소스 검색

Merge branch 'dev' of http://git.fast-fun.cn:92/lmstack/data_analyze_platform into dev

Eric412V 1 년 전
부모
커밋
097e037016

+ 18 - 28
LIB/MIDDLE/CellStateEstimation/BatSafetyWarning/V1_0_1/CBMSSafetyWarning.py

@@ -127,56 +127,46 @@ class SafetyWarning:
                 #获取压降最大电芯的最近一次压降值
                 try:
                     deltvolt_last = eval(df_short1.iloc[-1]['short_current'])
-                    deltvolt_last_list = list(deltvolt_last[i])
+                    deltvolt_last = np.array(deltvolt_last[i])
                 except:
-                    deltvolt_last_list = [0]*self.param.CellVoltNums
+                    deltvolt_last = np.array([0]*self.param.CellVoltNums)
                 
                 # 故障判断:1.压降累计最大>6mV,次大<3mV,2.最近一次对应电芯的压降>3mV,且离群
-                if min(deltvolt_rst)<-6:
+                if min(deltvolt_rst)<-10:
+                    deltvolt_count = np.sum(deltvolt_rst < -10)
+                    deltvolt_index = np.where(deltvolt_rst < -10)
+                    deltvolt_last1 = deltvolt_last[deltvolt_index]
+                    if deltvolt_count < 4 and min(deltvolt_last1) < -10:
+                        cellshortfault1=1
+                        cellshort_num= list(np.where(deltvolt_last<-10)[0]+1)
+                        break
+                elif min(deltvolt_rst)<-6:
                     deltvolt_rst1=list(deltvolt_rst)
                     deltvolt_min_index = deltvolt_rst1.index(min(deltvolt_rst))
-                    deltvolt_last_list1 = deltvolt_last_list.copy()
-                    deltvolt_last_list1.pop(deltvolt_min_index)
+                    deltvolt_last_list = list(deltvolt_last)
+                    deltvolt_last_list.pop(deltvolt_min_index)
                     deltvolt_rst1.remove(min(deltvolt_rst))
-                    if min(deltvolt_rst1)>-3 and deltvolt_last_list[deltvolt_min_index]<-3 and min(deltvolt_last_list1)>-2.5:
+                    if min(deltvolt_rst1)>-3 and deltvolt_last_list[deltvolt_min_index]<-3 and min(deltvolt_last_list)>-2.5:
                         cellshortfault1=1
                         cellshort_num=deltvolt_min_index+1
                         break
-                # elif min(deltvolt_rst)<-6:
-                #     deltvolt_rst1=list(deltvolt_rst)
-                #     deltvolt_rst1.remove(min(deltvolt_rst))
-                #     if min(deltvolt_rst1)>-3:
-                #         cellshortfault1=1
-                #         cellshort_num=list(deltvolt_rst).index(min(deltvolt_rst))+1
                 else:
                     cellshortfault1=0
             
         #漏电流热失控预警确认.......................................................................................
         if not 'C490' in list(self.df_warning_ram['code']):  #当前故障中没有该故障,则判断是否发生该故障
-            if cellshortfault==1:
+            if cellshortfault1:
                 faultcode='C490'
                 faultlv=4
-                faultinfo='电芯{}发生内短路'.format([cellshort_num])
+                faultinfo='电芯{}发生内短路00'.format(cellshort_num)
                 faultadvice='请立刻召回电池包,更换模组'
                 df_res_new.loc[0]=[time_now, end_time, self.sn, faultcode, faultlv, faultinfo, faultadvice]
-            else:
-                pass
-        else:
-            if cellshortfault==1 or cellshortfault1==1:
-                pass
-            else:
-                df_res_chg=self.df_warning_ram
-                df_res_chg.loc[df_res_chg[df_res_chg['code']=='C490'].index, 'end_time'] = time_now
-        
-        if not 'C490' in list(self.df_warning_ram['code']):  #当前故障中没有该故障,则判断是否发生该故障
-            if cellshortfault1==1:
+            elif cellshortfault==1:
                 faultcode='C490'
                 faultlv=4
-                faultinfo='电芯{}发生内短路00'.format([cellshort_num])
+                faultinfo='电芯{}发生内短路'.format([cellshort_num])
                 faultadvice='请立刻召回电池包,更换模组'
                 df_res_new.loc[0]=[time_now, end_time, self.sn, faultcode, faultlv, faultinfo, faultadvice]
-            else:
-                pass
         else:
             if cellshortfault==1 or cellshortfault1==1:
                 pass

