|
@@ -0,0 +1,565 @@
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+from pymysql import paramstyle
|
|
|
+from LIB.MIDDLE.CellStateEstimation.Common import BatParam
|
|
|
+from LIB.MIDDLE.CellStateEstimation.Common import DBDownload
|
|
|
+
|
|
|
+class BatInterShort:
|
|
|
+ def __init__(self,sn,celltype,df_bms, host, port, db, user, password, tablename): #参数初始化
|
|
|
+
|
|
|
+ self.sn=sn
|
|
|
+ self.celltype=celltype
|
|
|
+ self.param=BatParam.BatParam(celltype)
|
|
|
+ self.df_bms=df_bms
|
|
|
+ self.packcrnt=df_bms['总电流[A]']*self.param.PackCrntDec
|
|
|
+ self.packvolt=df_bms['总电压[V]']
|
|
|
+ self.bms_soc=df_bms['SOC[%]']
|
|
|
+ self.bmstime= pd.to_datetime(df_bms['时间戳'], format='%Y-%m-%d %H:%M:%S')
|
|
|
+
|
|
|
+ self.host=host
|
|
|
+ self.port=port
|
|
|
+ self.db=db
|
|
|
+ self.user=user
|
|
|
+ self.password=password
|
|
|
+ self.tablename=tablename
|
|
|
+
|
|
|
+ def intershort(self):
|
|
|
+ if self.celltype==1 or self.celltype==2 or self.celltype==3 or self.celltype==4:
|
|
|
+ df_res=self._ncm_intershort()
|
|
|
+ return df_res
|
|
|
+
|
|
|
+ elif self.celltype==99:
|
|
|
+ df_res=self._lfp_intershort()
|
|
|
+ return df_res
|
|
|
+
|
|
|
+ else:
|
|
|
+ return pd.DataFrame()
|
|
|
+
|
|
|
+ #获取预算结果库的结果...............................................................................
|
|
|
+ def getdata(self):
|
|
|
+ DBManager=DBDownload.DBDownload(self.host, self.port, self.db, self.user, self.password)
|
|
|
+ with DBManager as DBManager:
|
|
|
+ self.df_soh=DBManager.getdata('time_st','time_sp','sn','method','soh','cellsoh', tablename='soh_result', sn=self.sn)
|
|
|
+
|
|
|
+ #定义滑动滤波函数....................................................................................
|
|
|
+ def _np_move_avg(self,a, n, mode="same"):
|
|
|
+ return (np.convolve(a, np.ones((n,)) / n, mode=mode))
|
|
|
+
|
|
|
+ #寻找当前行数据的最小温度值.............................................................................
|
|
|
+ def _celltemp_weight(self,num):
|
|
|
+ celltemp = []
|
|
|
+ for j in range(1, self.param.CellTempNums+1):
|
|
|
+ s = str(j)
|
|
|
+ celltemp.append(self.df_bms.loc[num,'单体温度' + s])
|
|
|
+ celltemp=np.mean(celltemp)
|
|
|
+ self.celltemp=celltemp
|
|
|
+ if self.celltype==99:
|
|
|
+ if celltemp>=20:
|
|
|
+ self.tempweight=1
|
|
|
+ self.StandardStandingTime=3600
|
|
|
+ elif celltemp>=10:
|
|
|
+ self.tempweight=0.6
|
|
|
+ self.StandardStandingTime=7200
|
|
|
+ elif celltemp>=5:
|
|
|
+ self.tempweight=0.
|
|
|
+ self.StandardStandingTime=7200
|
|
|
+ else:
|
|
|
+ self.tempweight=0.1
|
|
|
+ self.StandardStandingTime=10800
|
|
|
+ else:
|
|
|
+ if celltemp>=20:
|
|
|
+ self.tempweight=1
|
|
|
+ self.StandardStandingTime=3600
|
|
|
+ elif celltemp>=10:
|
|
|
+ self.tempweight=0.8
|
|
|
+ self.StandardStandingTime=3600
|
|
|
+ elif celltemp>=5:
|
|
|
+ self.tempweight=0.6
|
|
|
+ self.StandardStandingTime=7200
|
|
|
+ else:
|
|
|
+ self.tempweight=0.2
|
|
|
+ self.StandardStandingTime=10800
|
|
|
+
|
|
|
+ #获取当前行所有电压数据........................................................................................
