123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819 |
- /**
- * Constant-time functions
- *
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * The following functions are implemented without using comparison operators, as those
- * might be translated to branches by some compilers on some platforms.
- */
- #include "common.h"
- #include "constant_time_internal.h"
- #include "mbedtls/constant_time.h"
- #include "mbedtls/error.h"
- #include "mbedtls/platform_util.h"
- #if defined(MBEDTLS_BIGNUM_C)
- #include "mbedtls/bignum.h"
- #endif
- #if defined(MBEDTLS_SSL_TLS_C)
- #include "mbedtls/ssl_internal.h"
- #endif
- #if defined(MBEDTLS_RSA_C)
- #include "mbedtls/rsa.h"
- #endif
- #if defined(MBEDTLS_BASE64_C)
- #include "constant_time_invasive.h"
- #endif
- #include <string.h>
- int mbedtls_ct_memcmp( const void *a,
- const void *b,
- size_t n )
- {
- size_t i;
- volatile const unsigned char *A = (volatile const unsigned char *) a;
- volatile const unsigned char *B = (volatile const unsigned char *) b;
- volatile unsigned char diff = 0;
- for( i = 0; i < n; i++ )
- {
- /* Read volatile data in order before computing diff.
- * This avoids IAR compiler warning:
- * 'the order of volatile accesses is undefined ..' */
- unsigned char x = A[i], y = B[i];
- diff |= x ^ y;
- }
- return( (int)diff );
- }
- unsigned mbedtls_ct_uint_mask( unsigned value )
- {
- /* MSVC has a warning about unary minus on unsigned, but this is
- * well-defined and precisely what we want to do here */
- #if defined(_MSC_VER)
- #pragma warning( push )
- #pragma warning( disable : 4146 )
- #endif
- return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
- #if defined(_MSC_VER)
- #pragma warning( pop )
- #endif
- }
- #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
- size_t mbedtls_ct_size_mask( size_t value )
- {
- /* MSVC has a warning about unary minus on unsigned integer types,
- * but this is well-defined and precisely what we want to do here. */
- #if defined(_MSC_VER)
- #pragma warning( push )
- #pragma warning( disable : 4146 )
- #endif
- return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
- #if defined(_MSC_VER)
- #pragma warning( pop )
- #endif
- }
- #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
- #if defined(MBEDTLS_BIGNUM_C)
- mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask( mbedtls_mpi_uint value )
- {
- /* MSVC has a warning about unary minus on unsigned, but this is
- * well-defined and precisely what we want to do here */
- #if defined(_MSC_VER)
- #pragma warning( push )
- #pragma warning( disable : 4146 )
- #endif
- return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
- #if defined(_MSC_VER)
- #pragma warning( pop )
- #endif
- }
- #endif /* MBEDTLS_BIGNUM_C */
- #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
- /** Constant-flow mask generation for "less than" comparison:
- * - if \p x < \p y, return all-bits 1, that is (size_t) -1
- * - otherwise, return all bits 0, that is 0
- *
- * This function can be used to write constant-time code by replacing branches
- * with bit operations using masks.
- *
- * \param x The first value to analyze.
- * \param y The second value to analyze.
- *
- * \return All-bits-one if \p x is less than \p y, otherwise zero.
- */
- static size_t mbedtls_ct_size_mask_lt( size_t x,
- size_t y )
- {
- /* This has the most significant bit set if and only if x < y */
- const size_t sub = x - y;
- /* sub1 = (x < y) ? 1 : 0 */
- const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
- /* mask = (x < y) ? 0xff... : 0x00... */
- const size_t mask = mbedtls_ct_size_mask( sub1 );
- return( mask );
- }
- size_t mbedtls_ct_size_mask_ge( size_t x,
- size_t y )
- {
- return( ~mbedtls_ct_size_mask_lt( x, y ) );
- }
- #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
- #if defined(MBEDTLS_BASE64_C)
- /* Return 0xff if low <= c <= high, 0 otherwise.
- *
- * Constant flow with respect to c.
