hal_module_adapter.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662
  1. #include "bsp.h"
  2. #include "osasys.h"
  3. #include "ostask.h"
  4. #include "queue.h"
  5. #include "debug_log.h"
  6. #include "slpman_ec616.h"
  7. #include "plat_config.h"
  8. #include "hal_uart.h"
  9. #include "hal_adc.h"
  10. #include "adc_ec616.h"
  11. #include "gpio_ec616.h"
  12. #include "hal_module_adapter.h"
  13. #include <stdarg.h>
  14. /*
  15. gps
  16. */
  17. static posGGACallBack gGPSDataCBfunc =NULL;
  18. // GSENSOR device addr
  19. #define GSENSOR_DEVICE_ADDR (SC7A20_IIC_ADDRESS)
  20. #define ZM01_DEVICE_ADDR (0x2a)
  21. /*
  22. i2c
  23. */
  24. #define HAL_I2C_RECV_TASK_QUEUE_CREATED (0x1)
  25. #define I2C_RECV_QUEUE_BUF_SIZE (0x10)
  26. #define I2C_RECV_TASK_STACK_SIZE (1536)
  27. /*
  28. power control
  29. */
  30. // back power
  31. #define AON_GPS_POWER1 (8)
  32. //main power
  33. #define AON_GPS_POWER2 (4)
  34. #define AON_RELAY_DRV (5)
  35. #define AON_WAKEUP (8)
  36. #define GPIO_MOS_DRV1 (14)
  37. #define GPIO_MOS_DRV2 (15)
  38. #define GPIO_POWER_LED (9)
  39. /*GPS*/
  40. #define FEM_GPS_RSTN (6)
  41. #define FEM_GPS_BLK (7)
  42. #define FEM_GPS_PPS (9)
  43. /*CAN*/
  44. #define GPIO_CAN_POWER (9)
  45. /*
  46. I2C
  47. */
  48. #define I2C_RECV_CONTROL_FLAG (0x1)
  49. static UINT32 g_halI2CInitFlag = 0;
  50. static osEventFlagsId_t g_i2CRecvFlag;
  51. static StaticQueue_t i2c_recv_queue_cb;
  52. static StaticTask_t i2c_recv_task;
  53. static UINT8 i2c_recv_task_stack[I2C_RECV_TASK_STACK_SIZE];
  54. static UINT8 i2c_recv_queue_buf[I2C_RECV_QUEUE_BUF_SIZE*sizeof(i2c_recv_msgqueue_obj_t)];
  55. // message queue id
  56. static osMessageQueueId_t i2c_recv_msgqueue;
  57. /*
  58. adc
  59. */
  60. #define GPIO_AIO3_SEL (19)
  61. #define GPIO_AIO4_SEL (18)
  62. #define ADC_TASK_STACK_SIZE (512)
  63. #define ADC_MSG_MAX_NUM (7)
  64. #define ADC_AioResDivRatioDefault (ADC_AioResDivRatio14Over16)
  65. #define REV_AioResDivRatioDefault 16/14
  66. //#define ADC_ChannelAioVbat (1200)
  67. static UINT32 ADC_ChannelAioVbat=1200;
  68. #define ADC_ChannelAioRes (15000)
  69. #define NTC_FullAioValue (1200)
  70. #define ADC_AioResDivRatioExtra (ADC_AioResDivRatio8Over16)
  71. #define REV_AioResDivRatioExtra 16/8
  72. #define NTC_REQ_UPDATE_DATA (0x01)
  73. #define ADC_MSG_TIMEOUT (1000)
  74. #define ADC_CALIBRATION_VALUE (50900)
  75. static UINT32 ADC_InsideRES=500000;
  76. #define ADC_RECV_CONTROL_FLAG (0x1)
  77. typedef struct
  78. {
  79. UINT32 request;
  80. UINT32 NTCvalue[7];
  81. }NtcResult_t;
  82. NtcResult_t gNtcDev;
  83. volatile static UINT32 vbatChannelResult = 0;
  84. volatile static UINT32 thermalChannelResult = 0;
  85. volatile static UINT32 NTCChannelResult[NTC_ChannelMax];
  86. QueueHandle_t adcMsgHandle = NULL;
  87. static osEventFlagsId_t adcEvtHandle = NULL;
  88. static osEventFlagsId_t adcTrigerHandle = NULL;
  89. static osThreadId_t adcTaskHandle = NULL;
  90. static StaticTask_t adcTask = NULL;
  91. static UINT8 adcTaskStack[ADC_TASK_STACK_SIZE];
  92. /*
  93. gps
  94. */
  95. static QueueHandle_t gpsHandle = NULL;
  96. /*
  97. can
  98. */
  99. static osMessageQueueId_t can_recv_msgqueue;
  100. static StaticQueue_t can_recv_queue_cb;
  101. #define CAN_RECV_QUEUE_BUF_SIZE (0x10)
  102. static UINT8 can_recv_queue_buf[CAN_RECV_QUEUE_BUF_SIZE];
  103. #define CAN_RECV_CONTROL_FLAG (0x1)
  104. //#define SPI_ANALOG
  105. #ifdef SPI_ANALOG
  106. #define USING_SPI0 0
  107. #endif
  108. /*spi0*/
  109. #ifdef SPI_ANALOG
  110. #if USING_SPI0
  111. #define SPI_SSN_GPIO_INSTANCE RTE_SPI0_SSN_GPIO_INSTANCE
  112. #define SPI_SSN_GPIO_INDEX RTE_SPI0_SSN_GPIO_INDEX
  113. #define SPI_SSN_GPIO_PAD_ADDR 21
  114. #define SPI_CLK_GPIO_INSTANCE 0
  115. #define SPI_CLK_GPIO_INDEX 15
  116. #define SPI_CLK_GPIO_PAD_ADDR 24
  117. #define SPI_MOSI_GPIO_INSTANCE 0
  118. #define SPI_MOSI_GPIO_INDEX 11
  119. #define SPI_MOSI_GPIO_PAD_ADDR 22
  120. #define SPI_MISO_GPIO_INSTANCE 0
  121. #define SPI_MISO_GPIO_INDEX 14
  122. #define SPI_MISO_GPIO_PAD_ADDR 23
  123. #else //SPI1
  124. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  125. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  126. #define SPI_SSN_GPIO_PAD_ADDR 13
  127. #define SPI_CLK_GPIO_INSTANCE 0
  128. #define SPI_CLK_GPIO_INDEX 5
  129. #define SPI_CLK_GPIO_PAD_ADDR 16
  130. #define SPI_MOSI_GPIO_INSTANCE 0
  131. #define SPI_MOSI_GPIO_INDEX 3
  132. #define SPI_MOSI_GPIO_PAD_ADDR 14
  133. #define SPI_MISO_GPIO_INSTANCE 0
  134. #define SPI_MISO_GPIO_INDEX 4
  135. #define SPI_MISO_GPIO_PAD_ADDR 15
  136. #endif
  137. #else
  138. #define SPI_SSN_GPIO_INSTANCE RTE_SPI1_SSN_GPIO_INSTANCE
  139. #define SPI_SSN_GPIO_INDEX RTE_SPI1_SSN_GPIO_INDEX
  140. #endif
  141. extern ARM_DRIVER_I2C Driver_I2C0;
  142. extern ARM_DRIVER_SPI Driver_SPI0;
  143. extern ARM_DRIVER_SPI Driver_SPI1;
  144. extern ARM_DRIVER_USART Driver_USART2;
  145. extern ARM_DRIVER_USART Driver_USART1;
  146. uint8_t gps_uart_recv_buf[GPS_DATA_RECV_BUFFER_SIZE];
  147. static ARM_DRIVER_SPI *spiMasterDrv = &CREATE_SYMBOL(Driver_SPI, 1);
  148. static ARM_DRIVER_I2C *i2cDrvInstance = &CREATE_SYMBOL(Driver_I2C, 0);
  149. static ARM_DRIVER_USART *usartHandle = &CREATE_SYMBOL(Driver_USART, 2);
  150. static ARM_DRIVER_USART *printfHandle = &CREATE_SYMBOL(Driver_USART, 1);
  151. //LED define pin index
  152. #define LED_INX_MAX (5)
  153. #define LED_PORT_0 (0)
  154. #define LED_PORT_1 (1)
  155. /*
  156. pin1~pin4 for soc display
  157. pin5 for fault display
  158. */
  159. #define LED_GPIO_PIN_1 (6)
  160. #define LED_PAD_INDEX1 (17)
  161. #define LED_GPIO_PIN_2 (7)
  162. #define LED_PAD_INDEX2 (18)
  163. #define LED_GPIO_PIN_3 (0)
  164. #define LED_PAD_INDEX3 (21)
  165. #define LED_GPIO_PIN_4 (11)
  166. #define LED_PAD_INDEX4 (22)
  167. #define LED_GPIO_PIN_5 (1)
  168. #define LED_PAD_INDEX5 (27)
  169. led_pin_config_t gLedCfg[LED_INX_MAX]={{LED_PORT_0,LED_GPIO_PIN_1,LED_PAD_INDEX1, PAD_MuxAlt0},\
  170. {LED_PORT_0,LED_GPIO_PIN_2,LED_PAD_INDEX2, PAD_MuxAlt0},\
  171. {LED_PORT_1,LED_GPIO_PIN_3,LED_PAD_INDEX3, PAD_MuxAlt0},\
  172. {LED_PORT_0,LED_GPIO_PIN_4,LED_PAD_INDEX4, PAD_MuxAlt0},\
  173. {LED_PORT_1,LED_GPIO_PIN_5,LED_PAD_INDEX5, PAD_MuxAlt0}};
  174. void UTCToBeijing(UTC8TimeType* UTC8Time,unsigned int UTCyear,unsigned char UTCmonth,unsigned char UTCday,unsigned int UTChour,unsigned char UTCminute,unsigned char UTCsecond)
  175. {
  176. int year=0,month=0,day=0,hour=0;
  177. int lastday = 0;// ÔµÄ×îºóÒ»ÌìÈÕÆÚ
  178. int lastlastday = 0;//ÉÏÔµÄ×îºóÒ»ÌìÈÕÆÚ
  179. year=UTCyear;
  180. month=UTCmonth;
  181. day=UTCday;
  182. hour=UTChour+8;//UTC+8ת»»Îª±±¾©Ê±¼ä
  183. if(month==1 || month==3 || month==5 || month==7 || month==8 || month==10 || month==12)
  184. {
  185. lastday = 31;
  186. if(month == 3)
  187. {
  188. if((year%400 == 0)||(year%4 == 0 && year%100 != 0))//ÅжÏÊÇ·ñΪÈòÄê
  189. lastlastday = 29;//ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  190. else
  191. lastlastday = 28;
  192. }
  193. if(month == 8)
  194. lastlastday = 31;
  195. }
  196. else
  197. if(month == 4 || month == 6 || month == 9 || month == 11)
  198. {
  199. lastday = 30;
  200. lastlastday = 31;
  201. }
  202. else
  203. {
  204. lastlastday = 31;
  205. if((year%400 == 0)||(year%4 == 0 && year%100 != 0))//ÈòÄêµÄ2ÔÂΪ29Ì죬ƽÄêΪ28Ìì
  206. lastday = 29;
  207. else
  208. lastday = 28;
  209. }
  210. if(hour >= 24)//µ±Ëã³öµÄʱ´óÓÚ»òµÈÓÚ24£º00ʱ£¬Ó¦¼õÈ¥24£º00£¬ÈÕÆÚ¼ÓÒ»Ìì
  211. {
  212. hour -= 24;
  213. day += 1;
  214. if(day > lastday)//µ±Ëã³öµÄÈÕÆÚ´óÓÚ¸ÃÔÂ×îºóÒ»Ììʱ£¬Ó¦¼õÈ¥¸ÃÔÂ×îºóÒ»ÌìµÄÈÕÆÚ£¬Ô·ݼÓÉÏÒ»¸öÔÂ
  215. {
  216. day -= lastday;
  217. month += 1;
  218. if(month > 12)//µ±Ëã³öµÄÔ·ݴóÓÚ12£¬Ó¦¼õÈ¥12£¬Äê·Ý¼ÓÉÏ1Äê
  219. {
  220. month -= 12;
  221. year += 1;
  222. }
  223. }
  224. }
  225. UTC8Time->year = year;
  226. UTC8Time->month = month;
  227. UTC8Time->day = day;
  228. UTC8Time->hour = hour;
  229. UTC8Time->minute = UTCminute;
  230. UTC8Time->second = UTCsecond;
  231. }
  232. #include <stdarg.h>
  233. #ifdef DEBUGLOG
  234. static osMutexId_t DebugFileMux;
  235. static void Debug_Write_Logfile(UINT8 * buf)
  236. {
  237. UINT32 Count;
  238. OSAFILE file;
  239. osMutexAcquire(DebugFileMux, osWaitForever);
  240. file = OsaFopen("DebugFile","wb");
  241. if(file!=NULL)
  242. {
  243. if(OsaFseek(file, 0, SEEK_END) == 0)
  244. {
  245. Count = OsaFwrite(buf, 1, strlen(buf), file);
  246. }
  247. OsaFclose(file);
  248. }
  249. osMutexRelease(DebugFileMux);
  250. return;
  251. }
  252. void Debug_printf(const UINT8 *format, ...)