+ 23 - 31
LIB/MIDDLE/CellStateEstimation/BatSafetyWarning/main.py

@@ -20,13 +20,13 @@ def saftywarning_cal():
     global df_lfp_ram
     global df_lfp_ram1
     global df_chrgvolt_ram
+    global now_time
 
     pd.set_option('display.width', 300) # 设置字符显示宽度
     pd.set_option('display.max_rows', None) # 设置显示最大行
     pd.set_option('display.max_columns', None) # 设置显示最大列,None为显示所有列
     
     # start=time.time()
-    now_time=datetime.datetime.now()
     start_time=now_time-datetime.timedelta(hours=6)
     start_time1=now_time-datetime.timedelta(days=7)
     start_time2=now_time-datetime.timedelta(days=3)
@@ -36,6 +36,7 @@ def saftywarning_cal():
     start_time2=start_time2.strftime('%Y-%m-%d %H:%M:%S')
     start_time3=start_time3.strftime('%Y-%m-%d %H:%M:%S')
     end_time=now_time.strftime('%Y-%m-%d %H:%M:%S')
+    now_time=now_time+datetime.timedelta(hours=6)
 
 
     #数据库配置
@@ -50,7 +51,7 @@ def saftywarning_cal():
     cursor = mysql.cursor()
     param='start_time,end_time,product_id,code,level,info,advice'
     tablename='all_fault_info'
-    sql =  "select %s from %s where code=110 and end_time='0000-00-00 00:00:00'" %(param,tablename)
+    sql =  "select %s from %s where code='C490' and end_time='0000-00-00 00:00:00'" %(param,tablename)
     cursor.execute(sql)
     res = cursor.fetchall()
     df_fault_ram= pd.DataFrame(res,columns=param.split(','))
@@ -166,7 +167,7 @@ def saftywarning_cal():
         tablename4='outlier_voltchangeratio'   #电压离群表单
         DBRead=DBDownload.DBDownload(host, port, db, user, password,mode)
         with DBRead as DBRead:
-            df_short=DBRead.getdata('time_sp,sn,method,short_current', tablename=tablename1, sn=sn, timename='time_sp', st=start_time1, sp=end_time)
+            df_short=DBRead.getdata('time_st,time_sp,sn,method,short_current', tablename=tablename1, sn=sn, timename='time_sp', st=start_time1, sp=end_time)
             df_uniform=DBRead.getdata('time,sn,cellsoc_diff,cellvolt_diff,cellmin_num,cellmax_num,cellvolt_rank', tablename=tablename3, sn=sn, timename='time', st=start_time2, sp=end_time)
             df_voltsigma=DBRead.getdata('time,sn,VolOl_Uni,VolChng_Uni', tablename=tablename4, sn=sn, timename='time', st=start_time3, sp=end_time)
 
@@ -175,40 +176,31 @@ def saftywarning_cal():
         
         #热安全预警
         if df_fault_ram_sn.empty:
-            BatWarning=CBMSSafetyWarning.SafetyWarning(sn,celltype,df_short,df_uniform,df_voltsigma,df_soh)
-            df_warning_res=BatWarning.diag()
+            BatWarning=CBMSSafetyWarning.SafetyWarning(sn,celltype,df_short,df_uniform,df_soh,df_fault_ram_sn)
+            df_res_new, df_res_chg=BatWarning.diag()
             #当前热失控故障写入数据库
-            if not df_warning_res.empty:
-                with open(r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\07BatSafetyWarning\热失控预警.txt','a',encoding="utf-8") as file:
-                    file.write(str(tuple(df_warning_res.iloc[-1]))+'\n')
+            if not df_res_new.empty:
+                with open(r'热失控预警.txt','a',encoding="utf-8") as file:
+                    file.write(str(tuple(df_res_new.iloc[-1]))+'\n')
+            if not df_res_chg.empty:
+                with open(r'热失控预警.txt','a',encoding="utf-8") as file:
+                    file.write(str(tuple(df_res_chg.iloc[-1]))+'\n')
         
