwitch;
  506. }
  507. void battSOCDisplay()
  508. {
  509. static UINT8 workState;
  510. static UINT8 currentSoc;
  511. static UINT8 lightTimer = 0;
  512. UINT8 socLowLEDFlashPeriod = 10;//10*100 = 1000ms
  513. UINT8 chargeLEDFlashPeriod = 6;//6*100 = 600ms
  514. float dutyRatio = 0.4;
  515. UINT8 temp;
  516. if(AppNVMData.isBattLocked == TRUE)
  517. {
  518. return;
  519. }
  520. if(UartReadMsg.Header[2]>0)
  521. {
  522. temp = UartReadMsg.data[(0x03+BATT_CELL_VOL_NUM)*2+1]&0x03;
  523. workState = ((temp&0x01)<<01)|(temp>>0x01);
  524. currentSoc = UartReadMsg.data[(0x0B+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1];
  525. }
  526. #ifdef USING_PRINTF1
  527. printf("current SOC = %d\n",currentSoc);
  528. printf("work state = %d\n",workState);
  529. #endif
  530. lightTimer++;
  531. if(workState == 0||workState == 2) //静置或放电状态
  532. {
  533. if(currentSoc<=10)
  534. {
  535. if(lightTimer<(UINT8)(socLowLEDFlashPeriod*dutyRatio))
  536. {
  537. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  538. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  539. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  540. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  541. }
  542. else if(lightTimer>=(UINT8)(socLowLEDFlashPeriod*dutyRatio) && lightTimer<socLowLEDFlashPeriod)
  543. {
  544. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  545. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  546. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  547. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  548. }
  549. else
  550. {
  551. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  552. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  553. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  554. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  555. lightTimer = 0;
  556. }
  557. }
  558. else if(currentSoc>10&&currentSoc<=25)
  559. {
  560. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  561. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  562. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  563. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  564. lightTimer = 0;
  565. }
  566. else if(currentSoc>25&&currentSoc<=50)
  567. {
  568. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  569. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  570. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  571. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  572. lightTimer = 0;
  573. }
  574. else if(currentSoc>50&&currentSoc<=75)
  575. {
  576. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  577. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  578. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  579. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  580. lightTimer = 0;
  581. }
  582. else if(currentSoc>75&&currentSoc<=100)
  583. {
  584. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  585. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  586. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  587. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  588. lightTimer = 0;
  589. }
  590. }
  591. else if(workState == 1)
  592. {
  593. if(currentSoc<=25)
  594. {
  595. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  596. {
  597. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  598. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  599. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  600. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  601. }
  602. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  603. {
  604. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  605. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  606. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  607. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  608. }
  609. else
  610. {
  611. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  612. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  613. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  614. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  615. lightTimer = 0;
  616. }
  617. }
  618. else if(currentSoc>25&&currentSoc<=50)
  619. {
  620. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  621. {
  622. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  623. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  624. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  625. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  626. }
  627. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  628. {