- */
- MBEDTLS_STATIC_TESTABLE
- unsigned char mbedtls_ct_uchar_mask_of_range( unsigned char low,
- unsigned char high,
- unsigned char c )
- {
- /* low_mask is: 0 if low <= c, 0x...ff if low > c */
- unsigned low_mask = ( (unsigned) c - low ) >> 8;
- /* high_mask is: 0 if c <= high, 0x...ff if c > high */
- unsigned high_mask = ( (unsigned) high - c ) >> 8;
- return( ~( low_mask | high_mask ) & 0xff );
- }
- #endif /* MBEDTLS_BASE64_C */
- unsigned mbedtls_ct_size_bool_eq( size_t x,
- size_t y )
- {
- /* diff = 0 if x == y, non-zero otherwise */
- const size_t diff = x ^ y;
- /* MSVC has a warning about unary minus on unsigned integer types,
- * but this is well-defined and precisely what we want to do here. */
- #if defined(_MSC_VER)
- #pragma warning( push )
- #pragma warning( disable : 4146 )
- #endif
- /* diff_msb's most significant bit is equal to x != y */
- const size_t diff_msb = ( diff | (size_t) -diff );
- #if defined(_MSC_VER)
- #pragma warning( pop )
- #endif
- /* diff1 = (x != y) ? 1 : 0 */
- const unsigned diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
- return( 1 ^ diff1 );
- }
- #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
- /** Constant-flow "greater than" comparison:
- * return x > y
- *
- * This is equivalent to \p x > \p y, but is likely to be compiled
- * to code using bitwise operation rather than a branch.
- *
- * \param x The first value to analyze.
- * \param y The second value to analyze.
- *
- * \return 1 if \p x greater than \p y, otherwise 0.
- */
- static unsigned mbedtls_ct_size_gt( size_t x,
- size_t y )
- {
- /* Return the sign bit (1 for negative) of (y - x). */
- return( ( y - x ) >> ( sizeof( size_t ) * 8 - 1 ) );
- }
- #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
- #if defined(MBEDTLS_BIGNUM_C)
- unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
- const mbedtls_mpi_uint y )
- {
- mbedtls_mpi_uint ret;
- mbedtls_mpi_uint cond;
- /*
- * Check if the most significant bits (MSB) of the operands are different.
- */
- cond = ( x ^ y );
- /*
- * If the MSB are the same then the difference x-y will be negative (and
- * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
- */
- ret = ( x - y ) & ~cond;
- /*
- * If the MSB are different, then the operand with the MSB of 1 is the
- * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
- * the MSB of y is 0.)
- */
- ret |= y & cond;
- ret = ret >> ( sizeof( mbedtls_mpi_uint ) * 8 - 1 );
- return (unsigned) ret;
- }
- #endif /* MBEDTLS_BIGNUM_C */
- unsigned mbedtls_ct_uint_if( unsigned condition,
- unsigned if1,
- unsigned if0 )
- {
- unsigned mask = mbedtls_ct_uint_mask( condition );
- return( ( mask & if1 ) | (~mask & if0 ) );
- }
- #if defined(MBEDTLS_BIGNUM_C)
- /** Select between two sign values without branches.
- *
- * This is functionally equivalent to `condition ? if1 : if0` but uses only bit
- * operations in order to avoid branches.
- *
- * \note if1 and if0 must be either 1 or -1, otherwise the result
- * is undefined.
- *
- * \param condition Condition to test.
- * \param if1 The first sign; must be either +1 or -1.
- * \param if0 The second sign; must be either +1 or -1.
- *
- * \return \c if1 if \p condition is nonzero, otherwise \c if0.