-        else:
-            fault_time=datetime.datetime.strptime(df_fault_ram_sn.iloc[-1]['start_time'], '%Y-%m-%d %H:%M:%S')
-            if (now_time-fault_time).total_seconds()>3*24*3600:   #df_warning_end历史故障筛选并更改数据库故障结束时间
-                df_fault_ram_sn['end_time']=end_time
-                df_fault_ram_sn['Batpos']=1
-                with open(r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\07BatSafetyWarning\热失控预警.txt','a',encoding="utf-8") as file:
-                    file.write(str(tuple(df_warning_res.iloc[-1]))+'\n')
+        # else:
+        #     fault_time=datetime.datetime.strptime(df_fault_ram_sn.iloc[-1]['start_time'], '%Y-%m-%d %H:%M:%S')
+        #     if (now_time-fault_time).total_seconds()>3*24*3600:   #df_warning_end历史故障筛选并更改数据库故障结束时间
+        #         df_fault_ram_sn['end_time']=end_time
+        #         df_fault_ram_sn['Batpos']=1
+        #         with open(r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\07BatSafetyWarning\热失控预警.txt','a',encoding="utf-8") as file:
+        #             file.write(str(tuple(df_res_new.iloc[-1]))+'\n')
 
 
 #...............................................主函数起定时作用.......................................................................................................................
 if __name__ == "__main__":
     
-    # excelpath=r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\sn-20210903.xlsx'
-    # SNdata_6060 = pd.read_excel(excelpath, sheet_name='科易6060')
-    # SNdata_6040 = pd.read_excel(excelpath, sheet_name='科易6040')
-    # SNdata_4840 = pd.read_excel(excelpath, sheet_name='科易4840')
-    # SNdata_L7255 = pd.read_excel(excelpath, sheet_name='格林美-力信7255')
-    # SNdata_C7255 = pd.read_excel(excelpath, sheet_name='格林美-CATL7255')
-    # SNdata_U7255 = pd.read_excel(excelpath, sheet_name='优旦7255')
-    # SNnums_6060=SNdata_6060['SN号'].tolist()
-    # SNnums_6040=SNdata_6040['SN号'].tolist()
-    # SNnums_4840=SNdata_4840['SN号'].tolist()
-    # SNnums_L7255=SNdata_L7255['SN号'].tolist()
-    # SNnums_C7255=SNdata_C7255['SN号'].tolist()
-    # SNnums_U7255=SNdata_U7255['SN号'].tolist()
-    # SNnums=SNnums_L7255 + SNnums_C7255 + SNnums_U7255 + SNnums_6040 + SNnums_4840 + SNnums_6060
-    SNnums=['PK50001A100000577']
+    SNnums=['PK50201A000002052']
+    now_time='2022-11-22 14:00:00'
+    now_time=datetime.datetime.strptime(now_time,'%Y-%m-%d %H:%M:%S')
     
     # mylog=log.Mylog('log_warning.txt','error')
     # mylog.logcfg()
@@ -225,7 +217,7 @@ if __name__ == "__main__":
 
     #定时任务.......................................................................................................................................................................
     scheduler = BlockingScheduler()
-    scheduler.add_job(saftywarning_cal, 'interval', seconds=6)
+    scheduler.add_job(saftywarning_cal, 'interval', seconds=10)
 
     try:  
         scheduler.start()

+ 54 - 42
LIB/MIDDLE/FaultClass/V1_0_0/faultclass.py

@@ -63,7 +63,7 @@ def makedataset(dataset):
         data_set=pd.DataFrame()
         start=set2.loc[0,'时间戳']
         end=set2.loc[len(set2)-1,'时间戳']
-        data_set['Time']=pd.date_range(start=start, end=end, freq='S')  #每分钟一条记录
+        data_set['Time']=pd.date_range(start=start, end=end, freq='S')  #每一条记录
         data_set['Time']=list(map(lambda x:str(x),list(data_set['Time'])))
         dfbms=pd.merge(data_set,set2,left_on='Time',right_on='时间戳',how='left')
         dfbms=dfbms.fillna(method='ffill')
@@ -149,42 +149,7 @@ def makeres(res,end_time):
                         'update_time':[update_time]}))
     return df_res
 