|
|
|
+ def _cellvolt_get(self,num):
|
|
|
+ cellvolt=[]
|
|
|
+ for j in range(1, self.param.CellVoltNums+1):
|
|
|
+ s = str(j)
|
|
|
+ cellvolt.append(self.df_bms.loc[num,'单体电压' + s]/1000)
|
|
|
+ return cellvolt
|
|
|
+
|
|
|
+ #获取当前行所有soc差...........................................................................................
|
|
|
+ def _celldeltsoc_get(self,num,dict_baltime,capacity):
|
|
|
+ cellsoc=[]
|
|
|
+ celldeltsoc=[]
|
|
|
+ for j in range(1, self.param.CellVoltNums+1): #获取每个电芯电压对应的SOC值
|
|
|
+ cellvolt=self.df_bms.loc[num,'单体电压' + str(j)]/1000
|
|
|
+ ocv_soc=np.interp(cellvolt,self.param.LookTab_OCV,self.param.LookTab_SOC)
|
|
|
+ if j in dict_baltime.keys():
|
|
|
+ ocv_soc=ocv_soc+dict_baltime[j]*self.param.BalCurrent/(capacity*3600) #补偿均衡电流
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ cellsoc.append(ocv_soc)
|
|
|
+
|
|
|
+ if self.celltype==1 or self.celltype==2:
|
|
|
+ consum_num=7
|
|
|
+ cellsoc1=cellsoc[:self.param.CellVoltNums-consum_num] #切片,将bms耗电的电芯和非耗电的电芯分离开
|
|
|
+ cellsocmean1=(sum(cellsoc1)-max(cellsoc1)-min(cellsoc1))/(len(cellsoc1)-2)
|
|
|
+ cellsoc2=cellsoc[self.param.CellVoltNums-consum_num:]
|
|
|
+ cellsocmean2=(sum(cellsoc2)-max(cellsoc2)-min(cellsoc2))/(len(cellsoc2)-2)
|
|
|
+
|
|
|
+ for j in range(len(cellsoc)): #计算每个电芯的soc差
|
|
|
+ if j<self.param.CellVoltNums-consum_num:
|
|
|
+ celldeltsoc.append(cellsoc[j]-cellsocmean1)
|
|
|
+ else:
|
|
|
+ celldeltsoc.append(cellsoc[j]-cellsocmean2)
|
|
|
+ return celldeltsoc
|
|
|
+
|
|
|
+ else:
|
|
|
+ cellsocmean=(sum(cellsoc)-max(cellsoc)-min(cellsoc))/(len(cellsoc)-2)
|
|
|
+ for j in range(len(cellsoc)): #计算每个电芯的soc差
|
|
|
+ celldeltsoc.append(cellsoc[j]-cellsocmean)
|
|
|
+ return celldeltsoc
|
|
|
+
|
|
|
+ #获取所有电芯的As差
|
|
|
+ def _cellDeltAs_get(self,chrg_st,chrg_end,dict_baltime):
|
|
|
+ cellAs=[]
|
|
|
+ celldeltAs=[]
|
|
|
+ for j in range(1, self.param.CellVoltNums+1): #获取每个电芯电压>峰值电压的充入As数
|
|
|
+ if j in dict_baltime.keys(): #补偿均衡电流
|
|
|
+ As=-self.param.BalCurrent*dict_baltime[j]
|
|
|
+ else:
|
|
|
+ As=0
|
|
|
+ As_tatol=0
|
|
|
+ symbol=0
|
|
|
+ for m in range(chrg_st+1,chrg_end):
|
|
|
+ As=As-self.packcrnt[m]*(self.bmstime[m]-self.bmstime[m-1]).total_seconds()
|
|
|
+ if symbol<5:
|
|
|
+ if self.df_bms.loc[m,'单体电压'+str(j)]/1000>self.param.PeakCellVolt[symbol]:
|
|
|
+ As_tatol=As_tatol+As
|
|
|
+ symbol=symbol+1
|
|
|
+ else:
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ cellAs.append(As_tatol/5)