  253. {
  254. UINT8 buf[128+1];
  255. va_list args;
  256. OsaUtcTimeTValue timeUtc;
  257. UINT16 year;
  258. UINT8 month,day,hour,minute,sec;
  259. appGetSystemTimeUtcSync(&timeUtc);
  260. year=(timeUtc.UTCtimer1&0xffff0000)>>16;
  261. month=(timeUtc.UTCtimer1&0xff00)>>8;
  262. day=timeUtc.UTCtimer1&0xff;
  263. hour=(timeUtc.UTCtimer2&0xff000000)>>24;
  264. minute=(timeUtc.UTCtimer2&0xff0000)>>16;
  265. sec=(timeUtc.UTCtimer2&0xff00)>>8;
  266. memset(buf,0,128+1);
  267. UTC8TimeType UTC8TimeStruct;
  268. UTCToBeijing((UTC8TimeType *)&UTC8TimeStruct,year,month,day,hour,minute,sec);
  269. sprintf((char *)buf,"%02d:%02d:%02d-",UTC8TimeStruct.hour,UTC8TimeStruct.minute,UTC8TimeStruct.second);
  270. va_start(args, format);
  271. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  272. va_end(args);
  273. Debug_Write_Logfile(buf);
  274. }
  275. UINT16 Debug_GetSize()
  276. {
  277. UINT16 FileSize;
  278. OSAFILE file;
  279. osMutexAcquire(DebugFileMux, osWaitForever);
  280. file = OsaFopen("DebugFile","rb");
  281. FileSize = OsaFsize(file);
  282. OsaFclose(file);
  283. osMutexRelease(DebugFileMux);
  284. return FileSize;
  285. }
  286. void Debug_Read_Logfile(UINT8 * rbuf,UINT16 FileSize)
  287. {
  288. UINT32 Count;
  289. OSAFILE file;
  290. printf("%s start\r\n",__FUNCTION__);
  291. osMutexAcquire(DebugFileMux, osWaitForever);
  292. file = OsaFopen("DebugFile","rb");
  293. if(file!=NULL)
  294. {
  295. if(OsaFseek(file, 0, SEEK_SET) == 0)
  296. {
  297. memset(rbuf,0,FileSize);
  298. Count = OsaFread(rbuf, 1, FileSize, file);
  299. printf("%s",rbuf);
  300. }
  301. OsaFclose(file);
  302. }
  303. printf("%s end! \r\n",__FUNCTION__);
  304. osMutexRelease(DebugFileMux);
  305. return;
  306. }
  307. void Debug_Del_Logfile(void)
  308. {
  309. osMutexAcquire(DebugFileMux, osWaitForever);
  310. OsaFremove("DebugFile");
  311. osMutexRelease(DebugFileMux);
  312. }
  313. #endif
  314. #ifdef BL_FILE_LOG
  315. static UINT8 blLogFileNux=0;
  316. static void bluejoy_write_logfile(UINT8 * buf)
  317. {
  318. int32_t err;
  319. UINT32 Count;
  320. OSAFILE file;
  321. while(blLogFileNux){
  322. osDelay(10/portTICK_PERIOD_MS);
  323. }
  324. blLogFileNux=1;
  325. file = OsaFopen("blLog","wb");
  326. if(file==NULL){
  327. //printf("blLog open fail!\r\n");
  328. blLogFileNux=0;
  329. return;
  330. }
  331. if(OsaFseek(file, 0, SEEK_END) != 0)
  332. {
  333. //printf("Seek file failed [%d] \r\n",__LINE__);
  334. OsaFclose(file);
  335. blLogFileNux=0;
  336. return;
  337. }
  338. Count = OsaFwrite(buf, 1, strlen(buf), file);
  339. if(Count != (strlen(buf))){
  340. //printf("blLog write fail!\r\n");
  341. }
  342. OsaFclose(file);
  343. blLogFileNux=0;
  344. }
  345. void bluejoy_read_logfile(void)
  346. {
  347. int32_t err;
  348. UINT32 Count;
  349. OSAFILE file;
  350. UINT8 rbuf[128+1]={0};
  351. UINT8 * flag_p;
  352. UINT16 pri_l;
  353. printf("%s start\r\n",__FUNCTION__);
  354. while(blLogFileNux){
  355. osDelay(10/portTICK_PERIOD_MS);
  356. }
  357. blLogFileNux=1;
  358. file = OsaFopen("blLog","rb");
  359. if(file==NULL){
  360. printf("blLog not exst!\r\n");
  361. blLogFileNux=0;
  362. return;
  363. }
  364. if(OsaFseek(file, 0, SEEK_SET) != 0)
  365. {
  366. printf("Seek file failed [%d] \r\n",__LINE__);
  367. OsaFclose(file);
  368. blLogFileNux=0;
  369. return;
  370. }
  371. do{
  372. memset(rbuf,0,128);
  373. Count = OsaFread(rbuf, 1, 128, file);
  374. printf("%s",rbuf);
  375. }while(Count==128);
  376. OsaFclose(file);
  377. blLogFileNux=0;
  378. printf("%s end! \r\n",__FUNCTION__);
  379. }
  380. void bluejoy_del_logfile(void)
  381. {
  382. UINT32 ret;
  383. //printf("%s start! \r\n",__FUNCTION__);
  384. while(blLogFileNux){
  385. osDelay(10/portTICK_PERIOD_MS);
  386. }
  387. blLogFileNux=1;
  388. OsaFremove("blLog");
  389. blLogFileNux=0;
  390. FaultDisplay(LED_TURN_OFF);
  391. osDelay(1000/portTICK_PERIOD_MS);
  392. FaultDisplay(LED_TURN_ON);
  393. osDelay(1000/portTICK_PERIOD_MS);
  394. FaultDisplay(LED_TURN_OFF);
  395. osDelay(1000/portTICK_PERIOD_MS);
  396. FaultDisplay(LED_TURN_ON);
  397. }
  398. void bluejoy_printf(BlLogLevel level, const UINT8 *format, ...)
  399. {
  400. UINT8 buf[128+1];
  401. va_list args;
  402. OsaUtcTimeTValue timeUtc;
  403. UINT16 year;
  404. UINT8 month,day,hour,minite,sec;
  405. if(level<BL_LEVEL2)
  406. return;
  407. appGetSystemTimeUtcSync(&timeUtc);
  408. year=(timeUtc.UTCtimer1&0xffff0000)>>16;
  409. month=(timeUtc.UTCtimer1&0xff00)>>8;
  410. day=timeUtc.UTCtimer1&0xff;
  411. hour=(timeUtc.UTCtimer2&0xff000000)>>24;
  412. minite=(timeUtc.UTCtimer2&0xff0000)>>16;
  413. sec=(timeUtc.UTCtimer2&0xff00)>>8;
  414. memset(buf,0,128+1);
  415. UTC8TimeType UTC8TimeStruct;
  416. UTCToBeijing(UTC8TimeStruct,year,month,day,hour,minite,sec);
  417. sprintf((char *)buf,"%04d-%02d-%02d %02d:%02d:%02d ",UTC8TimeStruct.year,UTC8TimeStruct.month,UTC8TimeStruct.day,UTC8TimeStruct.hour,UTC8TimeStruct.minute,UTC8TimeStruct.second);
  418. va_start(args, format);
  419. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  420. va_end(args);
  421. //printf("%s", buf);
  422. bluejoy_write_logfile(buf);
  423. }
  424. #endif
  425. #if 0
  426. /**
  427. \fn void NetSocDisplay(UINT8 soc)
  428. \param[in] void
  429. \brief RSSI display on led
  430. \return
  431. */
  432. #define RSSI_LEVEL_0 (0)
  433. #define RSSI_LEVEL_10 (10)
  434. #define RSSI_LEVEL_20 (20)
  435. #define RSSI_LEVEL_25 (25)
  436. #define RSSI_LEVEL_30 (30)
  437. void NetSocDisplay(UINT8 soc)
  438. {
  439. UINT16 pinLevel[LED_INX_MAX-1] ={0};
  440. gpio_pin_config_t nGpioCfg={0};
  441. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  442. nGpioCfg.misc.initOutput = 1;
  443. for(int8_t i=0;i< LED_INX_MAX-1;i++){
  444. GPIO_PinConfig(gLedCfg[i].pinPort, gLedCfg[i].pinInx, &nGpioCfg);
  445. }
  446. if(RSSI_LEVEL_0 < soc && soc <=RSSI_LEVEL_10)
  447. {
  448. pinLevel[0]=1;
  449. pinLevel[1]=pinLevel[2]=pinLevel[3]=0;
  450. }
  451. else if(RSSI_LEVEL_10 < soc && soc <=RSSI_LEVEL_20)
  452. {
  453. pinLevel[0]=pinLevel[1]=1;
  454. pinLevel[2]=pinLevel[3]=0;
  455. }
  456. else if(RSSI_LEVEL_20 < soc && soc <=RSSI_LEVEL_25)
  457. {
  458. pinLevel[0]=pinLevel[1]=pinLevel[2]=1;
  459. pinLevel[3]=0;
  460. }
  461. else if(RSSI_LEVEL_25 < soc && soc <=RSSI_LEVEL_30)
  462. {
  463. pinLevel[0]=pinLevel[1]=pinLevel[2]=pinLevel[3]=1;
  464. }
  465. for(UINT8 i=0; i<LED_INX_MAX-1; i++)
  466. {
  467. GPIO_PinWrite(gLedCfg[i].pinPort, 1<<gLedCfg[i].pinInx, pinLevel[i]<<gLedCfg[i].pinInx);
  468. }
  469. }
  470. #endif
  471. void NetSocDisplay(ledInx_t Inx , ledStaus_t level)
  472. {
  473. UINT16 pinLevel[LED_INX_MAX-1] ={0};
  474. gpio_pin_config_t nGpioCfg={0};
  475. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  476. nGpioCfg.misc.initOutput = 1;
  477. pad_config_t padConfig;
  478. PAD_GetDefaultConfig(&padConfig);
  479. padConfig.mux = gLedCfg[Inx].padMutex;
  480. PAD_SetPinConfig(gLedCfg[Inx].padInx, &padConfig);
  481. PAD_SetPinPullConfig(gLedCfg[Inx].padInx, PAD_InternalPullDown);
  482. GPIO_PinConfig(gLedCfg[Inx].pinPort, gLedCfg[Inx].pinInx, &nGpioCfg);
  483. GPIO_PinWrite(gLedCfg[Inx].pinPort, 1<<gLedCfg[Inx].pinInx, level <<gLedCfg[Inx].pinInx);
  484. }
  485. /**
  486. \fn void FaultDisplay(ledStaus_t status)
  487. \param[in] status equal to 1 ,turn on red led ; status equal to 0 ,turn off red led
  488. \brief RSSI display on led
  489. \return
  490. */
  491. void FaultDisplay(ledStaus_t status)
  492. {
  493. gpio_pin_config_t nGpioCfg={0};
  494. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  495. nGpioCfg.misc.initOutput = 1;
  496. pad_config_t padConfig;
  497. PAD_GetDefaultConfig(&padConfig);
  498. padConfig.mux = gLedCfg[4].padMutex;
  499. PAD_SetPinConfig(gLedCfg[4].padInx, &padConfig);
  500. PAD_SetPinPullConfig(gLedCfg[4].padInx, PAD_InternalPullDown);
  501. GPIO_PinConfig(gLedCfg[4].pinPort, gLedCfg[4].pinInx, &nGpioCfg);
  502. GPIO_PinWrite(gLedCfg[4].pinPort, 1<<gLedCfg[4].pinInx, status<<gLedCfg[4].pinInx);
  503. }
  504. /**
  505. * @brief
  506. * @param
  507. * @return
  508. */
  509. void SPI_CS_High(void)
  510. {
  511. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 1 << SPI_SSN_GPIO_INDEX);
  512. }
  513. /**
  514. * @brief
  515. * @param
  516. * @return
  517. */
  518. void SPI_CS_Low(void)
  519. {
  520. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1 << SPI_SSN_GPIO_INDEX, 0);
  521. }
  522. #ifdef SPI_ANALOG
  523. /**
  524. * @brief
  525. * @param
  526. * @return
  527. */
  528. void SPI_Clk_High(void)
  529. {
  530. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,1<<SPI_CLK_GPIO_INDEX);
  531. }
  532. /**
  533. * @brief
  534. * @param
  535. * @return
  536. */
  537. void SPI_Clk_Low(void)
  538. {
  539. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,0);
  540. }
  541. /**
  542. * @brief
  543. * @param
  544. * @return
  545. */
  546. void SPI_Mosi_High(void)
  547. {
  548. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,1<<SPI_MOSI_GPIO_INDEX);
  549. }
  550. /**
  551. * @brief
  552. * @param
  553. * @return
  554. */
  555. void SPI_Mosi_Low(void)
  556. {
  557. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,0);
  558. }
  559. /**
  560. * @brief
  561. * @param
  562. * @return
  563. */
  564. UINT8 SPI_MISO_Read(void)
  565. {
  566. return GPIO_PinRead(SPI_MISO_GPIO_INSTANCE,SPI_MISO_GPIO_INDEX);
  567. }
  568. #endif
  569. /**
  570. * @brief Software SPI_Flash bus driver basic function, send a single byte to MOSI,
  571. * and accept MISO data at the same time.