-# Step7 Merge
-def arrange(result,result_final,start_time):
-    result.reset_index(drop=True,inplace=True)
-    result_final.reset_index(drop=True,inplace=True)
-    list_faults=list(set(list(result_final['fault_class'])))
-    res_update=pd.DataFrame()
-    res_new=result.copy()
-    for fault in list_faults:
-        result0=result_final[result_final['fault_class']==fault]
-        result1=result[result['fault_class']==fault]
-        st=datetime.datetime.strptime(str(result.loc[0,'start_time']),'%Y-%m-%d %H:%M:%S')
-        start_time=datetime.datetime.strptime(str(start_time),'%Y-%m-%d %H:%M:%S')
-        if len(result1)>0:
-            if (start_time-st).total_seconds()<900:
-                result0['end_time']=result1['end_time']
-                result0['update_time']=result1['update_time']
-                res_update=res_update.append(result0)
-                res_new.drop(result1.index,inplace=True)
-            else:
-                result0['end_time']=result0['update_time']
-                res_update=res_update.append(result0)
-                res_new.drop(result1.index,inplace=True)
-        else:
-            result0['end_time']=result0['update_time']
-            res_update=res_update.append(result0)
-    return res_new,res_update
-
-def arrange2(dataorg,df_res,start_time,fault_name):
-    res_new=df_res.copy()
-    res_update=pd.DataFrame()
-    if len(dataorg)>0:
-        dataorg=dataorg[dataorg['fault_class']==fault_name]
-        res_new,res_update=arrange(df_res,dataorg,start_time)
-    return res_new,res_update
-
-# Step8 Process
+# Step7 Process
 def pred(data_fea,model,scaler,col,end_time,time_steps):
     df_res=pd.DataFrame()
     fea=split(data_fea)
@@ -197,8 +162,54 @@ def pred(data_fea,model,scaler,col,end_time,time_steps):
         df_res=makeres(res,end_time)
     return df_res
 
+# Step8 Merge
+def arrange(result,result_final):
+    result.reset_index(drop=True,inplace=True)
+    res_update=pd.DataFrame()
+    res_new=result.copy()
+    if len(result)>0:
+        st=datetime.datetime.strptime(str(result.loc[0,'start_time']),'%Y-%m-%d %H:%M:%S')
+        end=datetime.datetime.strptime(str(result_final['update_time']),'%Y-%m-%d %H:%M:%S')
+        if (st-end).total_seconds()<3600:
+            result_final['end_time']=result.loc[0,'end_time']
+            result_final['update_time']=result.loc[0,'update_time']
+            res_update=result_final.copy()
+            res_new.drop(result.index,inplace=True)
+        else:
+            result_final['end_time']=result_final['update_time']
+            res_update=result_final.copy()
+            res_new.drop(result.index,inplace=True)
+    else:
+        result_final['end_time']=result_final['update_time']
+        res_update=result_final.copy()
+    return res_new,res_update
 
-
+def arrange2(dataorg,df_res,time_stepsi):
+    res_new=df_res.copy()
+    res_update=pd.DataFrame()
+    if len(dataorg)>0:
+        res_new,res_update=arrange(df_res,dataorg)
+    if len(res_new)>0:
+        for i in range(len(res_new)):
+            if res_new.loc[i,'end_time'] != '0000-00-00 00:00:00':
+                st1=datetime.datetime.strptime(str(res_new.loc[i,'start_time']),'%Y-%m-%d %H:%M:%S')
+                end1=datetime.datetime.strptime(str(res_new.loc[i,'end_time']),'%Y-%m-%d %H:%M:%S')
+                if (end1-st1).total_seconds()<time_stepsi:
+                    res_new.drop([i],axis=0,inplace=True)
+    if len(res_update)>0:
+        if res_update['end_time']!= '0000-00-00 00:00:00':
+            st2=datetime.datetime.strptime(str(res_update['start_time']),'%Y-%m-%d %H:%M:%S')
+            end2=datetime.datetime.strptime(str(res_update['end_time']),'%Y-%m-%d %H:%M:%S')
+            res_update=pd.DataFrame(pd.DataFrame({'product_id':[res_update['product_id']],'start_time':[str(res_update['start_time'])],
+                        'end_time':[str(res_update['end_time'])],'fault_class':[res_update['fault_class']],
+                        'update_time':[res_update['update_time']]}))
+            if (end2-st2).total_seconds()<time_stepsi:
+                res_update=pd.DataFrame()
+        else:
+            res_update=pd.DataFrame(pd.DataFrame({'product_id':[res_update['product_id']],'start_time':[str(res_update['start_time'])],
+                        'end_time':[str(res_update['end_time'])],'fault_class':[res_update['fault_class']],
+                        'update_time':[res_update['update_time']]}))
+    return res_new,res_update
 #################################################################################################################################
 
