123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- /*
- * FreeRTOS Kernel V10.4.6
- * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy of
- * this software and associated documentation files (the "Software"), to deal in
- * the Software without restriction, including without limitation the rights to
- * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
- * the Software, and to permit persons to whom the Software is furnished to do so,
- * subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
- * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
- * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
- * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- *
- * https://www.FreeRTOS.org
- * https://github.com/FreeRTOS
- *
- */
- /*
- Changes from V2.5.2
-
- + usCriticalNesting now has a volatile qualifier.
- */
- /* Standard includes. */
- #include <stdlib.h>
- #include <signal.h>
- /* Scheduler includes. */
- #include "FreeRTOS.h"
- #include "task.h"
- /*-----------------------------------------------------------
- * Implementation of functions defined in portable.h for the MSP430 port.
- *----------------------------------------------------------*/
- /* Constants required for hardware setup. The tick ISR runs off the ACLK,
- not the MCLK. */
- #define portACLK_FREQUENCY_HZ ( ( TickType_t ) 32768 )
- #define portINITIAL_CRITICAL_NESTING ( ( uint16_t ) 10 )
- #define portFLAGS_INT_ENABLED ( ( StackType_t ) 0x08 )
- /* We require the address of the pxCurrentTCB variable, but don't want to know
- any details of its type. */
- typedef void TCB_t;
- extern volatile TCB_t * volatile pxCurrentTCB;
- /* Most ports implement critical sections by placing the interrupt flags on
- the stack before disabling interrupts. Exiting the critical section is then
- simply a case of popping the flags from the stack. As mspgcc does not use
- a frame pointer this cannot be done as modifying the stack will clobber all
- the stack variables. Instead each task maintains a count of the critical
- section nesting depth. Each time a critical section is entered the count is
- incremented. Each time a critical section is left the count is decremented -
- with interrupts only being re-enabled if the count is zero.
- usCriticalNesting will get set to zero when the scheduler starts, but must
- not be initialised to zero as this will cause problems during the startup
- sequence. */
- volatile uint16_t usCriticalNesting = portINITIAL_CRITICAL_NESTING;
- /*-----------------------------------------------------------*/
- /*
- * Macro to save a task context to the task stack. This simply pushes all the
- * general purpose msp430 registers onto the stack, followed by the
- * usCriticalNesting value used by the task. Finally the resultant stack
- * pointer value is saved into the task control block so it can be retrieved
- * the next time the task executes.
- */
- #define portSAVE_CONTEXT() \
- asm volatile ( "push r4 \n\t" \
- "push r5 \n\t" \
- "push r6 \n\t" \
- "push r7 \n\t" \
- "push r8 \n\t" \
- "push r9 \n\t" \
- "push r10 \n\t" \
- "push r11 \n\t" \
- "push r12 \n\t" \
- "push r13 \n\t" \
- "push r14 \n\t" \
- "push r15 \n\t" \
- "mov.w usCriticalNesting, r14 \n\t" \
- "push r14 \n\t" \
- "mov.w pxCurrentTCB, r12 \n\t" \
- "mov.w r1, @r12 \n\t" \
- );
- /*
- * Macro to restore a task context from the task stack. This is effectively
- * the reverse of portSAVE_CONTEXT(). First the stack pointer value is
- * loaded from the task control block. Next the value for usCriticalNesting
- * used by the task is retrieved from the stack - followed by the value of all
- * the general purpose msp430 registers.
- *
- * The bic instruction ensures there are no low power bits set in the status
- * register that is about to be popped from the stack.
- */
- #define portRESTORE_CONTEXT() \
- asm volatile ( "mov.w pxCurrentTCB, r12 \n\t" \
- "mov.w @r12, r1 \n\t" \
- "pop r15 \n\t" \
- "mov.w r15, usCriticalNesting \n\t" \
- "pop r15 \n\t" \
- "pop r14 \n\t" \
- "pop r13 \n\t" \
- "pop r12 \n\t" \
- "pop r11 \n\t" \
- "pop r10 \n\t" \
- "pop r9 \n\t" \
- "pop r8 \n\t" \
- "pop r7 \n\t" \
- "pop r6 \n\t" \
- "pop r5 \n\t" \
- "pop r4 \n\t" \
- "bic #(0xf0),0(r1) \n\t" \
- "reti \n\t" \
- );
- /*-----------------------------------------------------------*/
- /*
- * Sets up the periodic ISR used for the RTOS tick. This uses timer 0, but
- * could have alternatively used the watchdog timer or timer 1.
- */
- static void prvSetupTimerInterrupt( void );
- /*-----------------------------------------------------------*/
- /*
- * Initialise the stack of a task to look exactly as if a call to
- * portSAVE_CONTEXT had been called.
- *
- * See the header file portable.h.
- */
- StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
- {
- /*
- Place a few bytes of known values on the bottom of the stack.
- This is just useful for debugging and can be included if required.