  572. * @param[in] u8Data:Data sent on the MOSI data line
  573. * @return u8Out: Data received on the MISO data line
  574. */
  575. UINT8 SPI_Write_Byte(UINT8 u8Data)
  576. {
  577. UINT8 data = u8Data;
  578. #ifdef SPI_ANALOG
  579. UINT8 i=0;
  580. for(i=0;i<8;i++){
  581. SPI_Clk_Low();
  582. if((u8Data<<i)&0x80)
  583. SPI_Mosi_High();
  584. else
  585. SPI_Mosi_Low();
  586. SPI_Clk_High();
  587. }
  588. SPI_Clk_Low();
  589. #else
  590. spiMasterDrv->Transfer(&u8Data,&data,1);
  591. #endif
  592. return 0;
  593. }
  594. #ifdef SPI_ANALOG
  595. /**
  596. * @brief
  597. * @param
  598. * @return
  599. */
  600. UINT8 SPI_Read_Byte(void)
  601. {
  602. UINT8 i=0;
  603. UINT8 rByte=0;
  604. SPI_Clk_Low();
  605. for(i=0;i<8;i++){
  606. SPI_Clk_High();
  607. rByte<<=1;
  608. rByte |= SPI_MISO_Read();
  609. SPI_Clk_Low();
  610. }
  611. return rByte;
  612. }
  613. #endif
  614. /**
  615. \fn INT32 CAN_ReadReg(UINT8 addr)
  616. \param[in] addr CAN register addr
  617. \brief write can register
  618. \return
  619. */
  620. INT32 CAN_WriteReg(UINT8 addr, UINT8 value)
  621. {
  622. SPI_CS_Low();
  623. SPI_Write_Byte(CAN_WRITE);
  624. SPI_Write_Byte(addr);
  625. SPI_Write_Byte(value);
  626. SPI_CS_High();
  627. return 0;
  628. }
  629. /**
  630. \fn INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  631. \param[in] reg: can register addr
  632. \brief read can register
  633. \return
  634. */
  635. INT32 CAN_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  636. {
  637. UINT8 i =0;
  638. UINT8 data=0;
  639. INT32 res;
  640. if(buf == NULL) return -1;
  641. SPI_CS_Low();
  642. SPI_Write_Byte(CAN_READ);
  643. SPI_Write_Byte(reg);
  644. #ifdef SPI_ANALOG
  645. for(i=0;i<len;i++){
  646. buf[i]= SPI_Read_Byte();
  647. }
  648. #else
  649. for(i=0;i<len;i++){
  650. spiMasterDrv->Transfer(&data,&buf[i],1);
  651. }
  652. #endif
  653. SPI_CS_High();
  654. return i;
  655. }
  656. /**
  657. \fn UINT8 CanTriggerEvtInit(void)
  658. \param[in]
  659. \brief generate irq,then notify app
  660. \return 1 fail; 0 ok;
  661. */
  662. UINT8 CanTriggerEvtInit(void)
  663. {
  664. /*for msg queue create*/
  665. osMessageQueueAttr_t queue_attr;
  666. memset(&queue_attr, 0, sizeof(queue_attr));
  667. queue_attr.cb_mem = &can_recv_queue_cb;
  668. queue_attr.cb_size = sizeof(can_recv_queue_cb);
  669. queue_attr.mq_mem = can_recv_queue_buf;
  670. queue_attr.mq_size = sizeof(can_recv_queue_buf);
  671. can_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE,1, &queue_attr);
  672. //printf("CanTriggerEvtInit \r\n");
  673. return 0;
  674. }
  675. /**
  676. \fn void CanWaitEvt(UINT32 timeout)
  677. \param[in]
  678. \brief
  679. \return
  680. */
  681. void CanWaitEvt(UINT32 timeout)
  682. {
  683. osStatus_t status;
  684. UINT8 msg = 0;
  685. UINT32 mask;
  686. status = osMessageQueueGet(can_recv_msgqueue, &msg, 0 , osWaitForever);
  687. //printf("msg = %#x\r\n",msg);
  688. }
  689. /**
  690. \fn void CanTiggerEvt(UINT8 cmd)
  691. \param[in]
  692. \brief
  693. \return
  694. */
  695. void CanTiggerEvt(UINT8 cmd)
  696. {
  697. osStatus_t status;
  698. UINT8 msg = cmd;
  699. status = osMessageQueuePut(can_recv_msgqueue, &msg, 0, 0);
  700. }
  701. /*******************************************************************************
  702. * o����y?? : MCP2515_Reset
  703. * ?����? : ����?��?��????��?����?t?��??MCP2515
  704. * ��?��? : ?T
  705. * ��?3? : ?T
  706. * ����???�� : ?T
  707. * ?��?�� : ???��2???��??��?��???a������?���䨬?,2��???��?t����?��?a?????�꨺?
  708. *******************************************************************************/
  709. INT32 HAL_Can_Reset(void)
  710. {
  711. SPI_CS_Low();
  712. SPI_Write_Byte(CAN_RESET);
  713. SPI_CS_High();
  714. return 0;
  715. }
  716. /*******************************************************************************
  717. * o����y?? : MCP2515_Init
  718. * ?����? : MCP25153?��??��????
  719. * ��?��? : ?T
  720. * ��?3? : ?T
  721. * ����???�� : ?T
  722. * ?��?�� : 3?��??���㨹������o����?t?��???��1�����2����??������???�������?��??��1?????�̨�?��
  723. *******************************************************************************/
  724. void HAL_Can_Init(Can_InitType param)
  725. {
  726. UINT8 temp=0,temp1=0;
  727. INT32 res = -1;
  728. gpio_pin_config_t config;
  729. config.pinDirection = GPIO_DirectionOutput;
  730. config.misc.initOutput = 1;
  731. pad_config_t padConfig;
  732. PAD_GetDefaultConfig(&padConfig);
  733. //POWER
  734. padConfig.mux = PAD_MuxAlt0;
  735. PAD_SetPinConfig(28, &padConfig);
  736. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 1 << GPIO_CAN_POWER);
  737. HAL_Can_Reset(); //¡¤¡é?¨ª?¡ä????¨¢?¨¨¨ª?t?¡ä??MCP2515
  738. osDelay(100/portTICK_PERIOD_MS);
  739. CAN_WriteReg(CANCTRL,OPMODE_CONFIG |CLKOUT_ENABLED);
  740. // CAN_ReadReg(CANCTRL,1,&temp);//?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  741. #ifdef USING_PRINTF
  742. //printf("[%d] CANCTRL = %#x \r\n",__LINE__,temp);
  743. #endif
  744. CAN_WriteReg(CNF1,param.baudrate);
  745. CAN_WriteReg(CNF2,BTLMODE_CNF3|PHSEG1_3TQ|PRSEG_1TQ);
  746. CAN_WriteReg(CNF3,PHSEG2_3TQ);
  747. if(param.packType == STD_PACK){
  748. /*?����???2��??��??��*/
  749. CAN_WriteReg(TXB0SIDH,0xFF&(param.TxStdIDH));//����?��?o3??��0������?������?��?????
  750. CAN_WriteReg(TXB0SIDL,0xE0&(param.TxStdIDL));//����?��?o3??��0������?������?��?�̨�??
  751. CAN_WriteReg(RXM0SIDH,0x00);
  752. CAN_WriteReg(RXM0SIDL,0x00);
  753. CAN_WriteReg(RXM1SIDH,0x00);
  754. CAN_WriteReg(RXM1SIDL,0x00);
  755. /*?����???2��??��??��*/
  756. CAN_WriteReg(RXF0SIDH,0xFF&(param.RxStdIDH[0]));
  757. CAN_WriteReg(RXF0SIDL,0xE0&(param.RxStdIDL[0]));
  758. CAN_WriteReg(RXF1SIDH,0xFF&(param.RxStdIDH[1]));
  759. CAN_WriteReg(RXF1SIDL,0xE0&(param.RxStdIDL[1]));
  760. #if 0
  761. CAN_WriteReg(RXF2SIDH,0x00);
  762. CAN_WriteReg(RXF2SIDL,0xa0);
  763. CAN_WriteReg(RXF3SIDH,0x00);
  764. CAN_WriteReg(RXF3SIDL,0x40);
  765. CAN_WriteReg(RXF4SIDH,0x00);
  766. CAN_WriteReg(RXF4SIDL,0x60);
  767. CAN_WriteReg(RXF5SIDH,0x00);
  768. CAN_WriteReg(RXF5SIDL,0x80);
  769. #else
  770. CAN_WriteReg(RXF2SIDH,0xFF&(param.RxStdIDH[2]));
  771. CAN_WriteReg(RXF2SIDL,0xE0&(param.RxStdIDL[2]));
  772. CAN_WriteReg(RXF3SIDH,0xFF&(param.RxStdIDH[3]));
  773. CAN_WriteReg(RXF3SIDL,0xE0&(param.RxStdIDL[3]));
  774. CAN_WriteReg(RXF4SIDH,0xFF&(param.RxStdIDH[4]));
  775. CAN_WriteReg(RXF4SIDL,0xE0&(param.RxStdIDL[4]));
  776. CAN_WriteReg(RXF5SIDH,0xFF&(param.RxStdIDH[5]));
  777. CAN_WriteReg(RXF5SIDL,0xE0&(param.RxStdIDL[5]));
  778. #endif
  779. CAN_WriteReg(RXB0CTRL,RXM_RCV_ALL|BUKT_ROLLOVER);
  780. CAN_WriteReg(RXB0DLC,DLC_8);
  781. CAN_WriteReg(RXB1CTRL,RXM_RCV_ALL);
  782. CAN_WriteReg(RXB1DLC,DLC_8);
  783. }
  784. else if(param.packType == EXT_PACK)
  785. {
  786. /*TXB0*/
  787. CAN_WriteReg(TXB0SIDH,0xFF&(param.TxStdIDH));
  788. CAN_WriteReg(TXB0SIDL,(0xEB&(param.TxStdIDL))|0x08);
  789. CAN_WriteReg(TXB0EID8,0xFF&(param.TxExtIDH));
  790. CAN_WriteReg(TXB0EID0,0xFF&(param.TxExtIDL));
  791. /*?����???2��??��??��*/
  792. CAN_WriteReg(RXM0SIDH,0x00); //FF->00 zhengchao
  793. CAN_WriteReg(RXM0SIDL,0x00); //E3->00 zhengchao
  794. CAN_WriteReg(RXM0EID8,0x00); //FF->00 zhengchao
  795. CAN_WriteReg(RXM0EID0,0x00); //FF->00 zhengchao
  796. /*?����???2��??��??��*/
  797. CAN_WriteReg(RXF0SIDH,0xFF&(param.RxStdIDH[0]));
  798. CAN_WriteReg(RXF0SIDL,(0xEB&(param.RxStdIDL[0]))|0x08);
  799. CAN_WriteReg(RXF0EID8,0xFF&(param.RxExtIDH[0]));
  800. CAN_WriteReg(RXF0EID8,0xFF&(param.RxExtIDL[0]));
  801. CAN_WriteReg(RXF1SIDH,0xFF&(param.RxStdIDH[1]));
  802. CAN_WriteReg(RXF1SIDL,(0xEB&(param.RxStdIDL[1]))|0x08);
  803. CAN_WriteReg(RXF1EID8,0xFF&(param.RxExtIDH[1]));
  804. CAN_WriteReg(RXF1EID8,0xFF&(param.RxExtIDL[1]));
  805. CAN_WriteReg(RXF2SIDH,0xFF&(param.RxStdIDH[2]));
  806. CAN_WriteReg(RXF2SIDL,(0xEB&(param.RxStdIDL[2]))|0x08);
  807. CAN_WriteReg(RXF2EID8,0xFF&(param.RxExtIDH[2]));
  808. CAN_WriteReg(RXF2EID8,0xFF&(param.RxExtIDL[2]));
  809. CAN_WriteReg(RXF3SIDH,0xFF&(param.RxStdIDH[3]));
  810. CAN_WriteReg(RXF3SIDL,(0xEB&(param.RxStdIDL[3]))|0x08);
  811. CAN_WriteReg(RXF3EID8,0xFF&(param.RxExtIDH[3]));
  812. CAN_WriteReg(RXF3EID8,0xFF&(param.RxExtIDL[3]));
  813. CAN_WriteReg(RXF4SIDH,0xFF&(param.RxStdIDH[4]));
  814. CAN_WriteReg(RXF4SIDL,(0xEB&(param.RxStdIDL[4]))|0x08);
  815. CAN_WriteReg(RXF4EID8,0xFF&(param.RxExtIDH[4]));
  816. CAN_WriteReg(RXF4EID8,0xFF&(param.RxExtIDL[4]));
  817. CAN_WriteReg(RXF5SIDH,0xFF&(param.RxStdIDH[5]));
  818. CAN_WriteReg(RXF5SIDL,(0xEB&(param.RxStdIDL[5]))|0x08);
  819. CAN_WriteReg(RXF5EID8,0xFF&(param.RxExtIDH[5]));
  820. CAN_WriteReg(RXF5EID8,0xFF&(param.RxExtIDL[5]));
  821. CAN_WriteReg(RXB0CTRL,RXM_VALID_EXT|BUKT_ROLLOVER);
  822. CAN_WriteReg(RXB0DLC,DLC_8);
  823. CAN_WriteReg(RXB1CTRL,RXM_VALID_EXT|FILHIT1_FLTR_2);
  824. CAN_WriteReg(RXB1DLC,DLC_8);
  825. }
  826. CAN_WriteReg(BFPCTRL,0x3F);//zhengchao20210304 add
  827. CAN_WriteReg(CANINTE,RX0IF|RX1IF); //zhengchao20210304 0x43 -> 0x03
  828. CAN_WriteReg(CANINTF,0x00);
  829. CAN_WriteReg(CANCTRL,param.mode |CLKOUT_ENABLED);//??MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º? REQOP_NORMAL|CLKOUT_ENABLED
  830. CAN_ReadReg(CANSTAT,1,&temp);//?¨¢¨¨?CAN¡Á¡ä¨¬???¡ä??¡Â¦Ì??¦Ì
  831. if(param.mode !=(temp&0xE0))//?D??MCP2515¨º?¡¤?¨°??-??¨¨??y3¡ê?¡ê¨º?