 #### Process1 - New Model ###
@@ -325,7 +336,8 @@ def xy(train):
     Xtrain=train.drop(['fault_class','Time','sn','split'],axis=1)
     Ytrain=train[['fault_class']]          
     Ytrain2=pd.get_dummies(Ytrain,columns=['fault_class'],prefix_sep='_')
-    return Xtrain,Ytrain,Ytrain2
+    cols=list(map(lambda x:x[12:],list(Ytrain2.columns)))
+    return Xtrain,Ytrain,Ytrain2,cols
 
 # Step8 Scaler 
 def scaler_train(Xtrain):
@@ -425,8 +437,8 @@ def pre_model(nor,df_bms,time_steps,nbr_features,nbr_neurons,nbr_class,batch_siz
     newtrain,newtest=shuffle_data(nor,df_bms)
     train_sh=shuffle_data2(newtrain)
     test_sh=shuffle_data2(newtest)
-    Xtrain,Ytrain,Ytrain2=xy(train_sh)
-    Xtest,Ytest,Ytest2=xy(test_sh)                           
+    Xtrain,Ytrain,Ytrain2,cols_train=xy(train_sh)
+    Xtest,Ytest,Ytest2,cols_test=xy(test_sh)                           
     Xsc,scaler=scaler_train(Xtrain)
     Xtsc=scaler_test(Xtest,scaler)
     indextr=make_index(train_sh)
@@ -437,7 +449,7 @@ def pre_model(nor,df_bms,time_steps,nbr_features,nbr_neurons,nbr_class,batch_siz
                     Xtwin=Xtwin,Ytwin=Ytwin,batch_size=batch_size,epochs=epochs,dropout=dropout,lr=lr,activation=activation,
                     loss=loss,metrics='accuracy')
     loss,acc=model.evaluate(Xtwin,Ytwin)
-    return scaler,model,acc
+    return scaler,model,acc,cols_train
 
 
 

+ 100 - 42
LIB/MIDDLE/FaultClass/V1_0_0/main_pred.py

@@ -21,7 +21,7 @@ import re
 #...................................故障检测函数......................................................................................................................
 def diag_cal():
     global SNnums
-    global scaler1,scaler2,model1,model2,col1,col2,time_steps1,time_steps2
+    global list_faults,list_scalers,list_models,list_cols,list_time_steps,list_features
 
     start=time.time()
     now_time=datetime.datetime.now()
@@ -37,53 +37,60 @@ def diag_cal():
     password='Qx@123456'
 
     #读取结果库数据......................................................
-    param='product_id,start_time,end_time,diff_min,SOC,AnoScoreV_sum_max,AnoScoreV_max_max,AnoScoreT_sum_max,AnoScoreT_max_max'
-    tablename='fault_detection'
+    param='product_id,start_time,end_time,fault_class,update_time'
+    tablename='fault_class'
     mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db)
     cursor = mysql.cursor()
     sql =  "select {} from {} where end_time='0000-00-00 00:00:00'".format(param,tablename)
     cursor.execute(sql)
     res = cursor.fetchall()
     df_diag_ram= pd.DataFrame(res,columns=param.split(','))
-    
 
     db_res_engine = create_engine(
         "mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
             user, parse.quote_plus(password), host, port, db
         ))
 