  629. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  630. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  631. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  632. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  633. }
  634. else
  635. {
  636. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  637. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  638. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  639. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  640. lightTimer = 0;
  641. }
  642. }
  643. else if(currentSoc>50&&currentSoc<=75)
  644. {
  645. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  646. {
  647. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  648. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  649. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  650. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  651. }
  652. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  653. {
  654. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  655. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  656. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  657. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  658. }
  659. else
  660. {
  661. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  662. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  663. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  664. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  665. lightTimer = 0;
  666. }
  667. }
  668. else if(currentSoc>75&&currentSoc<=97)
  669. {
  670. if(lightTimer<(UINT8)(chargeLEDFlashPeriod*dutyRatio))
  671. {
  672. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  673. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  674. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  675. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  676. }
  677. else if(lightTimer>=(UINT8)(chargeLEDFlashPeriod*dutyRatio) && lightTimer<chargeLEDFlashPeriod)
  678. {
  679. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  680. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  681. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  682. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  683. }
  684. else
  685. {
  686. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  687. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  688. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  689. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  690. lightTimer = 0;
  691. }
  692. }
  693. else if(currentSoc>97&&currentSoc<=100)
  694. {
  695. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  696. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  697. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  698. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  699. }
  700. }
  701. }
  702. void battErrorStateDisplay()
  703. {
  704. static UINT32 errorState;
  705. static UINT8 errorLightTimer = 0;
  706. //static UINT32 currentTimerCount=0;
  707. UINT8 errorLEDFlashPeriod = 6;//600ms
  708. float errorDutyRatio = 0.4;
  709. if(AppNVMData.isBattLocked == TRUE)
  710. {
  711. return;
  712. }
  713. if(UartReadMsg.Header[2]>0)
  714. {
  715. errorState = ((UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2])<<8)|0|((UartReadMsg.data[(0x0A+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2])<<24)|((UartReadMsg.data[(0x0A+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2+1])<<16);
  716. //MEMCPY(&errorState,&(UartReadMsg.data[(0x09+BATT_CELL_VOL_NUM+BATT_TEMP_NUM+2)*2]),4);
  717. }
  718. errorLightTimer++;
  719. //errorState = testErrorState;
  720. #ifdef USING_PRINTF1
  721. for(int k=0;k<UartReadMsg.Header[2];k++)
  722. printf("%x ",UartReadMsg.data[k]);
  723. printf("error state = %x\n",errorState);
  724. #endif
  725. if(errorState != 0)
  726. {
  727. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  728. {
  729. FaultDisplay(LED_TURN_ON);
  730. }
  731. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  732. {
  733. FaultDisplay(LED_TURN_OFF);
  734. }
  735. else
  736. {
  737. FaultDisplay(LED_TURN_OFF);
  738. errorLightTimer = 0;
  739. }
  740. }
  741. else
  742. {
  743. FaultDisplay(LED_TURN_OFF);
  744. errorLightTimer = 0;
  745. }
  746. }
  747. void battLockStateDisplay(UINT8 lockState)
  748. {
  749. static UINT8 currentState = 0;
  750. static UINT8 errorLightTimer = 0;
  751. //static UINT32 currentTimerCount=0;
  752. UINT8 errorLEDFlashPeriod = 10;//1000ms
  753. float errorDutyRatio = 0.4;
  754. //printf("lockState = %d\ncurrent State = %d\n",lockState,currentState);
  755. if(lockState==0)//no error
  756. {
  757. if(currentState!=lockState)
  758. {