- * */
- static int mbedtls_ct_cond_select_sign( unsigned char condition,
- int if1,
- int if0 )
- {
- /* In order to avoid questions about what we can reasonably assume about
- * the representations of signed integers, move everything to unsigned
- * by taking advantage of the fact that if1 and if0 are either +1 or -1. */
- unsigned uif1 = if1 + 1;
- unsigned uif0 = if0 + 1;
- /* condition was 0 or 1, mask is 0 or 2 as are uif1 and uif0 */
- const unsigned mask = condition << 1;
- /* select uif1 or uif0 */
- unsigned ur = ( uif0 & ~mask ) | ( uif1 & mask );
- /* ur is now 0 or 2, convert back to -1 or +1 */
- return( (int) ur - 1 );
- }
- void mbedtls_ct_mpi_uint_cond_assign( size_t n,
- mbedtls_mpi_uint *dest,
- const mbedtls_mpi_uint *src,
- unsigned char condition )
- {
- size_t i;
- /* MSVC has a warning about unary minus on unsigned integer types,
- * but this is well-defined and precisely what we want to do here. */
- #if defined(_MSC_VER)
- #pragma warning( push )
- #pragma warning( disable : 4146 )
- #endif
- /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
- const mbedtls_mpi_uint mask = -condition;
- #if defined(_MSC_VER)
- #pragma warning( pop )
- #endif
- for( i = 0; i < n; i++ )
- dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
- }
- #endif /* MBEDTLS_BIGNUM_C */
- #if defined(MBEDTLS_BASE64_C)
- unsigned char mbedtls_ct_base64_enc_char( unsigned char value )
- {
- unsigned char digit = 0;
- /* For each range of values, if value is in that range, mask digit with
- * the corresponding value. Since value can only be in a single range,
- * only at most one masking will change digit. */
- digit |= mbedtls_ct_uchar_mask_of_range( 0, 25, value ) & ( 'A' + value );
- digit |= mbedtls_ct_uchar_mask_of_range( 26, 51, value ) & ( 'a' + value - 26 );
- digit |= mbedtls_ct_uchar_mask_of_range( 52, 61, value ) & ( '0' + value - 52 );
- digit |= mbedtls_ct_uchar_mask_of_range( 62, 62, value ) & '+';
- digit |= mbedtls_ct_uchar_mask_of_range( 63, 63, value ) & '/';
- return( digit );
- }
- signed char mbedtls_ct_base64_dec_value( unsigned char c )
- {
- unsigned char val = 0;
- /* For each range of digits, if c is in that range, mask val with
- * the corresponding value. Since c can only be in a single range,
- * only at most one masking will change val. Set val to one plus
- * the desired value so that it stays 0 if c is in none of the ranges. */
- val |= mbedtls_ct_uchar_mask_of_range( 'A', 'Z', c ) & ( c - 'A' + 0 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( 'a', 'z', c ) & ( c - 'a' + 26 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( '0', '9', c ) & ( c - '0' + 52 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( '+', '+', c ) & ( c - '+' + 62 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( '/', '/', c ) & ( c - '/' + 63 + 1 );
- /* At this point, val is 0 if c is an invalid digit and v+1 if c is
- * a digit with the value v. */
- return( val - 1 );
- }
- #endif /* MBEDTLS_BASE64_C */
- #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
- /** Shift some data towards the left inside a buffer.
- *
- * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
- * equivalent to
- * ```
- * memmove(start, start + offset, total - offset);
- * memset(start + offset, 0, total - offset);
- * ```
- * but it strives to use a memory access pattern (and thus total timing)
- * that does not depend on \p offset. This timing independence comes at
- * the expense of performance.
- *
- * \param start Pointer to the start of the buffer.
- * \param total Total size of the buffer.
- * \param offset Offset from which to copy \p total - \p offset bytes.