|
|
|
+ break
|
|
|
+
|
|
|
+ if self.celltype==99:
|
|
|
+ consum_num=10
|
|
|
+ cellAs1=cellAs[:self.param.CellVoltNums-consum_num] #切片,将bms耗电的电芯和非耗电的电芯分离开
|
|
|
+ cellAsmean1=(sum(cellAs1)-max(cellAs1)-min(cellAs1))/(len(cellAs1)-2)
|
|
|
+ cellAs2=cellAs[self.param.CellVoltNums-consum_num:]
|
|
|
+ cellAsmean2=(sum(cellAs2)-max(cellAs2)-min(cellAs2))/(len(cellAs2)-2)
|
|
|
+
|
|
|
+ for j in range(len(cellAs)): #计算每个电芯的soc差
|
|
|
+ if j<self.param.CellVoltNums-consum_num:
|
|
|
+ celldeltAs.append(cellAs[j]-cellAsmean1)
|
|
|
+ else:
|
|
|
+ celldeltAs.append(cellAs[j]-cellAsmean2)
|
|
|
+ else:
|
|
|
+ cellAsmean=(sum(cellAs)-max(cellAs)-min(cellAs))/(len(cellAs)-2)
|
|
|
+ for j in range(len(cellAs)): #计算每个电芯的soc差
|
|
|
+ celldeltAs.append(cellAs[j]-cellAsmean)
|
|
|
+
|
|
|
+ return celldeltAs
|
|
|
+
|
|
|
+ #计算每个电芯的均衡时长..........................................................................................................................
|
|
|
+ def _bal_time(self,dict_bal):
|
|
|
+ dict_baltime={}
|
|
|
+ dict_baltime1={}
|
|
|
+ for key in dict_bal:
|
|
|
+ count=1
|
|
|
+ x=eval(key)
|
|
|
+ while x>0:
|
|
|
+ if x & 1==1: #判断最后一位是否为1
|
|
|
+ if count in dict_baltime.keys():
|
|
|
+ dict_baltime[count] = dict_baltime[count] + dict_bal[key]
|
|
|
+ else:
|
|
|
+ dict_baltime[count] = dict_bal[key]
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ count += 1
|
|
|
+ x >>= 1 #右移一位
|
|
|
+
|
|
|
+ dict_baltime=dict(sorted(dict_baltime.items(),key=lambda dict_baltime:dict_baltime[0]))
|
|
|
+ for key in dict_baltime: #解析均衡的电芯编号
|
|
|
+ if self.celltype==1: #科易6040
|
|
|
+ if key<14:
|
|
|
+ dict_baltime1[key]=dict_baltime[key]
|
|
|
+ elif key<18:
|
|
|
+ dict_baltime1[key-1]=dict_baltime[key]
|
|
|
+ else:
|
|
|
+ dict_baltime1[key-3]=dict_baltime[key]
|
|
|
+ elif self.celltype==1: #科易4840
|
|
|
+ if key<4:
|
|
|
+ dict_baltime1[key-1]=dict_baltime[key]
|
|
|
+ elif key<8:
|
|
|
+ dict_baltime1[key-1]=dict_baltime[key]
|
|
|
+ elif key<14:
|
|
|
+ dict_baltime1[key-3]=dict_baltime[key]
|
|
|
+ elif key<18:
|
|
|
+ dict_baltime1[key-4]=dict_baltime[key]
|
|
|
+ else:
|
|
|
+ dict_baltime1[key-6]=dict_baltime[key]
|
|
|
+ else:
|
|
|
+ dict_baltime1=dict_baltime
|
|
|
+ return dict_baltime1
|
|
|
+
|
|
|
+ #三元电池的内短路电流计算...........................................................................................................................................................