  832. {
  833. CAN_WriteReg(CANCTRL,param.mode|CLKOUT_ENABLED);//?¨´¡ä???MCP2515¨¦¨¨???a?y3¡ê?¡ê¨º?,¨ª?3??????¡ê¨º?REQOP_NORMAL
  834. }
  835. }
  836. /*******************************************************************************
  837. * : HAL_Can_Sleep
  838. *
  839. *
  840. *
  841. *
  842. *
  843. *******************************************************************************/
  844. void HAL_Can_Sleep(void)
  845. {
  846. UINT8 temp=0,temp2=0,t=0;
  847. do{
  848. CAN_WriteReg(CANCTRL,OPMODE_CONFIG);
  849. CAN_WriteReg(CANINTE,WAKIE|RX0IE|RX1IE);
  850. //CAN_WriteReg(CNF3, WAKFIL);
  851. CAN_ReadReg(CANSTAT,1,&temp);
  852. CAN_WriteReg(CANCTRL,OPMODE_SLEEP |CLKOUT_DISABLED);
  853. #ifdef USING_PRINTF
  854. //printf("%s[%d] [%#x]\r\n",__FUNCTION__, __LINE__,temp);
  855. #endif
  856. if(OPMODE_SLEEP ==(temp&0xE0)){
  857. #ifdef USING_PRINTF
  858. //printf("SLEEP SUC \r\n");
  859. #endif
  860. break;
  861. }
  862. }while(t++<3);
  863. //POWER
  864. GPIO_PinWrite(0, 1 << GPIO_CAN_POWER, 0);
  865. }
  866. /*******************************************************************************
  867. * o¡¥¨ºy?? : HAL_Can_Transmit
  868. * ?¨¨¨º? : CAN¡¤¡é?¨ª???¡§3¡è?¨¨¦Ì?¨ºy?Y
  869. * ¨º?¨¨? : *CAN_TX_Buf(¡äy¡¤¡é?¨ª¨ºy?Y?o3???????),len(¡äy¡¤¡é?¨ª¨ºy?Y3¡è?¨¨)
  870. * ¨º?3? : ?T
  871. * ¡¤¦Ì???¦Ì : ?T
  872. * ?¦Ì?¡Â : ?T
  873. *******************************************************************************/
  874. INT8 HAL_Can_Transmit(CAN_Msg_Type Can_TxMsg)
  875. {
  876. UINT8 tryTim,count,value,i,temp,TXBufferCase = 0;
  877. INT8 ret = 0;
  878. UINT8 TXB0CTRLvalue,TXB1CTRLvalue,TXB2CTRLvalue,CANINTFValue=0;
  879. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  880. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  881. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  882. if((TXB0CTRLvalue&TXREQ)==0)
  883. TXBufferCase = 0;
  884. else if((TXB1CTRLvalue&TXREQ)==0)
  885. TXBufferCase =1;
  886. else if((TXB2CTRLvalue&TXREQ)==0)
  887. TXBufferCase =2;
  888. else
  889. {
  890. CAN_WriteReg(TXB0CTRL, TXB0CTRLvalue&(~TXREQ));
  891. TXBufferCase = 0;
  892. }
  893. switch(TXBufferCase)
  894. {
  895. case 0:
  896. {
  897. //tryTim=0;
  898. //CAN_RseadReg(TXB0CTRL,1,&value);
  899. //while((value&0x08) && (tryTim<50))//?��?��?��?3D?���䨬???��?,�̨���yTXREQ����????��?
  900. //{
  901. // CAN_ReadReg(TXB0CTRL,1,&value);
  902. // osDelay(1/portTICK_PERIOD_MS);
  903. // tryTim++;
  904. //}
  905. /*TXB0*/
  906. CAN_WriteReg(TXB0SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  907. CAN_WriteReg(TXB0SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  908. for(i=0;i<Can_TxMsg.DLC;i++)
  909. {
  910. CAN_WriteReg(TXB0D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  911. }
  912. CAN_WriteReg(TXB0DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  913. SPI_CS_Low();
  914. CAN_WriteReg(TXB0CTRL,TXREQ);//???������?������??
  915. //SPI_CS_High();
  916. ret = 0;
  917. break;
  918. }
  919. case 1:
  920. {
  921. /*TXB0*/
  922. CAN_WriteReg(TXB1SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  923. CAN_WriteReg(TXB1SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  924. for(i=0;i<Can_TxMsg.DLC;i++)
  925. {
  926. CAN_WriteReg(TXB1D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  927. }
  928. CAN_WriteReg(TXB1DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  929. SPI_CS_Low();
  930. CAN_WriteReg(TXB1CTRL,TXREQ);//???������?������??
  931. //SPI_CS_High();
  932. ret = 1;
  933. break;
  934. }
  935. case 2:
  936. {
  937. /*TXB0*/
  938. CAN_WriteReg(TXB2SIDH,0xFF&((Can_TxMsg.Id)>>3));//����?��?o3??��0������?������?��?????
  939. CAN_WriteReg(TXB2SIDL,0xE0&((Can_TxMsg.Id)<<5));//����?��?o3??��0������?������?��?�̨�??
  940. for(i=0;i<Can_TxMsg.DLC;i++)
  941. {
  942. CAN_WriteReg(TXB2D0+i,Can_TxMsg.Data[i]);//??��y����?����?��y?YD�䨨?����?��?o3???��??��
  943. }
  944. CAN_WriteReg(TXB2DLC,Can_TxMsg.DLC);//??��???��y����?����?��y?Y3��?��D�䨨?����?��?o3??��0��?����?��3��?��??��??��
  945. SPI_CS_Low();
  946. CAN_WriteReg(TXB2CTRL,TXREQ);//???������?������??
  947. //SPI_CS_High();
  948. ret = 2;
  949. break;
  950. }
  951. default:
  952. {
  953. ret = -1;
  954. break;
  955. }
  956. }
  957. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  958. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  959. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  960. tryTim = 0;
  961. while((TXB0CTRLvalue&TXREQ) && (TXB1CTRLvalue&TXREQ) && (TXB1CTRLvalue&TXREQ) && (tryTim<50))
  962. {
  963. //SPI_CS_High();
  964. CAN_ReadReg(TXB0CTRL, 1, &TXB0CTRLvalue);
  965. CAN_ReadReg(TXB1CTRL, 1, &TXB1CTRLvalue);
  966. CAN_ReadReg(TXB2CTRL, 1, &TXB2CTRLvalue);
  967. osDelay(1);
  968. tryTim++;
  969. }
  970. CAN_ReadReg(CANINTF, 1, &CANINTFValue);
  971. SPI_CS_High();
  972. if((TXB0CTRLvalue&0x20)||(TXB1CTRLvalue&0x20)||(TXB2CTRLvalue&0x20)||(CANINTFValue&0x80))
  973. {
  974. ret = -1;
  975. }
  976. return ret;
  977. }
  978. /*******************************************************************************
  979. * o����y?? : HAL_Can_Receive(UINT8 *CAN_RX_Buf)
  980. * ?����? : CAN?����?��???��y?Y
  981. * ��?��? : *CAN_TX_Buf(��y?����?��y?Y?o3???????)
  982. * ��?3? : ?T
  983. * ����???�� : len(?����?��?��y?Y��?3��?��,0~8��??��)
  984. * ?��?�� : ?T
  985. *******************************************************************************/
  986. UINT8 HAL_Can_Receive(CAN_Msg_Type* CanRxMsgBuffer)
  987. {
  988. UINT8 j=0,len=0,temp=0;
  989. UINT8 SIdH,SIdL,EId8,EId0;
  990. //static UINT16 counterBuff0,counterBuff1 = 0;
  991. UINT8 ret = 0;
  992. CAN_ReadReg(CANINTF,1,&temp);
  993. ret = temp&0x03;
  994. switch(ret)
  995. {
  996. case 0x00:
  997. return ret;
  998. break;
  999. case 0x01:
  1000. /*get the id information*/
  1001. CAN_ReadReg(RXB0SIDH,1,&SIdH);
  1002. CAN_ReadReg(RXB0SIDL,1,&SIdL);
  1003. CAN_ReadReg(RXB0EID8,1,&EId8);
  1004. CAN_ReadReg(RXB0EID0,1,&EId0);
  1005. CAN_ReadReg(RXB0DLC,1,&len);
  1006. len = len&0x0F;
  1007. CanRxMsgBuffer[0].DLC = len;
  1008. if(SIdL & 0x8) // if SIdL.3 = 1, the id belongs to ExtID
  1009. {
  1010. (CanRxMsgBuffer[0]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1011. }
  1012. else
  1013. {
  1014. (CanRxMsgBuffer[0]).Id = SIdH<<3 | SIdL>>5;
  1015. }
  1016. j = 0;
  1017. while(j<len)
  1018. {
  1019. CAN_ReadReg(RXB0D0+j,1,&((CanRxMsgBuffer[0]).Data[j]));
  1020. j++;
  1021. }
  1022. #ifdef USING_PRINTF1
  1023. printf("buffer0 ID = %x\n",CanRxMsgBuffer[0].Id);
  1024. for(j=0;j<8;j++)
  1025. {
  1026. printf("%x ",CanRxMsgBuffer[0].Data[j]);
  1027. }
  1028. printf("\n");
  1029. #endif
  1030. CAN_WriteReg(CANINTF,temp&0xFE);
  1031. return ret;
  1032. break;
  1033. case 0x02:
  1034. /*get the id information*/
  1035. CAN_ReadReg(RXB1SIDH,1,&SIdH);
  1036. CAN_ReadReg(RXB1SIDL,1,&SIdL);
  1037. CAN_ReadReg(RXB1EID8,1,&EId8);
  1038. CAN_ReadReg(RXB1EID0,1,&EId0);
  1039. CAN_ReadReg(RXB1DLC,1,&len);
  1040. len = len & 0x0F;
  1041. CanRxMsgBuffer[1].DLC = len;
  1042. if(SIdL & 0x8) // SIdL.3 = 1, ExtID
  1043. {
  1044. (CanRxMsgBuffer[1]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1045. }
  1046. else
  1047. {
  1048. (CanRxMsgBuffer[1]).Id = SIdH<<3 | SIdL>>5;
  1049. }
  1050. j = 0 ;
  1051. while(j<len)
  1052. {
  1053. CAN_ReadReg(RXB1D0+j,1,&((CanRxMsgBuffer[1]).Data[j]));
  1054. j++;
  1055. }
  1056. #ifdef USING_PRINTF1
  1057. printf("buffer1 ID = %x\n",CanRxMsgBuffer[1].Id);
  1058. for(j=0;j<8;j++)
  1059. {
  1060. printf("%x ",CanRxMsgBuffer[1].Data[j]);
  1061. }
  1062. printf("\n");
  1063. #endif
  1064. CAN_WriteReg(CANINTF,temp&0xFD);
  1065. return ret;
  1066. break;
  1067. case 0x03:
  1068. /*get the id information*/
  1069. CAN_ReadReg(RXB0SIDH,1,&SIdH);
  1070. CAN_ReadReg(RXB0SIDL,1,&SIdL);
  1071. CAN_ReadReg(RXB0EID8,1,&EId8);
  1072. CAN_ReadReg(RXB0EID0,1,&EId0);
  1073. CAN_ReadReg(RXB0DLC,1,&len);
  1074. len = len&0x0F;
  1075. CanRxMsgBuffer[0].DLC = len;
  1076. if(SIdL & 0x8) // if SIdL.3 = 1, the id belongs to ExtID
  1077. {
  1078. (CanRxMsgBuffer[0]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1079. }
  1080. else
  1081. {
  1082. (CanRxMsgBuffer[0]).Id = SIdH<<3 | SIdL>>5;
  1083. }
  1084. j = 0;
  1085. while(j<len)
  1086. {
  1087. CAN_ReadReg(RXB0D0+j,1,&((CanRxMsgBuffer[0]).Data[j]));
  1088. j++;
  1089. }
  1090. #ifdef USING_PRINTF1
  1091. printf("buffer0 ID = %x\n",CanRxMsgBuffer[0].Id);
  1092. for(j=0;j<8;j++)
  1093. {
  1094. printf("%x ",CanRxMsgBuffer[0].Data[j]);
  1095. }
  1096. printf("\n");
  1097. #endif
  1098. /*get the id information*/
  1099. CAN_ReadReg(RXB1SIDH,1,&SIdH);
  1100. CAN_ReadReg(RXB1SIDL,1,&SIdL);
  1101. CAN_ReadReg(RXB1EID8,1,&EId8);
  1102. CAN_ReadReg(RXB1EID0,1,&EId0);
  1103. CAN_ReadReg(RXB1DLC,1,&len);
  1104. len = len & 0x0F;
  1105. CanRxMsgBuffer[1].DLC = len;
  1106. if(SIdL & 0x8) // SIdL.3 = 1, ExtID
  1107. {
  1108. (CanRxMsgBuffer[1]).Id = ((SIdH<<5 | (SIdL>>5)<<2 | SIdL&0x3 )<<16 | (EId8<<8) | EId0);
  1109. }
  1110. else
  1111. {
  1112. (CanRxMsgBuffer[1]).Id = SIdH<<3 | SIdL>>5;
  1113. }
  1114. j = 0 ;
  1115. while(j<len)
  1116. {
  1117. CAN_ReadReg(RXB1D0+j,1,&((CanRxMsgBuffer[1]).Data[j]));
  1118. j++;
  1119. }
  1120. #ifdef USING_PRINTF1
  1121. printf("buffer1 ID = %x\n",CanRxMsgBuffer[1].Id);
  1122. for(j=0;j<8;j++)
  1123. {
  1124. printf("%x ",CanRxMsgBuffer[1].Data[j]);
  1125. }
  1126. printf("\n");
  1127. #endif