  759. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  760. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  761. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  762. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  763. FaultDisplay(LED_TURN_OFF);
  764. currentState = lockState;
  765. errorLightTimer = 0;
  766. }
  767. else
  768. {
  769. return;
  770. }
  771. }
  772. else // error occurred, errorState = 1
  773. {
  774. if(errorLightTimer<(UINT8)(errorLEDFlashPeriod*errorDutyRatio))
  775. {
  776. NetSocDisplay(LED_SOC_0,LED_TURN_ON);
  777. NetSocDisplay(LED_SOC_1,LED_TURN_ON);
  778. NetSocDisplay(LED_SOC_2,LED_TURN_ON);
  779. NetSocDisplay(LED_SOC_3,LED_TURN_ON);
  780. FaultDisplay(LED_TURN_ON);
  781. }
  782. else if(errorLightTimer>=(UINT8)(errorLEDFlashPeriod*errorDutyRatio) && errorLightTimer<errorLEDFlashPeriod)
  783. {
  784. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  785. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  786. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  787. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  788. FaultDisplay(LED_TURN_OFF);
  789. }
  790. else
  791. {
  792. NetSocDisplay(LED_SOC_0,LED_TURN_OFF);
  793. NetSocDisplay(LED_SOC_1,LED_TURN_OFF);
  794. NetSocDisplay(LED_SOC_2,LED_TURN_OFF);
  795. NetSocDisplay(LED_SOC_3,LED_TURN_OFF);
  796. FaultDisplay(LED_TURN_OFF);
  797. errorLightTimer = 0;
  798. }
  799. }
  800. errorLightTimer++;
  801. }
  802. UINT8 decryptionAlgorithm (UINT16 cipherText)
  803. {
  804. UINT16 plainText = 1;
  805. UINT16 publicKeyD = 43;
  806. UINT16 publicKeyN = 10961;
  807. cipherText = cipherText % publicKeyN;
  808. while(publicKeyD >0)
  809. {
  810. if(publicKeyD % 2 ==1)
  811. {
  812. plainText = plainText * cipherText % publicKeyN;
  813. }
  814. publicKeyD = publicKeyD/2;
  815. cipherText = (cipherText * cipherText) % publicKeyN;
  816. }
  817. return (UINT8)plainText;
  818. }
  819. UINT16 encryptionAlgorithm (UINT16 plainText)
  820. {
  821. UINT16 cipherText = 1;
  822. UINT16 privateKeyE = 37507;
  823. UINT16 privateKeyN = 10961;
  824. plainText = plainText % privateKeyN;
  825. while(privateKeyE >0)
  826. {
  827. if(privateKeyE % 2 ==1)
  828. {
  829. cipherText = ( cipherText * plainText) % privateKeyN;
  830. }
  831. privateKeyE = privateKeyE/2;
  832. plainText = (plainText * plainText) % privateKeyN;
  833. }
  834. return cipherText;
  835. }
  836. UINT8 Uart_Encrypt_Send()
  837. {
  838. UINT8 SeedNumberArrray[4]={0x38,0x56,0xfe,0xac};
  839. UINT16 EncodeNumberArray[4];
  840. UINT8 UartEncryptBuffer[17];
  841. UINT8 UartDecryptBuffer[5];
  842. UINT16 CRC_chk_buffer;
  843. UINT8 timeCount = 0;
  844. UartEncryptBuffer[0] = BMS_ADDRESS_CODE;
  845. UartEncryptBuffer[1] = UART_ENCRYPT_CODE;
  846. UartEncryptBuffer[2] = 0x0c;
  847. for(int i=0;i<4;i++)
  848. {
  849. SeedNumberArrray[i]=rand();
  850. EncodeNumberArray[i] = encryptionAlgorithm(SeedNumberArrray[i]);
  851. UartEncryptBuffer[i+3] = SeedNumberArrray[i];
  852. UartEncryptBuffer[i*2+7] = EncodeNumberArray[i]>>8;
  853. UartEncryptBuffer[i*2+8] = EncodeNumberArray[i];
  854. }
  855. CRC_chk_buffer = crc_chk(UartEncryptBuffer,17-2);
  856. UartEncryptBuffer[15] = CRC_chk_buffer;
  857. UartEncryptBuffer[16] = CRC_chk_buffer>>8;
  858. USARTdrv->Send(UartEncryptBuffer,17);
  859. USARTdrv->Receive(UartDecryptBuffer,5);
  860. while((isRecvTimeout == false) && (isRecvComplete == false))
  861. {
  862. timeCount++;
  863. osDelay(100);
  864. if (timeCount>=10)
  865. {
  866. timeCount =0;
  867. isRecvTimeout = true;
  868. break;
  869. }
  870. }
  871. if (isRecvComplete == true)
  872. {
  873. isRecvComplete = false;
  874. return UartDecryptBuffer[2];
  875. }
  876. else
  877. {
  878. isRecvTimeout = false;
  879. return 0x03;
  880. }
  881. }
  882. /*-----------------------------------------------------------------------------*/
  883. void SP_BMS_Update_Service() //超力源BMS升级服务
  884. {
  885. UINT8 errorCount = 0;
  886. UINT8 resetCount = 0;
  887. UINT16 currentPackage = 0;
  888. UINT32 updateDataTotalByteLen = 0;
  889. UpdateStep updateStep = UPDATE_STEP_CHECK_VERSION;
  890. UINT8 i,j,ret=0;
  891. UINT8 dataLen = 0;
  892. UINT8 pUpdateMsgSend[80];
  893. UINT32 updateMsgSendLen = 0;
  894. UINT32 currentPackageStartAddr = 0;
  895. BMS_Update_Recv_Msg_Type pUpdateMsgRecv;
  896. UINT8 bmsUpdateFlag = 1;
  897. //BMS_Update_Recv_Msg_Type bmsMsg;
  898. //static UpdateStep step = UPDATE_STEP_CHECK_VERSION;
  899. UINT8 Cycle_conut = 0;
  900. while(bmsUpdateFlag && Cycle_conut<2)
  901. {
  902. switch (updateStep)
  903. {
  904. case UPDATE_STEP_CHECK_VERSION:
  905. dataLen = 0;
  906. updateMsgSendLen = 7;