|
|
|
+ def _ncm_intershort(self):
|
|
|
+ column_name=['time_st', 'time_sp', 'sn', 'method','short_current','baltime']
|
|
|
+ df_res=pd.DataFrame(columns=column_name)
|
|
|
+
|
|
|
+ if not self.df_bms.empty:
|
|
|
+ self.getdata() #获取电池包的soh
|
|
|
+ if self.df_soh.empty:
|
|
|
+ batsoh=self.df_bms.loc[0,'SOH[%]']
|
|
|
+ capacity=self.param.Capacity*batsoh/100
|
|
|
+ else:
|
|
|
+ batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh']
|
|
|
+ capacity=self.param.Capacity*batsoh/100
|
|
|
+ standingtime=0
|
|
|
+ standingtime1=0
|
|
|
+ firsttime=1
|
|
|
+ firsttime1=1
|
|
|
+ dict_bal={}
|
|
|
+ dict_bal1={}
|
|
|
+
|
|
|
+ for i in range(2,len(self.df_bms)-2):
|
|
|
+
|
|
|
+ if firsttime1==0: #满电静置算法--计算均衡状态对应的均衡时间
|
|
|
+ try:
|
|
|
+ balstat=int(self.df_bms.loc[i,'单体均衡状态'])
|
|
|
+ if balstat>0.5:
|
|
|
+ bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
|
|
|
+ bal_step=int(bal_step)
|
|
|
+ if str(balstat) in dict_bal1.keys():
|
|
|
+ dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step
|
|
|
+ else:
|
|
|
+ dict_bal1[str(balstat)]=bal_step
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ except:
|
|
|
+ dict_bal1={}
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1:
|
|
|
+ delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
|
|
|
+ standingtime=standingtime+delttime
|
|
|
+ standingtime1=standingtime1+delttime
|
|
|
+ self._celltemp_weight(i)
|
|
|
+
|
|
|
+ #静置法计算内短路-开始.....................................................................................................................................
|
|
|
+ if firsttime==1:
|
|
|
+ if standingtime>self.StandardStandingTime: #静置时间满足要求
|
|
|
+ dict_baltime=self._bal_time(dict_bal) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_last=self._celldeltsoc_get(i,dict_baltime,capacity)
|
|
|
+ time_last=self.bmstime[i]
|
|
|
+ firsttime=0
|
|
|
+ standingtime=0
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ elif standingtime>3600*12:
|
|
|
+ standingtime=0
|
|
|
+ dict_baltime=self._bal_time(dict_bal) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_now=self._celldeltsoc_get(i,dict_baltime,capacity)
|
|
|
+ time_now=self.bmstime[i]
|
|
|
+
|
|
|
+ list_sub=[a-b for a, b in zip(deltsoc_now, deltsoc_last)]
|
|
|
+ list_pud=[0.01*capacity*3600*1000/(time_now-time_last).total_seconds()]*self.param.CellVoltNums
|
|
|
+ leak_current=[a*b for a,b in zip(list_sub,list_pud)]
|
|
|
+ leak_current=np.array(leak_current)
|
|
|
+ leak_current=np.round(leak_current,3)
|
|
|
+ leak_current=list(leak_current)
|
|
|
+
|
|
|
+ df_res.loc[len(df_res)]=[time_last,time_now,self.sn,1,str(leak_current),str(dict_baltime)] #计算结果存入Dataframe
|
|
|
+ time_last=time_now #更新时间
|
|
|
+ deltsoc_last=deltsoc_now #更新soc差
|
|
|
+ dict_bal={}
|
|
|
+ else:
|
|
|
+ try:
|
|
|
+ balstat=int(self.df_bms.loc[i,'单体均衡状态'])
|
|
|
+ if balstat>0.5:
|
|
|
+ bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
|
|
|
+ bal_step=int(bal_step)
|
|
|
+ if str(balstat) in dict_bal.keys():
|
|
|
+ dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step
|
|
|
+ else:
|
|
|
+ dict_bal[str(balstat)]=bal_step
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ except:
|
|
|
+ dict_bal={}
|
|
|
+
|
|
|
+ #满电静置法计算内短路-开始.....................................................................................................................................................