-
     #调用主函数................................................................................................................................................................
     for sn in SNnums:
         try:
-            df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
-            data_bms = df_data['bms']
-            data_bms['sn']=sn
-            if len(data_bms)>0:
-                logger.info("SN: {} 数据开始预处理".format(sn))
-                data_fea1=features1(data_bms)
-                data_fea2=features2(data_bms)
-                logger.info("SN: {} 数据开始模型预测".format(sn))
-                df_res1=pred(data_fea1,model1,scaler1,col1,end_time,time_steps1)
-                df_res2=pred(data_fea2,model2,scaler2,col2,end_time,time_steps2)
-                df_diag_ram_sn=df_diag_ram[df_diag_ram['product_id']==sn]
-                res_new1,res_update1=arrange2(df_diag_ram_sn,df_res1,start_time,'B板采样失效')
-                res_new2,res_update2=arrange2(df_diag_ram_sn,df_res2,start_time,'传感器_电芯NTC漂移')
-               
-                if len(res_update1)>0:
-                    cursor.execute("DELETE FROM fault_class WHERE end_time = '0000-00-00 00:00:00' and product_id='{}' and fault_class='{}'".format(sn,'B板采样失效'))
-                    mysql.commit()
-                    res_update1.to_sql("fault_class",con=db_res_engine, if_exists="append",index=False)
-                res_new1.to_sql("fault_class",con=db_res_engine, if_exists="append",index=False)
-                if len(res_update2)>0:
-                    cursor.execute("DELETE FROM fault_class WHERE end_time = '0000-00-00 00:00:00' and product_id='{}' and fault_class='{}'".format(sn,'传感器_电芯NTC漂移'))
-                    mysql.commit()
-                    res_update2.to_sql("fault_class",con=db_res_engine, if_exists="append",index=False)
-                res_new2.to_sql("fault_class",con=db_res_engine, if_exists="append",index=False)
-            
-                        #新增结果存入结果库................................................................
-
-
+            #sn='PK50001A100000248'
+            #start_time='2022-11-18 00:00:00'
+            #end_time='2022-11-18 03:00:00'
+            group=sn[:2]
+            if group in ['PK','MG','UD']:
+                df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
+                data_bms = df_data['bms']
+                data_bms['sn']=sn
+                if len(data_bms)>0:
+                    df_diag_ram_sn=df_diag_ram[df_diag_ram['product_id']==sn]
+                    for i in range(len(list_faults)):
+                        fault=list_faults[i]
+                        df_diag_ram_sn_fault=df_diag_ram_sn[df_diag_ram_sn['fault_class']==fault]
+                        if len(df_diag_ram_sn_fault)>0:
+                            df_diag_ram_sn_fault.reset_index(drop=True,inplace=True)
+                            df_diag_ram_sn_fault=df_diag_ram_sn_fault.iloc[0]
+                        logger.info("SN: {} 数据开始预处理".format(sn))
+                        if fault=='B板采样失效':
+                            data_fea=features1(data_bms)
+                        elif fault=='传感器_电芯NTC漂移':
+                            data_fea=features2(data_bms)
+                        else:
+                            feas=list_features[i]
+                            data_fea=features_filtre(data_bms,feas)
+                        logger.info("SN: {} 数据开始模型预测".format(sn))
+                        modeli=list_models[i]
+                        scaleri=list_scalers[i]
+                        coli=list_cols[i]
+                        time_stepsi=list_time_steps[i]
+                        df_res=pred(data_fea,modeli,scaleri,coli,end_time,time_stepsi)
+                        res_new,res_update=arrange2(df_diag_ram_sn_fault,df_res,time_stepsi)
+                        if len(res_update)>0:
+                            cursor.execute("DELETE FROM fault_class WHERE end_time = '0000-00-00 00:00:00' and product_id='{}' and fault_class='{}'".format(sn,fault))
+                            mysql.commit()
+                            res_update.to_sql("fault_class",con=db_res_engine, if_exists="append",index=False)
+                        res_new.to_sql("fault_class",con=db_res_engine, if_exists="append",index=False)
+    
             # end=time.time()
             # print(end-start)  
                 
@@ -125,7 +132,7 @@ if __name__ == "__main__":
 
     logger.info("pid is {}".format(os.getpid()))
     
-     # # 更新sn列表
+    # # 更新sn列表
     host='rm-bp10j10qy42bzy0q7.mysql.rds.aliyuncs.com'
     port=3306
     db='qixiang_oss'
@@ -138,17 +145,68 @@ if __name__ == "__main__":
     df_sn = pd.DataFrame(res, columns=['sn', 'imei', 'add_time'])
     df_sn = df_sn.reset_index(drop=True)
     conn.close();
+
+    #用户输出参数数据库配置
+    host0='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
+    port0=3306
+    db0='qx_cas'
+    user0='qx_algo_rw'
+    password0='qx@123456'
+
+    #读取用户输出参数......................................................
+    param='fault_name,class,time_steps,accuracy'
+    tablename='faultclass_output1'
+    mysql = pymysql.connect (host=host0, user=user0, password=password0, port=port0, database=db0)
+    cursor = mysql.cursor()
+    sql =  "select {} from {}".format(param,tablename)
+    cursor.execute(sql)
+    res = cursor.fetchall()
+    list_param= pd.DataFrame(res,columns=param.split(','))
+    list_param.reset_index(drop=True,inplace=True)
+
+    #读取用户输入参数......................................................
+    param0='fault_name,cols,col_key,compare,threshold_filtre,time_steps,nbr_features,nbr_neurons,nbr_class,batch_size,epochs,dropout,lr,activation,loss,threshold_accuracy'
+    tablename0='faultclass_input'
+    mysql0 = pymysql.connect (host=host0, user=user0, password=password0, port=port0, database=db0)
+    cursor0 = mysql0.cursor()
+    sql0 =  "select {} from {} ".format(param0,tablename0)
+    cursor0.execute(sql0)
+    res0 = cursor0.fetchall()
+    list_param0= pd.DataFrame(res0,columns=param0.split(','))
+    list_param0.reset_index(drop=True,inplace=True)
     