  907. pUpdateMsgSend[0] = 0xEB; //start flag
  908. pUpdateMsgSend[1] = 0x01; //add flag
  909. pUpdateMsgSend[2] = 0x01; //read
  910. pUpdateMsgSend[3] = 0x03; //data len
  911. pUpdateMsgSend[4] = 0x90; //cmd
  912. pUpdateMsgSend[5] = 0x93; //checksum
  913. pUpdateMsgSend[6] = 0xF5; //end flag
  914. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  915. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  916. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 500);
  917. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  918. if(ret!=0)
  919. {
  920. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  921. {
  922. if(pUpdateMsgRecv.cmd == 0x90)
  923. {
  924. if(pUpdateMsgRecv.data != 0xFF)
  925. {
  926. updateStep = UPDATE_STEP_REQUEST_UPDATE;
  927. errorCount = 0;
  928. }
  929. else
  930. {
  931. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  932. errorCount = 0;
  933. }
  934. }
  935. else
  936. {
  937. errorCount++;
  938. }
  939. }
  940. else
  941. {
  942. errorCount++;
  943. }
  944. }
  945. else
  946. {
  947. errorCount++;
  948. }
  949. #ifdef USING_PRINTF1
  950. //printf("update step:%d\n",updateStep);
  951. printf("query:");
  952. for(j=0;j<updateMsgSendLen;j++)
  953. {
  954. printf("%x ",pUpdateMsgSend[j]);
  955. }
  956. printf("\nanswer:");
  957. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  958. {
  959. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  960. }
  961. printf("\n");
  962. printf("next update step:%d\n",updateStep);
  963. #endif
  964. if(errorCount>10)
  965. {
  966. updateStep = UPDATE_STEP_RESET;
  967. errorCount = 0;
  968. }
  969. osDelay(50);
  970. break;
  971. case UPDATE_STEP_REQUEST_UPDATE:
  972. dataLen = 1;
  973. updateMsgSendLen = 8;
  974. pUpdateMsgSend[0] = 0xEB; //start flag
  975. pUpdateMsgSend[1] = 0x01; //add flag
  976. pUpdateMsgSend[2] = 0x00; //write
  977. pUpdateMsgSend[3] = 0x04; //data len
  978. pUpdateMsgSend[4] = 0x80; //cmd
  979. pUpdateMsgSend[5] = 0x22; //data
  980. pUpdateMsgSend[6] = 0xA6; //check
  981. pUpdateMsgSend[7] = 0xF5; //end flag
  982. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  983. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  984. if(ret!=0)
  985. {
  986. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  987. {
  988. if(pUpdateMsgRecv.cmd == 0x80)
  989. {
  990. if(pUpdateMsgRecv.data == 0x33)
  991. {
  992. updateStep = UPDATE_STEP_START_UPDATE;
  993. errorCount = 0;
  994. }
  995. else
  996. {
  997. errorCount++;
  998. }
  999. }
  1000. else
  1001. {
  1002. errorCount++;
  1003. }
  1004. }
  1005. else
  1006. {
  1007. errorCount++;
  1008. }
  1009. }
  1010. else
  1011. {
  1012. errorCount++;
  1013. }
  1014. if(errorCount>10)
  1015. {
  1016. updateStep = UPDATE_STEP_RESET;
  1017. errorCount = 0;
  1018. }
  1019. #ifdef USING_PRINTF1
  1020. printf("update step:%d\n",updateStep);
  1021. printf("query:");
  1022. for(j=0;j<updateMsgSendLen;j++)
  1023. {
  1024. printf("%x ",pUpdateMsgSend[j]);
  1025. }
  1026. printf("\nanswer:");
  1027. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1028. {
  1029. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1030. }
  1031. printf("\n");
  1032. printf("next update step:%d\n",updateStep);
  1033. #endif
  1034. osDelay(50);
  1035. break;
  1036. case UPDATE_STEP_START_UPDATE:
  1037. dataLen = 1;
  1038. updateMsgSendLen = 8;
  1039. pUpdateMsgSend[0] = 0xEB; //start flag
  1040. pUpdateMsgSend[1] = 0x01; //add flag
  1041. pUpdateMsgSend[2] = 0x00; //write
  1042. pUpdateMsgSend[3] = 0x04; //data len
  1043. pUpdateMsgSend[4] = 0x80; //cmd
  1044. pUpdateMsgSend[5] = 0x55; //data
  1045. pUpdateMsgSend[6] = 0xD9; //check
  1046. pUpdateMsgSend[7] = 0xF5; //end flag
  1047. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1048. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1049. //updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1050. updateStep = UPDATE_STEP_CHECK_VERSION_AGAIN;//2021-04-09跳过波特率设置
  1051. #ifdef USING_PRINTF1
  1052. printf("query:");
  1053. for(j=0;j<updateMsgSendLen;j++)
  1054. {
  1055. printf("%x ",pUpdateMsgSend[j]);
  1056. }
  1057. printf("\nanswer:");
  1058. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1059. {
  1060. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1061. }
  1062. printf("\n");
  1063. printf("next update step:%d\n",updateStep);
  1064. #endif
  1065. break;
  1066. case UPDATE_STEP_CHECK_VERSION_AGAIN:
  1067. dataLen = 0;
  1068. updateMsgSendLen = 7;
  1069. pUpdateMsgSend[0] = 0xEB; //start flag
  1070. pUpdateMsgSend[1] = 0x01; //add flag
  1071. pUpdateMsgSend[2] = 0x01; //read