- */
- static void mbedtls_ct_mem_move_to_left( void *start,
- size_t total,
- size_t offset )
- {
- volatile unsigned char *buf = start;
- size_t i, n;
- if( total == 0 )
- return;
- for( i = 0; i < total; i++ )
- {
- unsigned no_op = mbedtls_ct_size_gt( total - offset, i );
- /* The first `total - offset` passes are a no-op. The last
- * `offset` passes shift the data one byte to the left and
- * zero out the last byte. */
- for( n = 0; n < total - 1; n++ )
- {
- unsigned char current = buf[n];
- unsigned char next = buf[n+1];
- buf[n] = mbedtls_ct_uint_if( no_op, current, next );
- }
- buf[total-1] = mbedtls_ct_uint_if( no_op, buf[total-1], 0 );
- }
- }
- #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
- #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
- void mbedtls_ct_memcpy_if_eq( unsigned char *dest,
- const unsigned char *src,
- size_t len,
- size_t c1,
- size_t c2 )
- {
- /* mask = c1 == c2 ? 0xff : 0x00 */
- const size_t equal = mbedtls_ct_size_bool_eq( c1, c2 );
- const unsigned char mask = (unsigned char) mbedtls_ct_size_mask( equal );
- /* dest[i] = c1 == c2 ? src[i] : dest[i] */
- for( size_t i = 0; i < len; i++ )
- dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
- }
- void mbedtls_ct_memcpy_offset( unsigned char *dest,
- const unsigned char *src,
- size_t offset,
- size_t offset_min,
- size_t offset_max,
- size_t len )
- {
- size_t offsetval;
- for( offsetval = offset_min; offsetval <= offset_max; offsetval++ )
- {
- mbedtls_ct_memcpy_if_eq( dest, src + offsetval, len,
- offsetval, offset );
- }
- }
- int mbedtls_ct_hmac( mbedtls_md_context_t *ctx,
- const unsigned char *add_data,
- size_t add_data_len,
- const unsigned char *data,
- size_t data_len_secret,
- size_t min_data_len,
- size_t max_data_len,
- unsigned char *output )
- {
- /*
- * This function breaks the HMAC abstraction and uses the md_clone()
- * extension to the MD API in order to get constant-flow behaviour.
- *
- * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
- * concatenation, and okey/ikey are the XOR of the key with some fixed bit
- * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
- *
- * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
- * minlen, then cloning the context, and for each byte up to maxlen
- * finishing up the hash computation, keeping only the correct result.
- *
- * Then we only need to compute HASH(okey + inner_hash) and we're done.
- */
- const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
- /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
- * all of which have the same block size except SHA-384. */
- const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
- const unsigned char * const ikey = ctx->hmac_ctx;
- const unsigned char * const okey = ikey + block_size;
- const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
- unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
- mbedtls_md_context_t aux;
- size_t offset;
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_md_init( &aux );
- #define MD_CHK( func_call ) \
- do { \
- ret = (func_call); \
- if( ret != 0 ) \
- goto cleanup; \
- } while( 0 )
- MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
- /* After hmac_start() of hmac_reset(), ikey has already been hashed,
- * so we can start directly with the message */
- MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
- MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
- /* For each possible length, compute the hash up to that point */
- for( offset = min_data_len; offset <= max_data_len; offset++ )
- {
- MD_CHK( mbedtls_md_clone( &aux, ctx ) );
- MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
- /* Keep only the correct inner_hash in the output buffer */
- mbedtls_ct_memcpy_if_eq( output, aux_out, hash_size,
- offset, data_len_secret );
- if( offset < max_data_len )
- MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
- }
- /* The context needs to finish() before it starts() again */
- MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
- /* Now compute HASH(okey + inner_hash) */
- MD_CHK( mbedtls_md_starts( ctx ) );
- MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
- MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
- MD_CHK( mbedtls_md_finish( ctx, output ) );
- /* Done, get ready for next time */
- MD_CHK( mbedtls_md_hmac_reset( ctx ) );
- #undef MD_CHK
- cleanup:
- mbedtls_md_free( &aux );
- return( ret );
- }
- #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
- #if defined(MBEDTLS_BIGNUM_C)
- #define MPI_VALIDATE_RET( cond ) \
- MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
- /*
- * Conditionally assign X = Y, without leaking information
- * about whether the assignment was made or not.
- * (Leaking information about the respective sizes of X and Y is ok however.)
- */
- int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X,
- const mbedtls_mpi *Y,
- unsigned char assign )
- {
- int ret = 0;
- size_t i;
- mbedtls_mpi_uint limb_mask;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
- /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
- limb_mask = mbedtls_ct_mpi_uint_mask( assign );;
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
- X->s = mbedtls_ct_cond_select_sign( assign, Y->s, X->s );
- mbedtls_ct_mpi_uint_cond_assign( Y->n, X->p, Y->p, assign );
- for( i = Y->n; i < X->n; i++ )
- X->p[i] &= ~limb_mask;
- cleanup:
- return( ret );
- }
- /*
- * Conditionally swap X and Y, without leaking information
- * about whether the swap was made or not.
- * Here it is not ok to simply swap the pointers, which whould lead to
- * different memory access patterns when X and Y are used afterwards.
- */
- int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,
- mbedtls_mpi *Y,
- unsigned char swap )
- {
- int ret, s;
- size_t i;
- mbedtls_mpi_uint limb_mask;
- mbedtls_mpi_uint tmp;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
- if( X == Y )
- return( 0 );
- /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
- limb_mask = mbedtls_ct_mpi_uint_mask( swap );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
- s = X->s;
- X->s = mbedtls_ct_cond_select_sign( swap, Y->s, X->s );
- Y->s = mbedtls_ct_cond_select_sign( swap, s, Y->s );
- for( i = 0; i < X->n; i++ )
- {
- tmp = X->p[i];
- X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
- Y->p[i] = ( Y->p[i] & ~limb_mask ) | ( tmp & limb_mask );
- }
- cleanup:
- return( ret );
- }
- /*
- * Compare signed values in constant time
- */
- int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X,
- const mbedtls_mpi *Y,
- unsigned *ret )
- {
- size_t i;
- /* The value of any of these variables is either 0 or 1 at all times. */
- unsigned cond, done, X_is_negative, Y_is_negative;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
- MPI_VALIDATE_RET( ret != NULL );
- if( X->n != Y->n )
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- /*
- * Set sign_N to 1 if N >= 0, 0 if N < 0.
- * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
- */
- X_is_negative = ( X->s & 2 ) >> 1;
- Y_is_negative = ( Y->s & 2 ) >> 1;
- /*
- * If the signs are different, then the positive operand is the bigger.
- * That is if X is negative (X_is_negative == 1), then X < Y is true and it
- * is false if X is positive (X_is_negative == 0).
- */
- cond = ( X_is_negative ^ Y_is_negative );
- *ret = cond & X_is_negative;
- /*
- * This is a constant-time function. We might have the result, but we still
- * need to go through the loop. Record if we have the result already.
- */
- done = cond;
- for( i = X->n; i > 0; i-- )
- {
- /*
- * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
- * X and Y are negative.
- *
- * Again even if we can make a decision, we just mark the result and
- * the fact that we are done and continue looping.
- */
- cond = mbedtls_ct_mpi_uint_lt( Y->p[i - 1], X->p[i - 1] );
- *ret |= cond & ( 1 - done ) & X_is_negative;
- done |= cond;
- /*
- * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
- * X and Y are positive.
- *
- * Again even if we can make a decision, we just mark the result and
- * the fact that we are done and continue looping.
- */
- cond = mbedtls_ct_mpi_uint_lt( X->p[i - 1], Y->p[i - 1] );
- *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
- done |= cond;
- }
- return( 0 );
- }
- #endif /* MBEDTLS_BIGNUM_C */
- #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
- int mbedtls_ct_rsaes_pkcs1_v15_unpadding( int mode,
- unsigned char *input,
- size_t ilen,
- unsigned char *output,
- size_t output_max_len,
- size_t *olen )
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, plaintext_max_size;
- /* The following variables take sensitive values: their value must
- * not leak into the observable behavior of the function other than
- * the designated outputs (output, olen, return value). Otherwise
- * this would open the execution of the function to
- * side-channel-based variants of the Bleichenbacher padding oracle
- * attack. Potential side channels include overall timing, memory
- * access patterns (especially visible to an adversary who has access
- * to a shared memory cache), and branches (especially visible to
- * an adversary who has access to a shared code cache or to a shared
- * branch predictor). */
- size_t pad_count = 0;
- unsigned bad = 0;
- unsigned char pad_done = 0;
- size_t plaintext_size = 0;
- unsigned output_too_large;
- plaintext_max_size = ( output_max_len > ilen - 11 ) ? ilen - 11
- : output_max_len;
- /* Check and get padding length in constant time and constant
- * memory trace. The first byte must be 0. */
- bad |= input[0];
- if( mode == MBEDTLS_RSA_PRIVATE )
- {
- /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
- * where PS must be at least 8 nonzero bytes. */
- bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
- /* Read the whole buffer. Set pad_done to nonzero if we find
- * the 0x00 byte and remember the padding length in pad_count. */
- for( i = 2; i < ilen; i++ )
- {
- pad_done |= ((input[i] | (unsigned char)-input[i]) >> 7) ^ 1;
- pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
- }
- }
- else
- {
- /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
- * where PS must be at least 8 bytes with the value 0xFF. */
- bad |= input[1] ^ MBEDTLS_RSA_SIGN;
- /* Read the whole buffer. Set pad_done to nonzero if we find
- * the 0x00 byte and remember the padding length in pad_count.