- *pxTopOfStack = ( StackType_t ) 0x1111;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0x2222;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0x3333;
- pxTopOfStack--;
- */
- /* The msp430 automatically pushes the PC then SR onto the stack before
- executing an ISR. We want the stack to look just as if this has happened
- so place a pointer to the start of the task on the stack first - followed
- by the flags we want the task to use when it starts up. */
- *pxTopOfStack = ( StackType_t ) pxCode;
- pxTopOfStack--;
- *pxTopOfStack = portFLAGS_INT_ENABLED;
- pxTopOfStack--;
- /* Next the general purpose registers. */
- *pxTopOfStack = ( StackType_t ) 0x4444;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0x5555;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0x6666;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0x7777;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0x8888;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0x9999;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0xaaaa;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0xbbbb;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0xcccc;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0xdddd;
- pxTopOfStack--;
- *pxTopOfStack = ( StackType_t ) 0xeeee;
- pxTopOfStack--;
- /* When the task starts is will expect to find the function parameter in
- R15. */
- *pxTopOfStack = ( StackType_t ) pvParameters;
- pxTopOfStack--;
- /* The code generated by the mspgcc compiler does not maintain separate
- stack and frame pointers. The portENTER_CRITICAL macro cannot therefore
- use the stack as per other ports. Instead a variable is used to keep
- track of the critical section nesting. This variable has to be stored
- as part of the task context and is initially set to zero. */
- *pxTopOfStack = ( StackType_t ) portNO_CRITICAL_SECTION_NESTING;
- /* Return a pointer to the top of the stack we have generated so this can
- be stored in the task control block for the task. */
- return pxTopOfStack;
- }
- /*-----------------------------------------------------------*/
- BaseType_t xPortStartScheduler( void )
- {
- /* Setup the hardware to generate the tick. Interrupts are disabled when
- this function is called. */
- prvSetupTimerInterrupt();
- /* Restore the context of the first task that is going to run. */
- portRESTORE_CONTEXT();
- /* Should not get here as the tasks are now running! */
- return pdTRUE;
- }
- /*-----------------------------------------------------------*/
- void vPortEndScheduler( void )
- {
- /* It is unlikely that the MSP430 port will get stopped. If required simply
- disable the tick interrupt here. */
- }
- /*-----------------------------------------------------------*/
- /*
- * Manual context switch called by portYIELD or taskYIELD.
- *
- * The first thing we do is save the registers so we can use a naked attribute.
- */
- void vPortYield( void ) __attribute__ ( ( naked ) );
- void vPortYield( void )
- {
- /* We want the stack of the task being saved to look exactly as if the task
- was saved during a pre-emptive RTOS tick ISR. Before calling an ISR the
- msp430 places the status register onto the stack. As this is a function
- call and not an ISR we have to do this manually. */
- asm volatile ( "push r2" );
- _DINT();
- /* Save the context of the current task. */
- portSAVE_CONTEXT();
- /* Switch to the highest priority task that is ready to run. */
- vTaskSwitchContext();
- /* Restore the context of the new task. */
- portRESTORE_CONTEXT();
- }
- /*-----------------------------------------------------------*/
- /*
- * Hardware initialisation to generate the RTOS tick. This uses timer 0
- * but could alternatively use the watchdog timer or timer 1.
- */
- static void prvSetupTimerInterrupt( void )
- {
- /* Ensure the timer is stopped. */
- TACTL = 0;
- /* Run the timer of the ACLK. */
- TACTL = TASSEL_1;
- /* Clear everything to start with. */
- TACTL |= TACLR;
- /* Set the compare match value according to the tick rate we want. */
- TACCR0 = portACLK_FREQUENCY_HZ / configTICK_RATE_HZ;
- /* Enable the interrupts. */
- TACCTL0 = CCIE;
- /* Start up clean. */
- TACTL |= TACLR;
- /* Up mode. */
- TACTL |= MC_1;
- }
- /*-----------------------------------------------------------*/
- /*
- * The interrupt service routine used depends on whether the pre-emptive
- * scheduler is being used or not.
- */
- #if configUSE_PREEMPTION == 1
- /*
- * Tick ISR for preemptive scheduler. We can use a naked attribute as
- * the context is saved at the start of vPortYieldFromTick(). The tick
- * count is incremented after the context is saved.
- */
- interrupt (TIMERA0_VECTOR) prvTickISR( void ) __attribute__ ( ( naked ) );
- interrupt (TIMERA0_VECTOR) prvTickISR( void )
- {
- /* Save the context of the interrupted task. */
- portSAVE_CONTEXT();
- /* Increment the tick count then switch to the highest priority task
- that is ready to run. */
- if( xTaskIncrementTick() != pdFALSE )
- {
- vTaskSwitchContext();
- }
- /* Restore the context of the new task. */
- portRESTORE_CONTEXT();
- }
- #else
- /*
- * Tick ISR for the cooperative scheduler. All this does is increment the
- * tick count. We don't need to switch context, this can only be done by
- * manual calls to taskYIELD();
- */
- interrupt (TIMERA0_VECTOR) prvTickISR( void );
- interrupt (TIMERA0_VECTOR) prvTickISR( void )
- {
- xTaskIncrementTick();
- }
- #endif
-
|