     SNnums = list(df_sn['sn'])
     
-    scaler1=pickle.load(open('LIB/MIDDLE/FaultClass/V1_0_0/models/scaler_B板采样失效.pkl','rb'))
-    scaler2=pickle.load(open('LIB/MIDDLE/FaultClass/V1_0_0/models/scaler_传感器_电芯NTC漂移.pkl','rb'))
-    model1=load_model('LIB/MIDDLE/FaultClass/V1_0_0/models/model_B板采样失效.h5')
-    model2=load_model('LIB/MIDDLE/FaultClass/V1_0_0/models/model_传感器_电芯NTC漂移.h5')
-    col1=['B板采样失效','正常']
-    col2=['传感器_电芯NTC漂移','正常']
-    time_steps1=60
-    time_steps2=60
+    # # 加载模型
+    list_model=os.listdir('LIB/MIDDLE/FaultClass/V1_0_0/models')
+    list_faults=[]
+    list_scalers=[]
+    list_models=[]
+    list_cols=[]
+    list_time_steps=[]
+    list_features=[]
+    for k in range(len(list_model)):
+        fault_name=list_model[k][6:-3]
+        list_faults.append(fault_name)
+        scaler=pickle.load(open('LIB/MIDDLE/FaultClass/V1_0_0/scalers/scaler_'+fault_name+'.pkl','rb'))
+        list_scalers.append(scaler)
+        model=load_model('LIB/MIDDLE/FaultClass/V1_0_0/models/'+list_model[k])
+        list_models.append(model)
+        if fault_name=='B板采样失效':
+            col=['B板采样失效','正常']
+            time_steps=60
+            feature=['feature1']
+        elif fault_name=='传感器_电芯NTC漂移':
+            col=['传感器_电芯NTC漂移','正常']
+            time_steps=60
+            feature=['feature2']
+        else:
+            col=eval(list_param.loc[list_param[list_param['fault_name']==fault_name].index,'class'].values[0])
+            time_steps=list_param.loc[list_param[list_param['fault_name']==fault_name].index,'time_steps'].values[0]
+            feature=eval(list_param0.loc[list_param0[list_param0['fault_name']==fault_name].index,'cols'].values[0])
+        list_cols.append(col)
+        list_time_steps.append(time_steps)
+        list_features.append(feature)
     logger.info("模型加载完成")
 
     diag_cal()

+ 25 - 26
LIB/MIDDLE/FaultClass/V1_0_0/main_train.py

@@ -12,9 +12,6 @@ mylog.logcfg()
 from sqlalchemy import create_engine
 from urllib import parse
 
-#故障
-fault_name='电压采样断线'
-
 #读取文件:正常数据
 
 df_bms1=pd.read_csv('LIB/MIDDLE/FaultClass/V1_0_0/data/dataset2.csv')
@@ -24,14 +21,14 @@ df_bms4=pd.read_csv('LIB/MIDDLE/FaultClass/V1_0_0/data/dataset5.csv')
 df_bms5=pd.read_csv('LIB/MIDDLE/FaultClass/V1_0_0/data/dataset6.csv')
 df_bms6=pd.read_csv('LIB/MIDDLE/FaultClass/V1_0_0/data/dataset7.csv')
 
-#数据库配置
+#用户输入参数数据库配置
 host0='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
 port0=3306
 db0='qx_cas'
 user0='qx_algo_rw'
 password0='qx@123456'
 