- * If there's a non-0xff byte in the padding, the padding is bad. */
- for( i = 2; i < ilen; i++ )
- {
- pad_done |= mbedtls_ct_uint_if( input[i], 0, 1 );
- pad_count += mbedtls_ct_uint_if( pad_done, 0, 1 );
- bad |= mbedtls_ct_uint_if( pad_done, 0, input[i] ^ 0xFF );
- }
- }
- /* If pad_done is still zero, there's no data, only unfinished padding. */
- bad |= mbedtls_ct_uint_if( pad_done, 0, 1 );
- /* There must be at least 8 bytes of padding. */
- bad |= mbedtls_ct_size_gt( 8, pad_count );
- /* If the padding is valid, set plaintext_size to the number of
- * remaining bytes after stripping the padding. If the padding
- * is invalid, avoid leaking this fact through the size of the
- * output: use the maximum message size that fits in the output
- * buffer. Do it without branches to avoid leaking the padding
- * validity through timing. RSA keys are small enough that all the
- * size_t values involved fit in unsigned int. */
- plaintext_size = mbedtls_ct_uint_if(
- bad, (unsigned) plaintext_max_size,
- (unsigned) ( ilen - pad_count - 3 ) );
- /* Set output_too_large to 0 if the plaintext fits in the output
- * buffer and to 1 otherwise. */
- output_too_large = mbedtls_ct_size_gt( plaintext_size,
- plaintext_max_size );
- /* Set ret without branches to avoid timing attacks. Return:
- * - INVALID_PADDING if the padding is bad (bad != 0).
- * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
- * plaintext does not fit in the output buffer.
- * - 0 if the padding is correct. */
- ret = - (int) mbedtls_ct_uint_if(
- bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
- mbedtls_ct_uint_if( output_too_large,
- - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
- 0 ) );
- /* If the padding is bad or the plaintext is too large, zero the
- * data that we're about to copy to the output buffer.
- * We need to copy the same amount of data
- * from the same buffer whether the padding is good or not to
- * avoid leaking the padding validity through overall timing or
- * through memory or cache access patterns. */
- bad = mbedtls_ct_uint_mask( bad | output_too_large );
- for( i = 11; i < ilen; i++ )
- input[i] &= ~bad;
- /* If the plaintext is too large, truncate it to the buffer size.
- * Copy anyway to avoid revealing the length through timing, because
- * revealing the length is as bad as revealing the padding validity
- * for a Bleichenbacher attack. */
- plaintext_size = mbedtls_ct_uint_if( output_too_large,
- (unsigned) plaintext_max_size,
- (unsigned) plaintext_size );
- /* Move the plaintext to the leftmost position where it can start in
- * the working buffer, i.e. make it start plaintext_max_size from
- * the end of the buffer. Do this with a memory access trace that
- * does not depend on the plaintext size. After this move, the
- * starting location of the plaintext is no longer sensitive
- * information. */
- mbedtls_ct_mem_move_to_left( input + ilen - plaintext_max_size,
- plaintext_max_size,
- plaintext_max_size - plaintext_size );
- /* Finally copy the decrypted plaintext plus trailing zeros into the output
- * buffer. If output_max_len is 0, then output may be an invalid pointer
- * and the result of memcpy() would be undefined; prevent undefined
- * behavior making sure to depend only on output_max_len (the size of the
- * user-provided output buffer), which is independent from plaintext
- * length, validity of padding, success of the decryption, and other
- * secrets. */
- if( output_max_len != 0 )
- memcpy( output, input + ilen - plaintext_max_size, plaintext_max_size );
- /* Report the amount of data we copied to the output buffer. In case
- * of errors (bad padding or output too large), the value of *olen
- * when this function returns is not specified. Making it equivalent
- * to the good case limits the risks of leaking the padding validity. */
- *olen = plaintext_size;
- return( ret );
- }
- #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
|