|
@@ -36,11 +36,11 @@ def diag_cal():
|
|
password='Qx@123456'
|
|
password='Qx@123456'
|
|
|
|
|
|
#读取结果库数据......................................................
|
|
#读取结果库数据......................................................
|
|
- param='product_id,start_time,end_time,diff_min,SOC[%],AnoScoreV_sum_max,AnoScoreV_max_max,AnoScoreT_sum_max,AnoScoreT_max_max'
|
|
|
|
|
|
+ param='product_id,start_time,end_time,diff_min,SOC,AnoScoreV_sum_max,AnoScoreV_max_max,AnoScoreT_sum_max,AnoScoreT_max_max'
|
|
tablename='fault_detection'
|
|
tablename='fault_detection'
|
|
mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db)
|
|
mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db)
|
|
cursor = mysql.cursor()
|
|
cursor = mysql.cursor()
|
|
- sql = "select '{}' from {} where end_time='0000-00-00 00:00:00'".format(param,tablename)
|
|
|
|
|
|
+ sql = "select {} from {} where end_time='0000-00-00 00:00:00'".format(param,tablename)
|
|
cursor.execute(sql)
|
|
cursor.execute(sql)
|
|
res = cursor.fetchall()
|
|
res = cursor.fetchall()
|
|
df_diag_ram= pd.DataFrame(res,columns=param.split(','))
|
|
df_diag_ram= pd.DataFrame(res,columns=param.split(','))
|
|
@@ -60,11 +60,13 @@ def diag_cal():
|
|
data_bms = df_data['bms']
|
|
data_bms = df_data['bms']
|
|
data_bms['sn']=sn
|
|
data_bms['sn']=sn
|
|
if len(data_bms)>0:
|
|
if len(data_bms)>0:
|
|
|
|
+ logger.info("SN: {} 数据开始预处理".format(sn))
|
|
data_stand=data_groups(data_bms,sn,start_time,end_time)
|
|
data_stand=data_groups(data_bms,sn,start_time,end_time)
|
|
df_stand=split(data_stand)
|
|
df_stand=split(data_stand)
|
|
res=pd.DataFrame()
|
|
res=pd.DataFrame()
|
|
if len(df_stand)>0:
|
|
if len(df_stand)>0:
|
|
#读取训练产出的缩放指标:均值&方差
|
|
#读取训练产出的缩放指标:均值&方差
|
|
|
|
+ logger.info("SN: {} 数据开始模型预测".format(sn))
|
|
scaler = pickle.load(open('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerV_'+group+'_10.pkl', 'rb'))
|
|
scaler = pickle.load(open('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerV_'+group+'_10.pkl', 'rb'))
|
|
scaler2 = pickle.load(open('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerT_'+group+'_10.pkl', 'rb'))
|
|
scaler2 = pickle.load(open('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerT_'+group+'_10.pkl', 'rb'))
|
|
#读取训练产出的模型状态空间:电压模型&温度模型
|
|
#读取训练产出的模型状态空间:电压模型&温度模型
|