  1072. pUpdateMsgSend[3] = 0x03; //data len
  1073. pUpdateMsgSend[4] = 0x90; //cmd
  1074. pUpdateMsgSend[5] = 0x93; //checksum
  1075. pUpdateMsgSend[6] = 0xF5; //end flag
  1076. //printf("updateMsgSendLen0 = %x\n",updateMsgSendLen);
  1077. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1078. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv),sizeof(BMS_Update_Recv_Msg_Type), 100);
  1079. //printf("updateMsgSendLen1 = %x\n",updateMsgSendLen);
  1080. if(ret!=0)
  1081. {
  1082. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1083. {
  1084. if(pUpdateMsgRecv.cmd == 0x90)
  1085. {
  1086. if(pUpdateMsgRecv.data != 0xFF)
  1087. {
  1088. updateStep = UPDATE_STEP_RESET;
  1089. errorCount = 0;
  1090. }
  1091. else
  1092. {
  1093. updateStep = UPDATE_STEP_SET_BAUD_RATE;
  1094. errorCount = 0;
  1095. }
  1096. }
  1097. else
  1098. {
  1099. errorCount++;
  1100. }
  1101. }
  1102. else
  1103. {
  1104. errorCount++;
  1105. }
  1106. }
  1107. else
  1108. {
  1109. errorCount++;
  1110. }
  1111. #ifdef USING_PRINTF1
  1112. //printf("update step:%d\n",updateStep);
  1113. printf("query:");
  1114. for(j=0;j<updateMsgSendLen;j++)
  1115. {
  1116. printf("%x ",pUpdateMsgSend[j]);
  1117. }
  1118. printf("\nanswer:");
  1119. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1120. {
  1121. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1122. }
  1123. printf("\n");
  1124. printf("next update step:%d\n",updateStep);
  1125. #endif
  1126. if(errorCount>10)
  1127. {
  1128. updateStep = UPDATE_STEP_RESET;
  1129. errorCount = 0;
  1130. }
  1131. osDelay(50);
  1132. break;
  1133. case UPDATE_STEP_SET_BAUD_RATE:
  1134. printf("start step %d\n",updateStep);
  1135. dataLen = 4;
  1136. updateMsgSendLen = 12;
  1137. pUpdateMsgSend[0] = 0xEB; //start flag
  1138. pUpdateMsgSend[1] = 0x01; //add flag
  1139. pUpdateMsgSend[2] = 0x00; //write
  1140. pUpdateMsgSend[3] = 0x08; //data len
  1141. pUpdateMsgSend[4] = 0x81; //cmd
  1142. pUpdateMsgSend[5] = 0x33; //data
  1143. pUpdateMsgSend[6] = 0x00; //baud rate:9600
  1144. pUpdateMsgSend[7] = 0x00;
  1145. pUpdateMsgSend[8] = 0x25;
  1146. pUpdateMsgSend[9] = 0x80;
  1147. pUpdateMsgSend[10] = 0x61; //check
  1148. pUpdateMsgSend[11] = 0xF5; //end flag
  1149. #ifdef USING_PRINTF1
  1150. printf("query:");
  1151. for(j=0;j<updateMsgSendLen;j++)
  1152. {
  1153. printf("%x ",pUpdateMsgSend[j]);
  1154. }
  1155. printf("\n");
  1156. #endif
  1157. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1158. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1159. printf("ret = %d\n",ret);
  1160. if(ret!=0)
  1161. {
  1162. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1163. {
  1164. if(pUpdateMsgRecv.cmd == 0x81)
  1165. {
  1166. if(pUpdateMsgRecv.data == 0x11)
  1167. {
  1168. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1169. errorCount = 0;
  1170. }
  1171. else
  1172. {
  1173. errorCount++;
  1174. }
  1175. }
  1176. else
  1177. {
  1178. errorCount++;
  1179. }
  1180. }
  1181. else
  1182. {
  1183. errorCount++;
  1184. }
  1185. }
  1186. else
  1187. {
  1188. errorCount++;
  1189. }
  1190. if(errorCount>10)
  1191. {
  1192. updateStep = UPDATE_STEP_RESET;
  1193. errorCount = 0;
  1194. }
  1195. #ifdef USING_PRINTF1
  1196. //printf("update step:%d\n",updateStep);
  1197. printf("query:");
  1198. for(j=0;j<updateMsgSendLen;j++)
  1199. {
  1200. printf("%x ",pUpdateMsgSend[j]);
  1201. }
  1202. printf("\nanswer:");
  1203. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1204. {
  1205. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1206. }
  1207. printf("\n");
  1208. printf("next update step:%d\n",updateStep);
  1209. #endif
  1210. osDelay(50);
  1211. break;
  1212. case UPDATE_STEP_PREPARE_SEND_DATA_LEN:
  1213. printf("start step %d\n",updateStep);
  1214. dataLen = 1;
  1215. updateMsgSendLen = 8;
  1216. pUpdateMsgSend[0] = 0xEB; //start flag
  1217. pUpdateMsgSend[1] = 0x01; //add flag
  1218. pUpdateMsgSend[2] = 0x00; //write
  1219. pUpdateMsgSend[3] = 0x04; //data len
  1220. pUpdateMsgSend[4] = 0x81; //cmd
  1221. pUpdateMsgSend[5] = 0x44; //data
  1222. pUpdateMsgSend[6] = 0xC9; //check
  1223. pUpdateMsgSend[7] = 0xF5; //end flag
  1224. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1225. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1226. if(ret!=0)
  1227. {
  1228. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1229. {
  1230. if(pUpdateMsgRecv.cmd == 0x81)
  1231. {
  1232. if(pUpdateMsgRecv.data == 0x11)
  1233. {
  1234. updateStep = UPDATE_STEP_SEND_DATA_LEN;
  1235. errorCount = 0;
  1236. }
  1237. else
  1238. {
  1239. errorCount++;
  1240. }