-#读取结果库数据......................................................
+#读取用户输入参数......................................................
 param='fault_name,cols,col_key,compare,threshold_filtre,time_steps,nbr_features,nbr_neurons,nbr_class,batch_size,epochs,dropout,lr,activation,loss,threshold_accuracy'
 tablename='faultclass_input'
 mysql = pymysql.connect (host=host0, user=user0, password=password0, port=port0, database=db0)
@@ -48,25 +45,27 @@ db_res_engine = create_engine(
     ))
 
 #用户输入参数
-cols=eval(list_param.loc[0,'cols'])
-col_key=list_param.loc[0,'col_key']
-compare=list_param.loc[0,'compare']
-threshold_filtre=list_param.loc[0,'threshold_filtre']
-
-time_steps=list_param.loc[0,'time_steps']
-nbr_features=list_param.loc[0,'nbr_features']
-nbr_neurons=list_param.loc[0,'nbr_neurons']
-nbr_class=list_param.loc[0,'nbr_class']
-batch_size=list_param.loc[0,'batch_size']
-epochs=list_param.loc[0,'epochs']
-dropout=list_param.loc[0,'dropout']
-lr=list_param.loc[0,'lr']
-activation=list_param.loc[0,'activation']
-loss=list_param.loc[0,'loss']
-
-threshold_accuracy=list_param.loc[0,'threshold_accuracy']
-
-#数据库配置
+id=0
+fault_name=list_param.loc[id,'fault_name']
+cols=eval(list_param.loc[id,'cols'])
+col_key=list_param.loc[id,'col_key']
+compare=list_param.loc[id,'compare']
+threshold_filtre=list_param.loc[id,'threshold_filtre']
+
+time_steps=list_param.loc[id,'time_steps']
+nbr_features=list_param.loc[id,'nbr_features']
+nbr_neurons=list_param.loc[id,'nbr_neurons']
+nbr_class=list_param.loc[id,'nbr_class']
+batch_size=list_param.loc[id,'batch_size']
+epochs=list_param.loc[id,'epochs']
+dropout=list_param.loc[id,'dropout']
+lr=list_param.loc[id,'lr']
+activation=list_param.loc[id,'activation']
+loss=list_param.loc[id,'loss']
+
+threshold_accuracy=list_param.loc[id,'threshold_accuracy']
+
+#故障结果数据库配置
 host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
 port=3306
 db='safety_platform'
@@ -149,8 +148,8 @@ for k in range(len(df)):
 
 df_bms=make_fault_set(dataset,cols,col_key,compare,threshold_filtre,fault_name)
 nor=normalset2(df_bms1,df_bms2,df_bms3,df_bms4,df_bms5,df_bms6,cols)
-scaler,model,acc=pre_model(nor,df_bms,time_steps,nbr_features,nbr_neurons,nbr_class,batch_size,epochs,dropout,lr,activation,loss)
-df_acc=pd.DataFrame({'fault_name':[fault_name],'accuracy':[acc]})
+scaler,model,acc,cols_train=pre_model(nor,df_bms,time_steps,nbr_features,nbr_neurons,nbr_class,batch_size,epochs,dropout,lr,activation,loss)
+df_acc=pd.DataFrame({'fault_name':[fault_name],'class':[str(cols_train)],'time_steps':[time_steps],'accuracy':[acc]})
 df_acc.to_sql("faultclass_output",con=db_res_engine, if_exists="append",index=False)
 
 if acc>threshold_accuracy:

+ 16 - 17
USER/test.ipynb

@@ -260,36 +260,35 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 62,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "0b1001\n",
-      "0b100\n"
-     ]
-    },
     {
      "data": {
       "text/plain": [
-       "0"
+       "array([-15.2,  -1.6,  -1.4])"
       ]
      },
-     "execution_count": 1,
+     "execution_count": 62,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "a=9\n",
-    "print(bin(a))\n",
-    "b=a>>1\n",
-    "print(bin(b))\n",
-    "b & 1\n",
-    "0%9"
+    "import numpy as np\n",
+    "a = np.array([-1, -15.2, 1.9, -1.6, 1.3, -1.4, 1.3, 0.8, 1.4, 1.9, -0.2, 1.0, 4.8, 0.5])\n",
+    "m = np.mean(a)\n",
+    "s = np.std(a)\n",
+    "b = np.where(a<-1)\n",
+    "a[b[0]]\n"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {