|
@@ -0,0 +1,75 @@
|
|
|
|
+import pandas as pd
|
|
|
|
+import numpy as np
|
|
|
|
+from scipy.signal import savgol_filter
|
|
|
|
+from sklearn.preprocessing import RobustScaler
|
|
|
|
+from sklearn.decomposition import PCA
|
|
|
|
+import matplotlib.pyplot as plt
|
|
|
|
+
|
|
|
|
+def makedataset(df_data):
|
|
|
|
+ df_data=df_data.drop(['Unnamed: 0','总电流[A]','GSM信号','外电压','单体压差','SOH[%]','开关状态','充电状态','故障等级','故障代码','绝缘电阻','上锁状态','加热状态','单体均衡状态','总输出状态'],axis=1,errors='ignore')
|
|
|
|
+ for i in range(1,21):
|
|
|
|
+ df_data=df_data[(df_data['单体电压'+str(i)]>2200) & (df_data['单体电压'+str(i)]<4800)]
|
|
|
|
+ df_data=df_data[df_data['SOC[%]']>12]
|
|
|
|
+ df_data['时间']=[df_data.loc[i,'时间戳'][0:15] for i in df_data.index]
|
|
|
|
+ df_data=df_data.groupby('时间').mean()
|
|
|
|
+ for k in df_data.columns:
|
|
|
|
+ df_data[k]=savgol_filter(df_data[k],3,2)
|
|
|
|
+ return df_data
|
|
|
|
+
|
|
|
|
+def process(data_set):
|
|
|
|
+ features=data_set.columns
|
|
|
|
+ sX=RobustScaler(copy=True)
|
|
|
|
+ data_set2=data_set.copy()
|
|
|
|
+ data_set2.loc[:,features]=sX.fit_transform(data_set2[features])
|
|
|
|
+ return data_set2
|
|
|
|
+
|
|
|
|
+def anomalyScores(originalDF,reducedDF):
|
|
|
|
+ loss=np.sum((np.array(originalDF)-np.array(reducedDF))**2,axis=1)
|
|
|
|
+ loss=pd.Series(data=loss,index=originalDF.index)
|
|
|
|
+ loss=(loss-np.min(loss))/(np.max(loss)-np.min(loss))
|
|
|
|
+ return loss
|
|
|
|
+
|
|
|
|
+def anomalyPCA(x_train_pro):
|
|
|
|
+ n_components=4
|
|
|
|
+ whiten=True
|
|
|
|
+ random_state=2
|
|
|
|
+ pca=PCA(n_components=n_components,whiten=whiten,random_state=random_state)
|
|
|
|
+ pca.fit(x_train_pro)
|
|
|
|
+ return pca
|
|
|
|
+
|
|
|
|
+def transform(df_data_pro,model,df_data):
|
|
|
|
+ #降维
|
|
|
|
+ X_train=model.transform(df_data_pro)
|
|
|
|
+ X_train=pd.DataFrame(data=X_train,index=df_data_pro.index)
|
|
|
|
+ #还原
|
|
|
|
+ X_train_inverse=model.inverse_transform(X_train)
|
|
|
|
+ X_train_inverse=pd.DataFrame(data=X_train_inverse,index=df_data_pro.index)
|
|
|
|
+ #异常指数
|
|
|
|
+ anomalyScoresModel=anomalyScores(df_data_pro,X_train_inverse)
|
|
|
|
+ anomalyScoresModel=savgol_filter(anomalyScoresModel,15,3)
|
|
|
|
+ df_data2=df_data.copy()
|
|
|
|
+ df_data2['anomalyScores_'+str(model)]=anomalyScoresModel
|
|
|
|
+ return df_data2
|
|
|
|
+
|
|
|
|
+def detect_outliers(data,threshold=3):
|
|
|
|
+ anomaly=data['anomalyScores_PCA(n_components=4, random_state=2, whiten=True)']
|
|
|
|
+ mean_d=np.mean(anomaly.values)
|
|
|
|
+ std_d=np.std(anomaly.values)
|
|
|
|
+ outliers=pd.DataFrame()
|
|
|
|
+ for k in anomaly.index:
|
|
|
|
+ z_score= (anomaly[k]-mean_d)/std_d
|
|
|
|
+ if np.abs(z_score) >threshold:
|
|
|
|
+ outliers=outliers.append(data[anomaly.values==anomaly[k]])
|
|
|
|
+ return outliers
|
|
|
|
+
|
|
|
|
+def detect_outliers2(data,pred,threshold=3):
|
|
|
|
+ anomaly=data['anomalyScores_PCA(n_components=4, random_state=2, whiten=True)']
|
|
|
|
+ anomalypred=pred['anomalyScores_PCA(n_components=4, random_state=2, whiten=True)']
|
|
|
|
+ mean_d=np.mean(anomaly.values)
|
|
|
|
+ std_d=np.std(anomaly.values)
|
|
|
|
+ outliers2=pd.DataFrame()
|
|
|
|
+ for k in anomalypred.index:
|
|
|
|
+ z_score= (anomalypred[k]-mean_d)/std_d
|
|
|
|
+ if np.abs(z_score) >threshold:
|
|
|
|
+ outliers2=outliers2.append(pred[anomalypred.values==anomalypred[k]])
|
|
|
|
+ return outliers2
|