  1128. CAN_WriteReg(CANINTF,temp&0xFC);
  1129. return ret;
  1130. break;
  1131. default:
  1132. break;
  1133. }
  1134. /*
  1135. CAN_ReadReg(CANINTF,1, &temp1);
  1136. if((temp1&0x03) == (temp&0x03))
  1137. {
  1138. CAN_WriteReg(CANINTF,temp&0xFC);
  1139. break;
  1140. }
  1141. */
  1142. return ret;
  1143. // CAN_ReadReg(CANINTF,1,&temp);
  1144. // printf("CANINTF_1 = 0x%x\n",temp);
  1145. }
  1146. /**
  1147. \fn void CanHandleDataCallback(UINT32 event)
  1148. \param[in] event spi irq event
  1149. \brief base on event,handle different situation
  1150. \return
  1151. */
  1152. void CanHandleDataCallback(UINT32 event)
  1153. {
  1154. if(event & ARM_SPI_EVENT_TRANSFER_COMPLETE)
  1155. {
  1156. }
  1157. else if(event & ARM_SPI_EVENT_DATA_LOST)
  1158. {
  1159. }
  1160. else if(event & ARM_SPI_EVENT_MODE_FAULT)
  1161. {
  1162. }
  1163. #if 0
  1164. #ifdef USING_PRINTF
  1165. //printf("[%d] CanHandleDataCallback :%d\r\n",__LINE__,event);
  1166. #else
  1167. ECOMM_TRACE(UNILOG_PLA_APP,CAN_CB1, P_INFO, 1, "SPI event [%u] coming!",event);
  1168. #endif
  1169. #endif
  1170. }
  1171. /**
  1172. \fn void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event)
  1173. \param[in] cb_event :
  1174. \brief init spi module
  1175. \return
  1176. */
  1177. void CanSPIHandler(ARM_SPI_SignalEvent_t cb_event,UINT8 mode,UINT8 dataBits, UINT32 spiRate )
  1178. {
  1179. #ifdef SPI_ANALOG
  1180. gpio_pin_config_t nGpioCfg={0};
  1181. nGpioCfg.pinDirection = GPIO_DirectionOutput;
  1182. nGpioCfg.misc.initOutput = 1;
  1183. pad_config_t padConfig;
  1184. PAD_GetDefaultConfig(&padConfig);
  1185. /*cs*/
  1186. padConfig.mux = PAD_MuxAlt0;
  1187. PAD_SetPinConfig(SPI_SSN_GPIO_PAD_ADDR, &padConfig);
  1188. PAD_SetPinPullConfig(SPI_SSN_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1189. GPIO_PinConfig(SPI_SSN_GPIO_INSTANCE, SPI_SSN_GPIO_INDEX, &nGpioCfg);
  1190. GPIO_PinWrite(SPI_SSN_GPIO_INSTANCE, 1<<SPI_SSN_GPIO_INDEX,0);
  1191. /*
  1192. clk
  1193. */
  1194. padConfig.mux = PAD_MuxAlt0;
  1195. PAD_SetPinConfig(SPI_CLK_GPIO_PAD_ADDR, &padConfig);
  1196. PAD_SetPinPullConfig(SPI_CLK_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1197. GPIO_PinConfig(SPI_CLK_GPIO_INSTANCE, SPI_CLK_GPIO_INDEX, &nGpioCfg);
  1198. GPIO_PinWrite(SPI_CLK_GPIO_INSTANCE, 1<<SPI_CLK_GPIO_INDEX,0);
  1199. /*mosi*/
  1200. padConfig.mux = PAD_MuxAlt0;
  1201. PAD_SetPinConfig(SPI_MOSI_GPIO_PAD_ADDR, &padConfig);
  1202. PAD_SetPinPullConfig(SPI_MOSI_GPIO_PAD_ADDR, PAD_InternalPullDown);
  1203. GPIO_PinConfig(SPI_MOSI_GPIO_INSTANCE, SPI_MOSI_GPIO_INDEX, &nGpioCfg);
  1204. GPIO_PinWrite(SPI_MOSI_GPIO_INSTANCE, 1<<SPI_MOSI_GPIO_INDEX,0);
  1205. /*miso*/
  1206. nGpioCfg.pinDirection = GPIO_DirectionInput;
  1207. nGpioCfg.misc.initOutput = 0;
  1208. padConfig.mux = PAD_MuxAlt0;
  1209. padConfig.pullSelect = PAD_PullInternal;
  1210. padConfig.pullUpEnable = PAD_PullUpDisable;
  1211. padConfig.pullDownEnable = PAD_PullDownEnable;
  1212. PAD_SetPinConfig(SPI_MISO_GPIO_PAD_ADDR, &padConfig);
  1213. GPIO_PinConfig(SPI_MISO_GPIO_INSTANCE, SPI_MISO_GPIO_INDEX, &nGpioCfg);
  1214. #else
  1215. // Initialize master spi
  1216. spiMasterDrv->Initialize(NULL);
  1217. // Power on
  1218. spiMasterDrv->PowerControl(ARM_POWER_FULL);
  1219. // Configure slave spi bus
  1220. spiMasterDrv->Control(ARM_SPI_MODE_MASTER | mode | ARM_SPI_DATA_BITS(dataBits) |ARM_SPI_MSB_LSB | ARM_SPI_SS_MASTER_SW, spiRate);
  1221. #endif
  1222. }
  1223. /**
  1224. \fn INT32 ZM01RecvParam(UINT8 *param)
  1225. \param[in]
  1226. \brief read ZM01 register
  1227. \return execution_status
  1228. */
  1229. INT32 ZM01RecvParam(UINT8 *param)
  1230. {
  1231. INT32 res = 0;
  1232. UINT8 tempBuffer = 0xaa;
  1233. if(param == NULL) return -7;
  1234. res = i2cDrvInstance->MasterTransmit(ZM01_DEVICE_ADDR, &tempBuffer, 1, true);
  1235. res = i2cDrvInstance->MasterReceive(ZM01_DEVICE_ADDR, param, 1, true);
  1236. return res;
  1237. }
  1238. /**
  1239. \fn INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1240. \param[in] addr GSENSOR register addr
  1241. \brief Write to GSENSOR register
  1242. \return
  1243. */
  1244. INT32 GSENSOR_WriteReg(UINT8 addr, UINT8 value)
  1245. {
  1246. UINT8 tempBuffer[2];
  1247. INT32 res = -1;
  1248. tempBuffer[0] = addr;
  1249. tempBuffer[1] = value;
  1250. return (i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, tempBuffer, sizeof(tempBuffer), true));
  1251. }
  1252. /**
  1253. \fn INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1254. \param[in] addr GSENSOR register addr
  1255. \brief read GSENSOR register
  1256. \return register value of GSENSOR
  1257. */
  1258. INT32 GSENSOR_ReadReg(UINT8 reg, UINT8 len, UINT8 *buf)
  1259. {
  1260. INT32 res = -1;
  1261. if(len > 8 || buf == NULL) return -1;
  1262. res = i2cDrvInstance->MasterTransmit(GSENSOR_DEVICE_ADDR, &reg, 1, true);
  1263. res = i2cDrvInstance->MasterReceive(GSENSOR_DEVICE_ADDR, buf, len, true);
  1264. return res;
  1265. }
  1266. /**
  1267. \fn void GsensorI2CCallback(UINT32 event)
  1268. \param[in] event : i2c irq event
  1269. \brief i2c irq event ,callback function
  1270. \return
  1271. */
  1272. void GsensorI2CCallback(UINT32 event)
  1273. {
  1274. switch(event)
  1275. {
  1276. case ARM_I2C_EVENT_TRANSFER_DONE:
  1277. break;
  1278. case ARM_I2C_EVENT_TRANSFER_INCOMPLETE:
  1279. break;
  1280. case ARM_I2C_EVENT_ADDRESS_NACK:
  1281. break;
  1282. case ARM_I2C_EVENT_BUS_ERROR:
  1283. break;
  1284. case ARM_I2C_EVENT_BUS_CLEAR:
  1285. break;
  1286. default:
  1287. break;
  1288. }
  1289. }
  1290. /**
  1291. \fn void HAL_I2C_CreateRecvTaskAndQueue(uint32_t event)
  1292. \param[in]
  1293. \brief RECV data
  1294. \return
  1295. */
  1296. void HAL_I2C_RecvControl(bool on)
  1297. {
  1298. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1299. if(on == true)
  1300. {
  1301. osEventFlagsClear(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1302. }
  1303. else
  1304. {
  1305. osEventFlagsSet(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG);
  1306. }
  1307. }
  1308. void GsensorTriggerEvent(UINT32 event ,UINT32 data)
  1309. {
  1310. osStatus_t status;
  1311. i2c_recv_msgqueue_obj_t msg={0};
  1312. msg.event = event;
  1313. msg.value = data;
  1314. status = osMessageQueuePut(i2c_recv_msgqueue, &msg, 0, 0);
  1315. if(status == osErrorResource)
  1316. {
  1317. ECOMM_TRACE(UNILOG_PLA_DRIVER, GsensorTriggerEvent_0, P_WARNING, 0, "I2C recv queue error");
  1318. }
  1319. }
  1320. static INT32 I2CEvtProcess(uint32_t evt)
  1321. {
  1322. INT32 ret;
  1323. #if SL_SC7A20_16BIT_8BIT
  1324. INT16 xyzData[7];
  1325. #else
  1326. INT8 xyzData[7];
  1327. #endif
  1328. HAL_I2C_RecvControl(true);
  1329. if(evt & I2C_INT1_REQ_BITMAP)
  1330. {
  1331. }
  1332. if(evt & I2C_INT2_REQ_BITMAP)
  1333. {
  1334. SL_SC7A20_Read_XYZ_Data(xyzData);
  1335. }
  1336. return 0;
  1337. }
  1338. static void HAL_I2C_RecvTaskEntry(void)
  1339. {
  1340. while(1)
  1341. {
  1342. uint32_t flag,mask;
  1343. osStatus_t status;
  1344. i2c_recv_msgqueue_obj_t msg;
  1345. flag = osEventFlagsWait(g_i2CRecvFlag, I2C_RECV_CONTROL_FLAG, osFlagsNoClear | osFlagsWaitAll, osWaitForever);
  1346. EC_ASSERT(flag == I2C_RECV_CONTROL_FLAG, flag, 0, 0);
  1347. status = osMessageQueueGet(i2c_recv_msgqueue, &msg, 0 , osWaitForever);
  1348. if(status == osOK)
  1349. {
  1350. mask = SaveAndSetIRQMask();
  1351. //handle data
  1352. //I2CEvtProcess(msg.event);
  1353. #ifdef USING_PRINTF
  1354. //printf("[%d]i2c recv event\r\n",__LINE__);
  1355. #else
  1356. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_D, P_INFO, 0, "i2c recv event");
  1357. #endif
  1358. RestoreIRQMask(mask);
  1359. }
  1360. }
  1361. }
  1362. static void HAL_I2C_CreateRecvTaskAndQueue(void)
  1363. {
  1364. if(g_halI2CInitFlag & HAL_I2C_RECV_TASK_QUEUE_CREATED)
  1365. {
  1366. return;
  1367. }
  1368. /*
  1369. for task create
  1370. */
  1371. osThreadId_t threadId;
  1372. osThreadAttr_t task_attr;
  1373. /*for msg queue create*/
  1374. osMessageQueueAttr_t queue_attr;
  1375. g_i2CRecvFlag = osEventFlagsNew(NULL);
  1376. EC_ASSERT(g_i2CRecvFlag, g_i2CRecvFlag, 0, 0);
  1377. memset(&queue_attr, 0, sizeof(queue_attr));
  1378. queue_attr.cb_mem = &i2c_recv_queue_cb;
  1379. queue_attr.cb_size = sizeof(i2c_recv_queue_cb);
  1380. queue_attr.mq_mem = i2c_recv_queue_buf;
  1381. queue_attr.mq_size = sizeof(i2c_recv_queue_buf);
  1382. i2c_recv_msgqueue = osMessageQueueNew(I2C_RECV_QUEUE_BUF_SIZE,sizeof(i2c_recv_msgqueue_obj_t), &queue_attr);
  1383. EC_ASSERT(i2c_recv_msgqueue, i2c_recv_msgqueue, 0, 0);
  1384. memset(& task_attr, 0, sizeof(task_attr));
  1385. memset(i2c_recv_task_stack, 0xA5, I2C_RECV_TASK_STACK_SIZE);
  1386. task_attr.name = "GsensorRecv";
  1387. task_attr.stack_size = I2C_RECV_TASK_STACK_SIZE;
  1388. task_attr.stack_mem = i2c_recv_task_stack;
  1389. task_attr.priority = osPriorityNormal;
  1390. task_attr.cb_mem = &i2c_recv_task;
  1391. task_attr.cb_size = sizeof(StaticTask_t);
  1392. threadId = osThreadNew(HAL_I2C_RecvTaskEntry, NULL, &task_attr);
  1393. EC_ASSERT(threadId, threadId, 0, 0);
  1394. g_halI2CInitFlag |= HAL_I2C_RECV_TASK_QUEUE_CREATED;
  1395. }
  1396. /**
  1397. \fn void Usart1Handler(uint8_t* strPtr, uint16_t strLen)
  1398. \param[in] PrintfSendStr for usart port;
  1399. \brief config usart port
  1400. \return
  1401. */
  1402. void PrintfSendStr(const UINT8 *format, ...)