  1241. }
  1242. else
  1243. {
  1244. errorCount++;
  1245. }
  1246. }
  1247. else
  1248. {
  1249. errorCount++;
  1250. }
  1251. }
  1252. else
  1253. {
  1254. errorCount++;
  1255. }
  1256. if(errorCount>10)
  1257. {
  1258. updateStep = UPDATE_STEP_RESET;
  1259. errorCount = 0;
  1260. }
  1261. #ifdef USING_PRINTF1
  1262. //printf("update step:%d\n",updateStep);
  1263. printf("query:");
  1264. for(j=0;j<updateMsgSendLen;j++)
  1265. {
  1266. printf("%x ",pUpdateMsgSend[j]);
  1267. }
  1268. printf("\nanswer:");
  1269. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1270. {
  1271. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1272. }
  1273. printf("\n");
  1274. printf("next update step:%d\n",updateStep);
  1275. #endif
  1276. osDelay(50);
  1277. break;
  1278. case UPDATE_STEP_SEND_DATA_LEN:
  1279. dataLen = 4;
  1280. BSP_QSPI_Read_Safe(&updateDataTotalByteLen,FLASH_BMS_FOTA_START_ADDR,4);
  1281. updateDataTotalByteLen = (((updateDataTotalByteLen)&0xFF)<<24)|(((updateDataTotalByteLen>>8)&0xFF)<<16)|(((updateDataTotalByteLen>>16)&0xFF)<<8)|(((updateDataTotalByteLen>>24)&0xFF));
  1282. updateMsgSendLen = 11;
  1283. pUpdateMsgSend[0] = 0xEB; //start flag
  1284. pUpdateMsgSend[1] = 0x01; //add flag
  1285. pUpdateMsgSend[2] = 0x00; //write
  1286. pUpdateMsgSend[3] = 0x07; //data len
  1287. pUpdateMsgSend[4] = 0x82; //cmd
  1288. pUpdateMsgSend[5] = (updateDataTotalByteLen>>24)&0xFF; //data: package byte len
  1289. pUpdateMsgSend[6] = (updateDataTotalByteLen>>16)&0xFF;
  1290. pUpdateMsgSend[7] = (updateDataTotalByteLen>>8)&0xFF;
  1291. pUpdateMsgSend[8] = (updateDataTotalByteLen)&0xFF;
  1292. pUpdateMsgSend[9] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+2); //check sum
  1293. pUpdateMsgSend[10] = 0xF5; //end flag
  1294. memset((UINT8*)(&pUpdateMsgRecv),0,sizeof(BMS_Update_Recv_Msg_Type));
  1295. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1296. if(ret!=0)
  1297. {
  1298. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1299. {
  1300. if(pUpdateMsgRecv.cmd == 0x81)
  1301. {
  1302. if(pUpdateMsgRecv.data == 0x11)
  1303. {
  1304. updateStep = UPDATE_STEP_PREPARE_SEND_UPDATE_DATA;
  1305. errorCount = 0;
  1306. }
  1307. else
  1308. {
  1309. errorCount++;
  1310. }
  1311. }
  1312. else
  1313. {
  1314. errorCount++;
  1315. }
  1316. }
  1317. else
  1318. {
  1319. errorCount++;
  1320. }
  1321. }
  1322. else
  1323. {
  1324. errorCount++;
  1325. }
  1326. if(errorCount>10)
  1327. {
  1328. updateStep = UPDATE_STEP_RESET;
  1329. errorCount = 0;
  1330. }
  1331. #ifdef USING_PRINTF1
  1332. //printf("update step:%d\n",updateStep);
  1333. printf("query:");
  1334. for(j=0;j<updateMsgSendLen;j++)
  1335. {
  1336. printf("%x ",pUpdateMsgSend[j]);
  1337. }
  1338. printf("\nanswer:");
  1339. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1340. {
  1341. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1342. }
  1343. printf("\n");
  1344. printf("next update step:%d\n",updateStep);
  1345. #endif
  1346. osDelay(50);
  1347. break;
  1348. case UPDATE_STEP_PREPARE_SEND_UPDATE_DATA:
  1349. dataLen = 1;
  1350. updateMsgSendLen = 8;
  1351. pUpdateMsgSend[0] = 0xEB; //start flag
  1352. pUpdateMsgSend[1] = 0x01; //add flag
  1353. pUpdateMsgSend[2] = 0x00; //write
  1354. pUpdateMsgSend[3] = 0x04; //data len
  1355. pUpdateMsgSend[4] = 0x81; //cmd
  1356. pUpdateMsgSend[5] = 0x55; //data
  1357. pUpdateMsgSend[6] = 0xDA; //check
  1358. pUpdateMsgSend[7] = 0xF5; //end flag
  1359. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1360. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen,(UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1361. if(ret!=0)
  1362. {
  1363. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1364. {
  1365. if(pUpdateMsgRecv.cmd == 0x81)
  1366. {
  1367. if(pUpdateMsgRecv.data == 0x11)
  1368. {
  1369. updateStep = UPDATE_STEP_SEND_UPDATE_DATA;
  1370. errorCount = 0;
  1371. }
  1372. else
  1373. {
  1374. errorCount++;
  1375. }
  1376. }
  1377. else
  1378. {
  1379. errorCount++;
  1380. }
  1381. }
  1382. else
  1383. {
  1384. errorCount++;
  1385. }
  1386. }
  1387. else
  1388. {
  1389. errorCount++;
  1390. }
  1391. if(errorCount>10)
  1392. {
  1393. updateStep = UPDATE_STEP_RESET;
  1394. errorCount = 0;
  1395. }
  1396. #ifdef USING_PRINTF1
  1397. //printf("update step:%d\n",updateStep);
  1398. printf("query:");
  1399. for(j=0;j<updateMsgSendLen;j++)
  1400. {
  1401. printf("%x ",pUpdateMsgSend[j]);
  1402. }
  1403. printf("\nanswer:");
  1404. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1405. {
  1406. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1407. }
  1408. printf("\n");
  1409. printf("next update step:%d\n",updateStep);
  1410. #endif
  1411. osDelay(50);
  1412. break;
  1413. case UPDATE_STEP_SEND_UPDATE_DATA:
  1414. dataLen = 64;
  1415. updateMsgSendLen = 75;
  1416. for(currentPackage=0;currentPackage<updateDataTotalByteLen/64;currentPackage++)
  1417. {
  1418. currentPackageStartAddr = currentPackage*64;
  1419. pUpdateMsgSend[0] = 0xEB; //start flag
  1420. pUpdateMsgSend[1] = 0x01; //add flag
  1421. pUpdateMsgSend[2] = 0x00; //write
  1422. pUpdateMsgSend[3] = 0x47; //data len
  1423. pUpdateMsgSend[4] = 0x82; //cmd
  1424. pUpdateMsgSend[5] = (currentPackageStartAddr>>24)&0xFF;
  1425. pUpdateMsgSend[6] = (currentPackageStartAddr>>16)&0xFF;
  1426. pUpdateMsgSend[7] = (currentPackageStartAddr>>8)&0xFF;
  1427. pUpdateMsgSend[8] = currentPackageStartAddr&0xFF;
  1428. BSP_QSPI_Read_Safe(&pUpdateMsgSend[9], FLASH_BMS_FOTA_START_ADDR+4+currentPackage*dataLen, dataLen); //data
  1429. pUpdateMsgSend[8+dataLen+1] = SP_BMS_Update_CheckSUM(&pUpdateMsgSend[3], dataLen+6); //check sum
  1430. pUpdateMsgSend[8+dataLen+2] = 0xF5; //end flag
  1431. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1432. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1433. if(ret!=0)
  1434. {
  1435. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1436. {
  1437. if(pUpdateMsgRecv.cmd == 0x81)
  1438. {
  1439. if(pUpdateMsgRecv.data == 0x11)
  1440. {
  1441. if(currentPackage+1 == updateDataTotalByteLen/64)
  1442. {
  1443. updateStep = UPDATE_STEP_SEND_DATA_END;
  1444. }
  1445. errorCount = 0;
  1446. }
  1447. else
  1448. {
  1449. errorCount++;
  1450. }
  1451. }
  1452. else
  1453. {
  1454. errorCount++;
  1455. }
  1456. }
  1457. else
  1458. {
  1459. errorCount++;
  1460. }
  1461. }
  1462. else
  1463. {
  1464. errorCount++;
  1465. }
  1466. if(errorCount>10)
  1467. {
  1468. updateStep = UPDATE_STEP_RESET;
  1469. errorCount = 0;
  1470. break;
  1471. }
  1472. #ifdef USING_PRINTF1
  1473. //printf("update step:%d\n",updateStep);
  1474. printf("query:");
  1475. for(j=0;j<updateMsgSendLen;j++)
  1476. {
  1477. printf("%x ",pUpdateMsgSend[j]);
  1478. }
  1479. printf("\nanswer:");
  1480. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1481. {
  1482. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1483. }
  1484. printf("\n");
  1485. printf("next update step:%d\n",updateStep);
  1486. #endif
  1487. }
  1488. osDelay(50);
  1489. break;
  1490. case UPDATE_STEP_SEND_DATA_END:
  1491. dataLen = 1;
  1492. updateMsgSendLen = 8;
  1493. pUpdateMsgSend[0] = 0xEB; //start flag
  1494. pUpdateMsgSend[1] = 0x01; //add flag
  1495. pUpdateMsgSend[2] = 0x00; //write
  1496. pUpdateMsgSend[3] = 0x04; //data len
  1497. pUpdateMsgSend[4] = 0x81; //cmd
  1498. pUpdateMsgSend[5] = 0x66; //data
  1499. pUpdateMsgSend[6] = 0xEB; //check
  1500. pUpdateMsgSend[7] = 0xF5; //end flag
  1501. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1502. ret = SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), sizeof(BMS_Update_Recv_Msg_Type), 500);
  1503. if(ret!=0)
  1504. {
  1505. if(pUpdateMsgRecv.startFlag == 0xEB && pUpdateMsgRecv.endFlag == 0xF5)
  1506. {
  1507. if(pUpdateMsgRecv.cmd == 0x81)
  1508. {
  1509. if(pUpdateMsgRecv.data == 0x11)
  1510. {
  1511. updateStep = UPDATE_STEP_START_INSTALL;
  1512. errorCount = 0;
  1513. }
  1514. else
  1515. {
  1516. errorCount++;
  1517. }
  1518. }
  1519. else
  1520. {
  1521. errorCount++;
  1522. }
  1523. }
  1524. else
  1525. {
  1526. errorCount++;
  1527. }
  1528. }
  1529. else
  1530. {
  1531. errorCount++;
  1532. }
  1533. if(errorCount>10)
  1534. {
  1535. updateStep = UPDATE_STEP_RESET;
  1536. errorCount = 0;
  1537. }
  1538. #ifdef USING_PRINTF1
  1539. //printf("update step:%d\n",updateStep);
  1540. printf("query:");
  1541. for(j=0;j<updateMsgSendLen;j++)
  1542. {
  1543. printf("%x ",pUpdateMsgSend[j]);
  1544. }
  1545. printf("\nanswer:");
  1546. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1547. {
  1548. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1549. }
  1550. printf("\n");
  1551. printf("next update step:%d\n",updateStep);
  1552. #endif
  1553. osDelay(50);
  1554. break;
  1555. case UPDATE_STEP_START_INSTALL:
  1556. dataLen = 1;
  1557. updateMsgSendLen = 8;
  1558. pUpdateMsgSend[0] = 0xEB; //start flag
  1559. pUpdateMsgSend[1] = 0x01; //add flag
  1560. pUpdateMsgSend[2] = 0x00; //write
  1561. pUpdateMsgSend[3] = 0x04; //data len
  1562. pUpdateMsgSend[4] = 0x81; //cmd
  1563. pUpdateMsgSend[5] = 0x99; //data
  1564. pUpdateMsgSend[6] = 0x1E; //check
  1565. pUpdateMsgSend[7] = 0xF5; //end flag