|
|
|
+ if standingtime1>self.StandardStandingTime and abs(self.packcrnt[i+2]) >= 0.1:
|
|
|
+ standingtime1=0
|
|
|
+ cellvolt_now1=self._cellvolt_get(i)
|
|
|
+ cellsoc_now1=np.interp(max(cellvolt_now1),self.param.LookTab_OCV,self.param.LookTab_SOC)
|
|
|
+ if cellsoc_now1>=self.param.FullChrgSoc-3:
|
|
|
+ if firsttime1==1:
|
|
|
+ dict_baltime1=self._bal_time(dict_bal1) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_last1=self._celldeltsoc_get(i,dict_baltime1,capacity)
|
|
|
+ time_last1=self.bmstime[i]
|
|
|
+ firsttime1=0
|
|
|
+ else:
|
|
|
+ dict_baltime1=self._bal_time(dict_bal1) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_now1=self._celldeltsoc_get(i,dict_baltime1,capacity)
|
|
|
+ time_now1=self.bmstime[i]
|
|
|
+
|
|
|
+ list_sub1=[a-b for a, b in zip(deltsoc_now1, deltsoc_last1)]
|
|
|
+ list_pud1=[0.01*capacity*3600*1000/(time_now1-time_last1).total_seconds()]*self.param.CellVoltNums
|
|
|
+ leak_current1=[a*b for a,b in zip(list_sub1,list_pud1)]
|
|
|
+ leak_current1=np.array(leak_current1)
|
|
|
+ leak_current1=np.round(leak_current1,3)
|
|
|
+ leak_current1=list(leak_current1)
|
|
|
+
|
|
|
+ df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)] #计算结果存入Dataframe
|
|
|
+ time_last1=time_now1 #更新时间
|
|
|
+ deltsoc_last1=deltsoc_now1 #更新soc差
|
|
|
+ dict_bal1={}
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ else:
|
|
|
+ dict_bal={}
|
|
|
+ firsttime=1
|
|
|
+ standingtime=0
|
|
|
+ standingtime1=0
|
|
|
+ pass
|
|
|
+
|
|
|
+ if df_res.empty: #返回计算结果
|
|
|
+ return pd.DataFrame()
|
|
|
+ else:
|
|
|
+ return df_res
|
|
|
+
|
|
|
+ #磷酸铁锂电池内短路计算程序.............................................................................................................................
|
|
|
+ def _lfp_intershort(self):
|
|
|
+ column_name=['time_st', 'time_sp', 'sn', 'method','short_current','baltime']
|
|
|
+ df_res=pd.DataFrame(columns=column_name)
|
|
|
+ if not self.df_bms.empty:
|
|
|
+ self.getdata() #获取电池包的soh
|
|
|
+ if self.df_soh.empty:
|
|
|
+ batsoh=self.df_bms.loc[0,'SOH[%]']
|
|
|
+ capacity=self.param.Capacity*batsoh/100
|
|
|
+ else:
|
|
|
+ batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh']
|
|
|
+ capacity=self.param.Capacity*batsoh/100
|
|
|
+ standingtime=0
|
|
|
+ standingtime1=0
|
|
|
+ firsttime=1
|
|
|
+ firsttime1=1
|
|
|
+ dict_bal={}
|
|
|
+ dict_bal1={}
|
|
|
+
|
|
|
+ chrg_start=[]
|
|
|
+ chrg_end=[]
|
|
|
+ dict_bal_list=[]
|
|
|
+ charging=0
|
|
|
+ dict_bal3={}
|
|
|
+
|
|
|
+ for i in range(3,len(self.df_bms)-3):
|
|
|
+
|
|
|
+ #静置法计算内短路..........................................................................................................................