  1403. {
  1404. va_list args;
  1405. UINT8 buf[128+1]={0};
  1406. va_start(args, format);
  1407. vsnprintf(buf+strlen(buf), 128-strlen(buf), format, args);
  1408. va_end(args);
  1409. HAL_UART_SendStr(PORT_USART_1,buf,strlen(buf));
  1410. }
  1411. #define PRINTF_DATA_RECV_BUFFER_SIZE (64)
  1412. uint8_t printf_uart_recv_buf[PRINTF_DATA_RECV_BUFFER_SIZE];
  1413. /**
  1414. \fn void PrintfDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1415. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1416. \ dataPtr : Point to receive data buff
  1417. \ dataLen : Received data length
  1418. \brief i2c irq event ,callback function
  1419. \return
  1420. */
  1421. void PrintfDataRecvCallback(UINT32 event, void* dataPtr, UINT32 dataLen)
  1422. {
  1423. //ECOMM_TRACE(UNILOG_PLA_APP, PrintfDataRecvCallback, P_SIG, 3, "event=%d, dataPtr=%s, dataLen=%d",event,dataPtr,dataLen);
  1424. slpManStartWaitATTimer();
  1425. }
  1426. void printfPostSendCallback(hal_uart_send_msg_type_t msgType, void* dataPtr, uint32_t dataLen){
  1427. // ECOMM_TRACE(UNILOG_PLA_APP, printfPostSendCallback, P_SIG, 3, "msgType=%d, dataPtr=%s, dataLen=%d",msgType,dataPtr,dataLen);
  1428. }
  1429. /**
  1430. \fn void Usart1Handler(UINT32 baudRate)
  1431. \param[in] baudRate for usart port;
  1432. \brief config usart port
  1433. \return
  1434. */
  1435. void Usart1Handler(UINT32 baudRate)
  1436. {
  1437. hal_uart_config_t halUartConfig = {0};
  1438. hal_uart_hardware_config_t hwConfig = {
  1439. ARM_POWER_FULL,
  1440. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1441. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1442. ARM_USART_FLOW_CONTROL_NONE,
  1443. baudRate
  1444. };
  1445. halUartConfig.uartDriverHandler = printfHandle;
  1446. halUartConfig.recv_cb = PrintfDataRecvCallback;
  1447. halUartConfig.recvBuffPtr = printf_uart_recv_buf;
  1448. halUartConfig.recvBuffSize = PRINTF_DATA_RECV_BUFFER_SIZE;
  1449. halUartConfig.post_send_cb = printfPostSendCallback;
  1450. HAL_UART_InitHandler(PORT_USART_1, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1451. HAL_UART_RecvFlowControl(false);
  1452. }
  1453. /**
  1454. \fn void GsensorI2CCallback(uint32_t event)
  1455. \param[in] event : i2c irq event
  1456. \brief i2c irq event ,callback function
  1457. \return
  1458. */
  1459. void GsensorI2CHandler(ARM_I2C_SignalEvent_t cb_event)
  1460. {
  1461. // Initialize with callback
  1462. i2cDrvInstance->Initialize(cb_event);
  1463. // Power on
  1464. i2cDrvInstance->PowerControl(ARM_POWER_FULL);
  1465. // Configure I2C bus
  1466. i2cDrvInstance->Control(ARM_I2C_BUS_SPEED, ARM_I2C_BUS_SPEED_STANDARD);
  1467. i2cDrvInstance->Control(ARM_I2C_BUS_CLEAR, 0);
  1468. HAL_I2C_CreateRecvTaskAndQueue();
  1469. #ifdef USING_PRINTF
  1470. //printf("[%d] i2c config ok\r\n",__LINE__);
  1471. #else
  1472. ECOMM_TRACE(UNILOG_PLA_DRIVER, I2C_GSENSOR_I, P_INFO, 0, "i2c config ok");
  1473. #endif
  1474. }
  1475. /**
  1476. \fn void GPSSendStr(uint8_t* strPtr, uint16_t strLen)
  1477. \param[in] strPtr for gps usart port;
  1478. \brief
  1479. \return
  1480. */
  1481. void GPSSendStr(uint8_t* strPtr, uint16_t strLen)
  1482. {
  1483. HAL_UART_SendStr(PORT_USART_2,strPtr,strLen);
  1484. }
  1485. /**
  1486. \fn void GpsDataRecvCallback(uint32_t event, void* dataPtr, uint32_t dataLen)
  1487. \param[in] event :Data receiving timeout processing and data receiving completion processing;
  1488. \ dataPtr : Point to receive data buff
  1489. \ dataLen : Received data length
  1490. \brief i2c irq event ,callback function
  1491. \return
  1492. */
  1493. void GpsDataRecvCallback(UINT32 event, void* dataPtr, UINT32 dataLen)
  1494. {
  1495. if((event == ARM_USART_EVENT_RX_TIMEOUT) || (event == ARM_USART_EVENT_RECEIVE_COMPLETE)){
  1496. #ifdef USING_PRINTF
  1497. // //printf("GpsDataRecvCallback [%d] %s\r\n",dataLen,dataPtr);
  1498. #endif
  1499. if(gpsHandle!=NULL && dataLen>0){
  1500. gpsReqMsg gpsInfo;
  1501. gpsInfo.dataPtr=malloc(dataLen+1);
  1502. if(gpsInfo.dataPtr){
  1503. memcpy(gpsInfo.dataPtr,dataPtr,dataLen);
  1504. gpsInfo.len=dataLen;
  1505. osMessageQueuePut(gpsHandle, &gpsInfo, 0, 2000);
  1506. }
  1507. }
  1508. }
  1509. slpManStartWaitATTimer();
  1510. }
  1511. /**
  1512. \fn void GPSUsartHandler(ARM_DRIVER_USART * uartDriverHandler, uint32_t baudRate)
  1513. \param[in] baudRate for gps usart port;
  1514. \brief config gps usart port
  1515. \return
  1516. */
  1517. void GPSUsartHandler(UINT32 baudRate)
  1518. {
  1519. hal_uart_config_t halUartConfig = {0};
  1520. hal_uart_hardware_config_t hwConfig = {
  1521. ARM_POWER_FULL,
  1522. ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 |
  1523. ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1 |
  1524. ARM_USART_FLOW_CONTROL_NONE,
  1525. baudRate
  1526. };
  1527. halUartConfig.uartDriverHandler = usartHandle;
  1528. halUartConfig.recv_cb = GpsDataRecvCallback;
  1529. halUartConfig.recvBuffPtr = gps_uart_recv_buf;
  1530. halUartConfig.recvBuffSize = GPS_DATA_RECV_BUFFER_SIZE;
  1531. HAL_UART_InitHandler(PORT_USART_2, &halUartConfig, &hwConfig, HAL_UART_TASK_CREATE_FLAG_SEND_RECV);
  1532. HAL_UART_RecvFlowControl(false);
  1533. }
  1534. /**
  1535. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1536. \param[in] req : NTCvalue
  1537. \brief
  1538. \return Resvalue
  1539. */
  1540. static INT32 AdcGetRes(UINT32 NTCvalue){
  1541. UINT32 Resvalue;
  1542. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1543. Resvalue=1000000;
  1544. else{
  1545. Resvalue=(long long)ADC_ChannelAioRes*(long long)NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1546. }
  1547. return Resvalue;
  1548. }
  1549. /**
  1550. \fn INT32 AdcGetRes(UINT32 NTCvalue)
  1551. \param[in] req : NTCvalue
  1552. \brief
  1553. \return Resvalue
  1554. */
  1555. static INT32 AdcGetResFromInres(UINT32 NTCvalue){
  1556. UINT32 Resvalue,ResvalueCount;
  1557. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1558. ResvalueCount=1000000;
  1559. else{
  1560. ResvalueCount=ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1561. }
  1562. #ifdef USING_PRINTF
  1563. //printf("%s[%d][%d][%d]\r\n",__FUNCTION__, __LINE__,ADC_InsideRES,ResvalueCount);
  1564. #endif
  1565. if(ResvalueCount>=ADC_InsideRES)
  1566. Resvalue=1000000;
  1567. else
  1568. Resvalue=(long long)ADC_InsideRES*(long long)ResvalueCount/(ADC_InsideRES-ResvalueCount);
  1569. #ifdef USING_PRINTF
  1570. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,Resvalue);
  1571. #endif
  1572. return Resvalue;
  1573. }
  1574. /**
  1575. \fn INT32 AdcVbatCali(UINT32 NTCvalue)
  1576. \param[in] req : NTCvalue
  1577. \brief
  1578. \return Resvalue
  1579. */
  1580. static INT32 AdcVbatCali(UINT32 NTCvalue){
  1581. UINT32 Resvalue;
  1582. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1583. Resvalue=1000000;
  1584. else{
  1585. Resvalue=(long long)(ADC_ChannelAioRes+ADC_CALIBRATION_VALUE)*(long long)NTCvalue/ADC_CALIBRATION_VALUE; //ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1586. }
  1587. if(Resvalue<1300&&Resvalue>1100)
  1588. ADC_ChannelAioVbat=Resvalue;
  1589. return Resvalue;
  1590. }
  1591. /**
  1592. \fn INT32 AdcInresCali(UINT32 NTCvalue)
  1593. \param[in] req : NTCvalue
  1594. \brief
  1595. \return Resvalue
  1596. */
  1597. static INT32 AdcInresCali(UINT32 NTCvalue){
  1598. UINT32 Resvalue,ResvalueCount;
  1599. if(NTCvalue>=(ADC_ChannelAioVbat-10))
  1600. ResvalueCount=1000000;
  1601. else{
  1602. ResvalueCount=ADC_ChannelAioRes*NTCvalue/(ADC_ChannelAioVbat-NTCvalue);
  1603. }
  1604. #ifdef USING_PRINTF
  1605. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,ResvalueCount);
  1606. #endif
  1607. if(ResvalueCount>=ADC_CALIBRATION_VALUE)
  1608. Resvalue=1000000;
  1609. else
  1610. Resvalue=(long long)ADC_CALIBRATION_VALUE*(long long)ResvalueCount/(ADC_CALIBRATION_VALUE-ResvalueCount);
  1611. if(Resvalue>=200000&&Resvalue<1000000)
  1612. ADC_InsideRES=Resvalue;
  1613. return Resvalue;
  1614. }
  1615. /**
  1616. \fn INT32 AdcSendReq(UINT32 req,UINT32 * param ,UINT32 timeout)
  1617. \param[in] req : ADC_REQ_BITMAP_VBAT ADC_REQ_BITMAP_TEMP; timeout = 0 at irq ,otherwize equal to ADC_MSG_TIMEOUT
  1618. \brief return bat value ,trigger deinit
  1619. \return 1 FAIL , 0 OK
  1620. */
  1621. INT32 AdcSendReq(UINT32 req,UINT32 * param , UINT8 len ,UINT32 timeout)
  1622. {
  1623. INT32 ret;
  1624. adcReqMsg ReqMsg;
  1625. ReqMsg.request = req;
  1626. ReqMsg.param[NTC_Channel1] = ReqMsg.param[NTC_Channel2] = ReqMsg.param[NTC_Channel30] = ReqMsg.param[NTC_Channel31] = ReqMsg.param[NTC_Channel4] = ReqMsg.param[NTC_Channel4_InresCali] =ADC_AioResDivRatioDefault ;
  1627. ret = osMessageQueuePut(adcMsgHandle, &ReqMsg, 0, timeout);
  1628. if(ret != osOK)
  1629. {
  1630. return ret;
  1631. }
  1632. else
  1633. {
  1634. ret = osEventFlagsWait(adcTrigerHandle, ADC_RECV_CONTROL_FLAG, osFlagsWaitAll, timeout);
  1635. //to do
  1636. switch(req)
  1637. {
  1638. case ADC_REQ_BITMAP_VBAT:
  1639. param[0] = gNtcDev.NTCvalue[0];
  1640. break;
  1641. case ADC_REQ_BITMAP_TEMP:
  1642. param[0] = gNtcDev.NTCvalue[1];
  1643. break;
  1644. case ADC_REQ_BITMAP_CH1:
  1645. param[0] = AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel1]);
  1646. break;
  1647. case ADC_REQ_BITMAP_CH2:
  1648. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel2]);
  1649. break;
  1650. case ADC_REQ_BITMAP_CH30:
  1651. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel30]);
  1652. break;
  1653. case ADC_REQ_BITMAP_CH31:
  1654. param[0] =AdcGetResFromInres(gNtcDev.NTCvalue[2+NTC_Channel31]);
  1655. break;
  1656. case ADC_REQ_BITMAP_CH4:
  1657. param[0] = gNtcDev.NTCvalue[2+NTC_Channel4]*101+600;
  1658. break;
  1659. case ADC_REQ_BITMAP_VBAT_CALI:
  1660. param[0] = AdcVbatCali(gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]);
  1661. break;
  1662. case ADC_REQ_BITMAP_INRES_CALI:
  1663. param[0] = AdcInresCali(gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]);
  1664. break;
  1665. }
  1666. osEventFlagsClear(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  1667. return ret;
  1668. }
  1669. }
  1670. /**
  1671. \fn static void ADC_VbatChannelCallback(uint32_t result)
  1672. \param[in]
  1673. \brief return bat value ,trigger deinit
  1674. \return
  1675. */
  1676. static void ADC_VbatChannelCallback(uint32_t result)
  1677. {
  1678. vbatChannelResult = result;
  1679. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT);
  1680. }
  1681. /**
  1682. \fn static void ADC_ThermalChannelCallback(uint32_t result)
  1683. \param[in]
  1684. \brief return thermal value ,trigger deinit
  1685. \return
  1686. */
  1687. static void ADC_ThermalChannelCallback(uint32_t result)
  1688. {
  1689. thermalChannelResult = result;
  1690. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_TEMP);
  1691. }
  1692. static void ADC_NTC1ChannelCallback(uint32_t result)
  1693. {
  1694. NTCChannelResult[NTC_Channel1] = result;
  1695. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH1);
  1696. }
  1697. static void ADC_NTC2ChannelCallback(uint32_t result)
  1698. {
  1699. NTCChannelResult[NTC_Channel2] = result;
  1700. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH2);
  1701. }
  1702. static void ADC_NTC30ChannelCallback(uint32_t result)
  1703. {
  1704. NTCChannelResult[NTC_Channel30] = result;
  1705. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH30);
  1706. }
  1707. static void ADC_NTC31ChannelCallback(uint32_t result)
  1708. {
  1709. NTCChannelResult[NTC_Channel31] = result;
  1710. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH31);
  1711. }
  1712. static void ADC_NTC4ChannelCallback(uint32_t result)
  1713. {
  1714. NTCChannelResult[NTC_Channel4] = result;
  1715. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_CH4);
  1716. }
  1717. static void ADC_NTCVbatCaliChannelCallback(uint32_t result)
  1718. {
  1719. NTCChannelResult[NTC_Channel4_VbatCali] = result;
  1720. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_VBAT_CALI);
  1721. }
  1722. static void ADC_NTCInresCaliChannelCallback(uint32_t result)
  1723. {
  1724. NTCChannelResult[NTC_Channel4_InresCali] = result;