  1566. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1567. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1568. updateStep = UPDATE_STEP_END;
  1569. #ifdef USING_PRINTF1
  1570. //printf("update step:%d\n",updateStep);
  1571. printf("query:");
  1572. for(j=0;j<updateMsgSendLen;j++)
  1573. {
  1574. printf("%x ",pUpdateMsgSend[j]);
  1575. }
  1576. printf("\nanswer:");
  1577. for(j=0;j<sizeof(BMS_Update_Recv_Msg_Type);j++)
  1578. {
  1579. printf("%x ",*(((UINT8*)&pUpdateMsgRecv)+j));
  1580. }
  1581. printf("\n");
  1582. printf("next update step:%d\n",updateStep);
  1583. #endif
  1584. osDelay(50);
  1585. break;
  1586. case UPDATE_STEP_END:
  1587. updateStep = UPDATE_STEP_CHECK_VERSION;
  1588. printf("update end\n");
  1589. bmsUpdateFlag = 0;
  1590. break;
  1591. case UPDATE_STEP_RESET:
  1592. dataLen = 1;
  1593. updateMsgSendLen = 8;
  1594. pUpdateMsgSend[0] = 0xEB; //start flag
  1595. pUpdateMsgSend[1] = 0x01; //add flag
  1596. pUpdateMsgSend[2] = 0x00; //write
  1597. pUpdateMsgSend[3] = 0x04; //data len
  1598. pUpdateMsgSend[4] = 0x81; //cmd
  1599. pUpdateMsgSend[5] = 0xAA; //data
  1600. pUpdateMsgSend[6] = 0x2F; //check
  1601. pUpdateMsgSend[7] = 0xF5; //end flag
  1602. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1603. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1604. osDelay(50);
  1605. resetCount++;
  1606. if(resetCount>=2)
  1607. {
  1608. updateStep = UPDATE_STEP_DOWNLOAD_BREAK_OFF;
  1609. resetCount = 0;
  1610. }
  1611. else
  1612. {
  1613. updateStep = UPDATE_STEP_PREPARE_SEND_DATA_LEN;
  1614. }
  1615. #ifdef USING_PRINTF
  1616. printf("update error!!\n rest and start send data lenth again!!\n continue update!\n");
  1617. #endif
  1618. break;
  1619. case UPDATE_STEP_DOWNLOAD_BREAK_OFF:
  1620. dataLen = 1;
  1621. updateMsgSendLen = 8;
  1622. pUpdateMsgSend[0] = 0xEB; //start flag
  1623. pUpdateMsgSend[1] = 0x01; //add flag
  1624. pUpdateMsgSend[2] = 0x00; //write
  1625. pUpdateMsgSend[3] = 0x04; //data len
  1626. pUpdateMsgSend[4] = 0x81; //cmd
  1627. pUpdateMsgSend[5] = 0xBB; //data
  1628. pUpdateMsgSend[6] = 0x40; //check
  1629. pUpdateMsgSend[7] = 0xF5; //end flag
  1630. memset((UINT8*)(&pUpdateMsgRecv) , 0, sizeof(BMS_Update_Recv_Msg_Type));
  1631. SP_BMS_Update_Query(pUpdateMsgSend, updateMsgSendLen, (UINT8*)(&pUpdateMsgRecv), 0, 500);
  1632. osDelay(50);
  1633. updateStep = UPDATE_STEP_CHECK_VERSION;
  1634. Cycle_conut++;
  1635. break;
  1636. case UPDATE_STEP_ERROR:
  1637. updateStep = UPDATE_STEP_CHECK_VERSION;
  1638. printf("update error end\n");
  1639. bmsUpdateFlag = 0;
  1640. break;
  1641. default:
  1642. updateStep = UPDATE_STEP_CHECK_VERSION;
  1643. printf("update default end\n");
  1644. bmsUpdateFlag = 0;
  1645. break;
  1646. }
  1647. }
  1648. }
  1649. UINT8 SP_BMS_Update_Query(UINT8* pSend,UINT32 sendLen, UINT8* pRead, UINT32 readLen, UINT32 timeout)
  1650. {
  1651. UINT8 timeCount = 0;
  1652. UINT8 j=0;
  1653. USARTdrv->Send(pSend,sendLen);
  1654. #ifdef USING_PRINTF
  1655. printf("query in:");
  1656. for(j=0;j<sendLen;j++)
  1657. {
  1658. printf("%x ",*(pSend+j));
  1659. }
  1660. printf("\n");
  1661. #endif
  1662. if(readLen>0)
  1663. {
  1664. USARTdrv->Receive(pRead,readLen);
  1665. while((isRecvTimeout == false) && (isRecvComplete == false))
  1666. {
  1667. timeCount++;
  1668. osDelay(100);
  1669. if (timeCount>=timeout/100)
  1670. {
  1671. timeCount =0;
  1672. isRecvTimeout = true;
  1673. break;
  1674. }
  1675. }
  1676. #ifdef USING_PRINTF
  1677. printf("\nanswer in:");
  1678. for(j=0;j<readLen;j++)
  1679. {
  1680. printf("%x ",*(pRead+j));
  1681. }
  1682. printf("\n");
  1683. #endif
  1684. if (isRecvComplete == true)
  1685. {
  1686. isRecvComplete = false;
  1687. if(*(pRead+0)!=0xEB)
  1688. {
  1689. USARTdrv->Uninitialize();
  1690. osDelay(100);
  1691. USARTdrv->Initialize(USART_callback);
  1692. USARTdrv->PowerControl(ARM_POWER_FULL);
  1693. USARTdrv->Control(ARM_USART_MODE_ASYNCHRONOUS |
  1694. ARM_USART_DATA_BITS_8 |
  1695. ARM_USART_PARITY_NONE |
  1696. ARM_USART_STOP_BITS_1 |
  1697. ARM_USART_FLOW_CONTROL_NONE, 9600);
  1698. #ifdef USING_PRINTF
  1699. printf("\nuart reset in \n");
  1700. #endif
  1701. return 0;
  1702. }
  1703. return readLen;
  1704. }
  1705. else
  1706. {
  1707. memset(pRead,0x00,readLen);
  1708. isRecvTimeout = false;
  1709. return 0;
  1710. }
  1711. }
  1712. else
  1713. {
  1714. return 1;
  1715. }
  1716. }
  1717. UINT8 SP_BMS_Update_CheckSUM(UINT8* pSendData,UINT8 len)
  1718. {
  1719. UINT8 ret = 0;
  1720. UINT8 i=0;
  1721. for(i=0;i<len;i++)
  1722. {
  1723. ret +=*(pSendData+i);
  1724. }
  1725. return ret&0xFF;
  1726. }