  1725. osEventFlagsSet(adcEvtHandle, ADC_REQ_BITMAP_INRES_CALI);
  1726. }
  1727. /**
  1728. \fn void AdcProcess(void* arg)
  1729. \param[in]
  1730. \brief handle adc init ,deinit and convert process
  1731. \return
  1732. */
  1733. static void AdcProcess(void* arg)
  1734. {
  1735. adcReqMsg regMsg;
  1736. INT32 ret;
  1737. while(1)
  1738. {
  1739. /*
  1740. */
  1741. osMessageQueueGet(adcMsgHandle, &regMsg, 0, osWaitForever);
  1742. /*
  1743. handle event
  1744. */
  1745. adc_config_t adcConfig;
  1746. INT8 times=1;
  1747. ADC_GetDefaultConfig(&adcConfig);
  1748. osEventFlagsClear(adcEvtHandle, regMsg.request);
  1749. retry:
  1750. if(regMsg.request & ADC_REQ_BITMAP_VBAT)
  1751. {
  1752. adcConfig.channelConfig.vbatResDiv = ADC_VbatResDivRatio3Over16;
  1753. ADC_ChannelInit(ADC_ChannelVbat, ADC_UserAPP, &adcConfig, ADC_VbatChannelCallback);
  1754. //delay_us(1000*1000);
  1755. ADC_StartConversion(ADC_ChannelVbat, ADC_UserAPP);
  1756. }
  1757. else if(regMsg.request & ADC_REQ_BITMAP_TEMP)
  1758. {
  1759. adcConfig.channelConfig.thermalInput = ADC_ThermalInputVbat;
  1760. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_ThermalChannelCallback);
  1761. //delay_us(1000*1000);
  1762. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1763. }
  1764. else if(regMsg.request & ADC_REQ_BITMAP_CH1)
  1765. {
  1766. if(regMsg.param[NTC_Channel1]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel1]<=ADC_AioResDivRatio1Over16){
  1767. #ifdef USING_PRINTF
  1768. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1769. #endif
  1770. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel1];
  1771. }else{
  1772. #ifdef USING_PRINTF
  1773. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1774. #endif
  1775. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1776. }
  1777. ADC_ChannelInit(ADC_ChannelAio1, ADC_UserAPP, &adcConfig, ADC_NTC1ChannelCallback);
  1778. //delay_us(1000*1000);
  1779. ADC_StartConversion(ADC_ChannelAio1, ADC_UserAPP);
  1780. }
  1781. else if(regMsg.request & ADC_REQ_BITMAP_CH2)
  1782. {
  1783. if(regMsg.param[NTC_Channel2]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel2]<=ADC_AioResDivRatio1Over16){
  1784. #ifdef USING_PRINTF
  1785. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1786. #endif
  1787. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel2];
  1788. }else{
  1789. #ifdef USING_PRINTF
  1790. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1791. #endif
  1792. }
  1793. ADC_ChannelInit(ADC_ChannelAio2, ADC_UserAPP, &adcConfig, ADC_NTC2ChannelCallback);
  1794. //delay_us(1000*1000);
  1795. ADC_StartConversion(ADC_ChannelAio2, ADC_UserAPP);
  1796. }
  1797. else if(regMsg.request & ADC_REQ_BITMAP_CH30)
  1798. {
  1799. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  1800. if(regMsg.param[NTC_Channel30]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel30]<=ADC_AioResDivRatio1Over16){
  1801. #ifdef USING_PRINTF
  1802. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1803. #endif
  1804. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel30];
  1805. }else{
  1806. #ifdef USING_PRINTF
  1807. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1808. #endif
  1809. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1810. }
  1811. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC30ChannelCallback);
  1812. //osDelay(2000/portTICK_PERIOD_MS);
  1813. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1814. }
  1815. else if(regMsg.request & ADC_REQ_BITMAP_CH31)
  1816. {
  1817. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 1<<(GPIO_AIO3_SEL%16));
  1818. if(regMsg.param[NTC_Channel31]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel31]<=ADC_AioResDivRatio1Over16){
  1819. #ifdef USING_PRINTF
  1820. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1821. #endif
  1822. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel31];
  1823. }else{
  1824. #ifdef USING_PRINTF
  1825. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1826. #endif
  1827. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1828. }
  1829. ADC_ChannelInit(ADC_ChannelAio3, ADC_UserAPP, &adcConfig, ADC_NTC31ChannelCallback);
  1830. //osDelay(2000/portTICK_PERIOD_MS);
  1831. ADC_StartConversion(ADC_ChannelAio3, ADC_UserAPP);
  1832. }
  1833. else if(regMsg.request & ADC_REQ_BITMAP_CH4)
  1834. {
  1835. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1836. ADC_GetDefaultConfig(&adcConfig);
  1837. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1838. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTC4ChannelCallback);
  1839. osDelay(100/portTICK_PERIOD_MS); //zhengchao 20210312
  1840. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1841. }
  1842. else if(regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  1843. {
  1844. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1845. ADC_GetDefaultConfig(&adcConfig);
  1846. adcConfig.channelConfig.thermalInput = ADC_ThermalInputAio4;
  1847. ADC_ChannelInit(ADC_ChannelThermal, ADC_UserAPP, &adcConfig, ADC_NTCVbatCaliChannelCallback);
  1848. //osDelay(2000/portTICK_PERIOD_MS);
  1849. ADC_StartConversion(ADC_ChannelThermal, ADC_UserAPP);
  1850. }
  1851. else if(regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  1852. {
  1853. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1854. if(regMsg.param[NTC_Channel4_InresCali]>=ADC_AioResDivRatio1 && regMsg.param[NTC_Channel4_InresCali]<=ADC_AioResDivRatio1Over16){
  1855. #ifdef USING_PRINTF
  1856. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1857. #endif
  1858. adcConfig.channelConfig.aioResDiv = regMsg.param[NTC_Channel4_InresCali];
  1859. }else{
  1860. #ifdef USING_PRINTF
  1861. //printf("%s[%d]\r\n",__FUNCTION__, __LINE__);
  1862. #endif
  1863. adcConfig.channelConfig.aioResDiv = ADC_AioResDivRatioDefault;
  1864. }
  1865. ADC_ChannelInit(ADC_ChannelAio4, ADC_UserAPP, &adcConfig, ADC_NTCInresCaliChannelCallback);
  1866. //osDelay(2000/portTICK_PERIOD_MS);
  1867. ADC_StartConversion(ADC_ChannelAio4, ADC_UserAPP);
  1868. }
  1869. ret = osEventFlagsWait(adcEvtHandle, regMsg.request, osFlagsWaitAll, ADC_GET_RESULT_TIMOUT);
  1870. if(regMsg.request & ADC_REQ_BITMAP_VBAT)
  1871. {
  1872. ADC_ChannelDeInit(ADC_ChannelVbat, ADC_UserAPP);
  1873. gNtcDev.NTCvalue[0] = HAL_ADC_CalibrateRawCode(vbatChannelResult) * 16 / 3;
  1874. }
  1875. else if(regMsg.request & ADC_REQ_BITMAP_TEMP)
  1876. {
  1877. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1878. gNtcDev.NTCvalue[1] = HAL_ADC_ConvertThermalRawCodeToTemperature(thermalChannelResult);
  1879. }
  1880. else if(regMsg.request & ADC_REQ_BITMAP_CH1)
  1881. {
  1882. ADC_ChannelDeInit(ADC_ChannelAio1, ADC_UserAPP);
  1883. if(times==1){
  1884. gNtcDev.NTCvalue[2+NTC_Channel1]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1])*REV_AioResDivRatioDefault;
  1885. #ifdef USING_PRINTF
  1886. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel1]);
  1887. #endif
  1888. if(gNtcDev.NTCvalue[2+NTC_Channel1]>(NTC_FullAioValue-10)){
  1889. regMsg.param[NTC_Channel1]=ADC_AioResDivRatioExtra;
  1890. times++;
  1891. goto retry;
  1892. }
  1893. }else{
  1894. gNtcDev.NTCvalue[2+NTC_Channel1]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel1])*REV_AioResDivRatioExtra;
  1895. }
  1896. }
  1897. else if(regMsg.request & ADC_REQ_BITMAP_CH2)
  1898. {
  1899. ADC_ChannelDeInit(ADC_ChannelAio2, ADC_UserAPP);
  1900. if(times==1){
  1901. gNtcDev.NTCvalue[2+NTC_Channel2]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2])*REV_AioResDivRatioDefault;
  1902. #ifdef USING_PRINTF
  1903. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel2]);
  1904. #endif
  1905. if(gNtcDev.NTCvalue[2+NTC_Channel2]>(NTC_FullAioValue-10)){
  1906. regMsg.param[NTC_Channel2]=ADC_AioResDivRatioExtra;
  1907. times++;
  1908. goto retry;
  1909. }
  1910. }else{
  1911. gNtcDev.NTCvalue[2+NTC_Channel2]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel2])*REV_AioResDivRatioExtra;
  1912. }
  1913. }
  1914. else if(regMsg.request & ADC_REQ_BITMAP_CH30)
  1915. {
  1916. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 1<<(GPIO_AIO3_SEL%16));
  1917. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1918. if(times==1){
  1919. gNtcDev.NTCvalue[2+NTC_Channel30]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30])*REV_AioResDivRatioDefault;
  1920. #ifdef USING_PRINTF
  1921. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel30]);
  1922. #endif
  1923. if(gNtcDev.NTCvalue[2+NTC_Channel30]>(NTC_FullAioValue-10)){
  1924. regMsg.param[NTC_Channel30]=ADC_AioResDivRatioExtra;
  1925. times++;
  1926. goto retry;
  1927. }
  1928. }else{
  1929. gNtcDev.NTCvalue[2+NTC_Channel30]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel30])*REV_AioResDivRatioExtra;
  1930. }
  1931. }
  1932. else if(regMsg.request & ADC_REQ_BITMAP_CH31)
  1933. {
  1934. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  1935. ADC_ChannelDeInit(ADC_ChannelAio3, ADC_UserAPP);
  1936. if(times==1){
  1937. gNtcDev.NTCvalue[2+NTC_Channel31]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31])*REV_AioResDivRatioDefault;
  1938. #ifdef USING_PRINTF
  1939. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel31]);
  1940. #endif
  1941. if(gNtcDev.NTCvalue[2+NTC_Channel31]>(NTC_FullAioValue-10)){
  1942. regMsg.param[NTC_Channel31]=ADC_AioResDivRatioExtra;
  1943. times++;
  1944. goto retry;
  1945. }
  1946. }else{
  1947. gNtcDev.NTCvalue[2+NTC_Channel31]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel31])*REV_AioResDivRatioExtra;
  1948. }
  1949. }
  1950. else if(regMsg.request & ADC_REQ_BITMAP_CH4)
  1951. {
  1952. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 1<<(GPIO_AIO4_SEL%16));
  1953. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1954. gNtcDev.NTCvalue[2+NTC_Channel4]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4]);
  1955. }
  1956. else if(regMsg.request & ADC_REQ_BITMAP_VBAT_CALI)
  1957. {
  1958. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1959. ADC_ChannelDeInit(ADC_ChannelThermal, ADC_UserAPP);
  1960. if(times==1){
  1961. gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  1962. #ifdef USING_PRINTF
  1963. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]);
  1964. #endif
  1965. if(gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]>(NTC_FullAioValue-10)){
  1966. regMsg.param[NTC_Channel4_VbatCali]=ADC_AioResDivRatioExtra;
  1967. times++;
  1968. goto retry;
  1969. }
  1970. }else{
  1971. gNtcDev.NTCvalue[2+NTC_Channel4_VbatCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_VbatCali]);
  1972. }
  1973. }
  1974. else if(regMsg.request & ADC_REQ_BITMAP_INRES_CALI)
  1975. {
  1976. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  1977. ADC_ChannelDeInit(ADC_ChannelAio4, ADC_UserAPP);
  1978. if(times==1){
  1979. gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali])*REV_AioResDivRatioDefault;
  1980. #ifdef USING_PRINTF
  1981. //printf("%s[%d][%d]\r\n",__FUNCTION__, __LINE__,gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]);
  1982. #endif
  1983. if(gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]>(NTC_FullAioValue-10)){
  1984. regMsg.param[NTC_Channel4_InresCali]=ADC_AioResDivRatioExtra;
  1985. times++;
  1986. goto retry;
  1987. }
  1988. }else{
  1989. gNtcDev.NTCvalue[2+NTC_Channel4_InresCali]= HAL_ADC_CalibrateRawCode(NTCChannelResult[NTC_Channel4_InresCali])*REV_AioResDivRatioExtra;
  1990. }
  1991. }
  1992. osEventFlagsSet(adcTrigerHandle, ADC_RECV_CONTROL_FLAG);
  1993. }
  1994. }
  1995. /**
  1996. \fn INT32 AdcTaskInit(void)
  1997. \param[in]
  1998. \brief create task for checking bat level
  1999. \return
  2000. */
  2001. INT32 AdcTaskInit(void)
  2002. {
  2003. gpio_pin_config_t config;
  2004. config.pinDirection = GPIO_DirectionOutput;
  2005. config.misc.initOutput = 1;
  2006. pad_config_t padConfig;
  2007. PAD_GetDefaultConfig(&padConfig);
  2008. //power
  2009. padConfig.mux = PAD_MuxAlt0;
  2010. PAD_SetPinConfig(11, &padConfig);
  2011. GPIO_PinConfig(0, 0, &config);
  2012. GPIO_PinWrite(0, 1, 1);
  2013. padConfig.mux = PAD_MuxAlt7;
  2014. PAD_SetPinConfig(9, &padConfig);
  2015. PAD_SetPinConfig(10, &padConfig);
  2016. GPIO_PinConfig(GPIO_AIO3_SEL/16, GPIO_AIO3_SEL%16, &config);
  2017. GPIO_PinConfig(GPIO_AIO4_SEL/16, GPIO_AIO4_SEL%16, &config);
  2018. GPIO_PinWrite(GPIO_AIO3_SEL/16, 1<<(GPIO_AIO3_SEL%16), 0);
  2019. GPIO_PinWrite(GPIO_AIO4_SEL/16, 1<<(GPIO_AIO4_SEL%16), 0);
  2020. memset(&gNtcDev , 0 ,sizeof(NtcResult_t));
  2021. if(adcMsgHandle == NULL)
  2022. {
  2023. adcMsgHandle = osMessageQueueNew(ADC_MSG_MAX_NUM,sizeof(adcReqMsg), NULL);
  2024. if(adcMsgHandle == NULL)
  2025. return 1;
  2026. }
  2027. if(adcTrigerHandle == NULL)
  2028. {
  2029. adcTrigerHandle = osEventFlagsNew(NULL);
  2030. if(adcTrigerHandle == NULL)
  2031. return 1;
  2032. }
  2033. if(adcEvtHandle == NULL)
  2034. {
  2035. adcEvtHandle = osEventFlagsNew(NULL);
  2036. if(adcEvtHandle == NULL)
  2037. return 1;
  2038. }
  2039. if(adcTaskHandle == NULL)
  2040. {
  2041. osThreadAttr_t task_attr;
  2042. memset(&task_attr , 0 , sizeof(task_attr));
  2043. task_attr.name = "batAdc";
  2044. task_attr.priority = osPriorityNormal;
  2045. task_attr.cb_mem = &adcTask;
  2046. task_attr.cb_size = sizeof(StaticTask_t);
  2047. task_attr.stack_mem = adcTaskStack;
  2048. task_attr.stack_size =ADC_TASK_STACK_SIZE;
  2049. memset(& adcTaskStack, 0xa5, ADC_TASK_STACK_SIZE);
  2050. adcTaskHandle = osThreadNew(AdcProcess , NULL,&task_attr);
  2051. if(adcTaskHandle == NULL)
  2052. return 1;
  2053. }
  2054. return 0;
  2055. }
  2056. /**
  2057. \fn void PowerPinConfig(IOType iotype)
  2058. \param[in]
  2059. \brief config PWR pin to gpiol
  2060. \return
  2061. */
  2062. void PowerPinConfig(IOType iotype)
  2063. {
  2064. gpio_pin_config_t config;
  2065. config.pinDirection = GPIO_DirectionOutput;
  2066. config.misc.initOutput = 1;
  2067. pad_config_t padConfig;
  2068. PAD_GetDefaultConfig(&padConfig);
  2069. if(iotype == AON_IO)
  2070. {
  2071. slpManAONIOVoltSet(IOVOLT_3_30V);//zhengchao 20200412 add
  2072. padConfig.mux = PAD_MuxAlt0;
  2073. PAD_SetPinConfig(35, &padConfig);
  2074. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  2075. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  2076. PAD_SetPinConfig(31, &padConfig);
  2077. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  2078. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1 << AON_GPS_POWER2);
  2079. PAD_SetPinConfig(32, &padConfig);
  2080. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  2081. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //zhengchao 20200412 modify 1-->0
  2082. PAD_SetPinConfig(35, &padConfig);
  2083. GPIO_PinConfig(1, AON_WAKEUP, &config);
  2084. GPIO_PinWrite(1, 1 << AON_WAKEUP, 1 << AON_WAKEUP);
  2085. padConfig.mux = PAD_MuxAlt7;
  2086. PAD_SetPinConfig(5, &padConfig);
  2087. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2088. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  2089. #if 1
  2090. padConfig.mux = PAD_MuxAlt7;
  2091. padConfig.pullSelect = PAD_PullInternal;
  2092. padConfig.pullUpEnable = PAD_PullUpEnable;
  2093. padConfig.pullDownEnable = PAD_PullDownDisable;
  2094. PAD_SetPinConfig(8, &padConfig);
  2095. config.pinDirection = GPIO_DirectionInput;
  2096. config.misc.initOutput = 0;
  2097. GPIO_PinConfig(1, FEM_GPS_PPS, &config);
  2098. #else
  2099. padConfig.mux = PAD_MuxAlt7;
  2100. PAD_SetPinConfig(8, &padConfig);
  2101. GPIO_PinWrite(1, 1 << FEM_GPS_PPS, 1 << FEM_GPS_PPS);
  2102. #endif
  2103. }
  2104. else
  2105. {
  2106. /*Normal IO*/
  2107. #if 0
  2108. GPIO_PinConfig(0, GPIO_MOS_DRV1, &config);
  2109. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV1, 1 << GPIO_MOS_DRV1);
  2110. GPIO_PinConfig(0, GPIO_MOS_DRV2, &config);
  2111. GPIO_PinWrite(0, 1 << GPIO_MOS_DRV2, 1 << GPIO_MOS_DRV2);
  2112. #endif
  2113. padConfig.mux = PAD_MuxAlt0;
  2114. PAD_SetPinConfig(28, &padConfig);
  2115. GPIO_PinConfig(0, GPIO_POWER_LED, &config);
  2116. GPIO_PinWrite(0, 1 << GPIO_POWER_LED, 1 << GPIO_POWER_LED);
  2117. }
  2118. }
  2119. /**
  2120. \fn void relayConfigInit(void)
  2121. \param[in]
  2122. \brief init the relay, while switch on default
  2123. \return
  2124. */
  2125. void relayConfigInit()
  2126. {
  2127. gpio_pin_config_t config;
  2128. config.pinDirection = GPIO_DirectionOutput;
  2129. config.misc.initOutput = 1;
  2130. pad_config_t padConfig;
  2131. PAD_GetDefaultConfig(&padConfig);
  2132. PAD_SetPinConfig(32, &padConfig);
  2133. GPIO_PinConfig(1, AON_RELAY_DRV, &config);
  2134. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //the relay default is off(disconnected)
  2135. printf("switch off\n");
  2136. }
  2137. /**
  2138. \fn void relayControl(BOOL onOrOff)
  2139. \param[in] onOrOff
  2140. \brief switch the relay on or off
  2141. \return
  2142. */
  2143. void relayControl(BOOL onOrOff)
  2144. {
  2145. if(onOrOff == TRUE)
  2146. {
  2147. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 1 << AON_RELAY_DRV); //switch on
  2148. printf("switcht on\n");
  2149. }
  2150. else
  2151. {
  2152. GPIO_PinWrite(1, 1 << AON_RELAY_DRV, 0 << AON_RELAY_DRV); //switch off
  2153. printf("switch off\n");
  2154. }
  2155. }
  2156. /**
  2157. \fn void posGGAReset(void)
  2158. \param[in]
  2159. \brief reset gps
  2160. \return
  2161. */
  2162. void posGGAReset(void)
  2163. {
  2164. gpio_pin_config_t config;
  2165. config.pinDirection = GPIO_DirectionOutput;
  2166. config.misc.initOutput = 1;
  2167. pad_config_t padConfig;
  2168. PAD_GetDefaultConfig(&padConfig);
  2169. padConfig.mux = PAD_MuxAlt7;
  2170. PAD_SetPinConfig(5, &padConfig);
  2171. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2172. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 0);
  2173. osDelay(1000/portTICK_PERIOD_MS);
  2174. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2175. GPIO_PinWrite(1, 1 << FEM_GPS_RSTN, 1 << FEM_GPS_RSTN);
  2176. config.pinDirection = GPIO_DirectionInput;
  2177. config.misc.initOutput = 0;
  2178. GPIO_PinConfig(1, FEM_GPS_RSTN, &config);
  2179. }
  2180. /**
  2181. \fn void GPSPowerCtr(bool )
  2182. \param[in]
  2183. \brief reset gps
  2184. \return
  2185. */
  2186. void GPSPowerCtr(bool on)
  2187. {
  2188. gpio_pin_config_t config;
  2189. config.pinDirection = GPIO_DirectionOutput;
  2190. config.misc.initOutput = 1;
  2191. pad_config_t padConfig;
  2192. PAD_GetDefaultConfig(&padConfig);
  2193. padConfig.mux = PAD_MuxAlt0;
  2194. PAD_SetPinConfig(35, &padConfig);
  2195. GPIO_PinConfig(1, AON_GPS_POWER1, &config);
  2196. PAD_SetPinConfig(31, &padConfig);
  2197. GPIO_PinConfig(1, AON_GPS_POWER2, &config);
  2198. if(on){
  2199. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 0);
  2200. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 1 << AON_GPS_POWER1);
  2201. }else{
  2202. GPIO_PinWrite(1, 1 << AON_GPS_POWER2, 1<<AON_GPS_POWER2);
  2203. GPIO_PinWrite(1, 1 << AON_GPS_POWER1, 0);
  2204. }
  2205. }
  2206. /**
  2207. \fn void posGGAServiceStart(QueueHandle_t handle)
  2208. \param[in]
  2209. \brief powr on gps
  2210. \return
  2211. */
  2212. INT32 posGGAServiceStart(QueueHandle_t handle)
  2213. {
  2214. if(handle == NULL){
  2215. return -1;
  2216. }else{
  2217. GPSPowerCtr(true);
  2218. gpsHandle = handle;
  2219. return 0;
  2220. }
  2221. }
  2222. /**
  2223. \fn void posGGAServiceStop(void )
  2224. \param[in]
  2225. \brief stop gps
  2226. \return
  2227. */
  2228. void posGGAServiceStop( void)
  2229. {
  2230. GPSPowerCtr(false);
  2231. gpsHandle = NULL;
  2232. }
  2233. BOOL NB_ADC_Get(UINT32* adcValue, ADC_CHANNEL_TYPE adcChannel)
  2234. {
  2235. //UINT32 NTCR2,NTCR3,NTCR4,NTCR5,Vbat = 0;
  2236. //*adcValue = 0xFFFFFFFF;
  2237. INT32 ret = 1;
  2238. switch(adcChannel)
  2239. {
  2240. case FAST_CHARGE_TEMP: //P2-7
  2241. ret = AdcSendReq(ADC_REQ_BITMAP_CH1,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2242. break;
  2243. case NORMAL_CHARGE_TEMP: //P2-9
  2244. ret = AdcSendReq(ADC_REQ_BITMAP_CH2,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2245. break;
  2246. case OTHER_TEMP_1: //P2-11
  2247. ret = AdcSendReq(ADC_REQ_BITMAP_CH31,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2248. break;
  2249. case OTHER_TEMP_2: //P2-13
  2250. ret = AdcSendReq(ADC_REQ_BITMAP_CH30,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2251. break;
  2252. case VBAT: //Vbat
  2253. ret = AdcSendReq(ADC_REQ_BITMAP_CH4,adcValue,01,ADC_GET_RESULT_TIMOUT);
  2254. break;
  2255. default:
  2256. break;
  2257. }
  2258. if(ret == 0)
  2259. return TRUE;
  2260. else
  2261. return FALSE;
  2262. }
  2263. UINT8 LookUpRTtable(UINT32 R_value)
  2264. {
  2265. UINT8 Temp_Table1[23] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22};
  2266. UINT8 Temp_Table2[217] = {23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
  2267. 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,
  2268. 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,
  2269. 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,
  2270. 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,
  2271. 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,
  2272. 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,
  2273. 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239};
  2274. UINT32 R_Table1[23] = {202269,191063,180554,170694,161438,152746,144580,136905,129687,122898,116508,
  2275. 110493,104827,99488,94455,89710,85233,81008,77019,73252,69693,66329,63148};
  2276. UINT16 R_Table2[217] = {
  2277. 60140,57293,54599,52049,49633,47343,45174,43117,41166,39315,37558,35891,34307,32802,31373,
  2278. 30014,28722,27493,26324,25211,24152,23144,22183,21268,20395,19564,18771,18015,17293,16604,
  2279. 15947,15319,14720,14147,13600,13077,12577,12098,11641,11203,10784,10383,10000,9632,9280,8942,
  2280. 8619,8309,8012,7727,7454,7191,6940,6698,6466,6244,6030,5825,5627,5438,5255,5080,4911,4749,4593,
  2281. 4443,4299,4160,4026,3898,3773,3654,3539,3428,3321,3218,3119,3023,2931,2841,2755,2672,2592,2515,
  2282. 2441,2369,2299,2232,2167,2104,2044,1985,1928,1874,1821,1769,1720,1672,1626,1581,1537,1495,1455,
  2283. 1415,1377,1340,1305,1270,1236,1204,1172,1142,1112,1083,1056,1029,1002,977,952,928,905,883,861,
  2284. 839,819,799,779,760,742,724,707,690,674,658,642,627,613,599,585,571,558,546,533,521,509,498,487,
  2285. 476,466,455,445,436,426,417,408,399,391,382,374,366,359,351,344,337,330,323,316,310,304,298,292,
  2286. 286,280,274,269,264,259,254,249,244,239,234,230,226,221,217,213,209,205,201,198,194,190,187,183,
  2287. 180,177,174,171,168,165,162,159,156,153,151,148,145,143,141,138,136,133,131,129,127,125};
  2288. if(R_value>R_Table2[0])
  2289. {
  2290. if(R_value<=R_Table1[22])//判断是否超出表尾
  2291. {
  2292. return Temp_Table1[22];
  2293. }
  2294. else if(R_value>=R_Table1[0])//判断是否超出表头
  2295. {
  2296. return Temp_Table1[0];
  2297. }
  2298. else
  2299. {
  2300. for(int i=0;i<23-1;i++)
  2301. {
  2302. if ((R_value<=R_Table1[i])&&(R_value>R_Table1[i+1]))//中间判断
  2303. {
  2304. return Temp_Table1[i];
  2305. }
  2306. else
  2307. {
  2308. continue;
  2309. }
  2310. }
  2311. }
  2312. }//R-1
  2313. else
  2314. {
  2315. if(R_value<=R_Table2[216])//判断是否超出表尾
  2316. {
  2317. return Temp_Table2[216];
  2318. }
  2319. else if(R_value>=R_Table2[0])//判断是否超出表头
  2320. {
  2321. return Temp_Table2[0];
  2322. }
  2323. else
  2324. {
  2325. for(int i=0;i<217-1;i++)
  2326. {
  2327. if ((R_value<R_Table2[i])&&(R_value>=R_Table2[i+1]))//中间判断
  2328. {
  2329. return Temp_Table2[i+1];
  2330. }
  2331. else
  2332. {
  2333. continue;
  2334. }
  2335. }
  2336. }
  2337. }//R-2
  2338. }
  2339. UINT16 GetErrorNum(UINT16 *ErrorArray,UINT8 Errorlen)
  2340. {
  2341. UINT16 OutNum;
  2342. OutNum = *(ErrorArray);
  2343. for(int i=0;i<Errorlen-1;i++)
  2344. {
  2345. *(ErrorArray+i) = *(ErrorArray+i+1);
  2346. if(*(ErrorArray+i+1)==0)
  2347. break;
  2348. }
  2349. return OutNum;
  2350. }
  2351. UINT8 PutErrorNum(UINT16 *ErrorArray,UINT8 Errorlen,UINT16 ErrorNum)
  2352. {
  2353. for(int i=0;i<Errorlen;i++)
  2354. {
  2355. if(*(ErrorArray+i)==0)
  2356. {
  2357. *(ErrorArray+i) = ErrorNum;
  2358. return 0;
  2359. }
  2360. else
  2361. {
  2362. if(*(ErrorArray+i)==ErrorNum)
  2363. {
  2364. return 1;
  2365. }
  2366. else
  2367. {
  2368. continue;
  2369. }
  2370. }
  2371. }
  2372. return 2;
  2373. }