|
|
|
+ if firsttime1==0: #满电静置算法--计算均衡状态对应的均衡时间
|
|
|
+ try:
|
|
|
+ balstat=int(self.df_bms.loc[i,'单体均衡状态'])
|
|
|
+ if balstat>0.5:
|
|
|
+ bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
|
|
|
+ bal_step=int(bal_step)
|
|
|
+ if str(balstat) in dict_bal1.keys():
|
|
|
+ dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step
|
|
|
+ else:
|
|
|
+ dict_bal1[str(balstat)]=bal_step
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ except:
|
|
|
+ dict_bal1={}
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1:
|
|
|
+ delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
|
|
|
+ standingtime=standingtime+delttime
|
|
|
+ standingtime1=standingtime1+delttime
|
|
|
+ self._celltemp_weight(i)
|
|
|
+
|
|
|
+ #静置法计算内短路-开始.....................................................................................................................................
|
|
|
+ if firsttime==1:
|
|
|
+ if standingtime>self.StandardStandingTime: #静置时间满足要求
|
|
|
+ cellvolt=self._cellvolt_get(i)
|
|
|
+ if max(cellvolt)<self.param.OcvInflexionBelow-0.002:
|
|
|
+ dict_baltime=self._bal_time(dict_bal) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_last=self._celldeltsoc_get(i,dict_baltime,capacity)
|
|
|
+ time_last=self.bmstime[i]
|
|
|
+ firsttime=0
|
|
|
+ standingtime=0
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ elif standingtime>3600*12:
|
|
|
+ cellvolt=self._cellvolt_get(i)
|
|
|
+ if max(cellvolt)<self.param.OcvInflexionBelow-0.002:
|
|
|
+ standingtime=0
|
|
|
+ dict_baltime=self._bal_time(dict_bal) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_now=self._celldeltsoc_get(i, dict_baltime,capacity) #获取每个电芯的SOC差
|
|
|
+ time_now=self.bmstime[i]
|
|
|
+
|
|
|
+ list_sub=[a-b for a, b in zip(deltsoc_now, deltsoc_last)]
|
|
|
+ list_pud=[0.01*capacity*3600*1000/(time_now-time_last).total_seconds()]*self.param.CellVoltNums
|
|
|
+ leak_current=[a*b for a,b in zip(list_sub,list_pud)]
|
|
|
+ leak_current=np.array(leak_current)
|
|
|
+ leak_current=np.round(leak_current,3)
|
|
|
+ leak_current=list(leak_current)
|
|
|
+
|
|
|
+ df_res.loc[len(df_res)]=[time_last,time_now,self.sn,1,str(leak_current),str(dict_baltime)] #计算结果存入Dataframe
|
|
|
+ time_last=time_now #更新时间
|
|
|
+ deltsoc_last=deltsoc_now #更新soc差
|
|
|
+ dict_bal={}
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ try:
|
|
|
+ balstat=int(self.df_bms.loc[i,'单体均衡状态'])
|
|
|
+ if balstat>0.5:
|
|
|
+ bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
|
|
|
+ bal_step=int(bal_step)
|
|
|
+ if str(balstat) in dict_bal.keys():
|
|
|
+ dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step
|
|
|
+ else:
|
|
|
+ dict_bal[str(balstat)]=bal_step
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ except:
|
|
|
+ dict_bal={}
|
|
|
+
|
|
|
+ #非平台区间静置法计算内短路-开始.....................................................................................................................................................
|
|
|
+ if standingtime1>self.StandardStandingTime and abs(self.packcrnt[i+2]) >= 0.1:
|
|
|
+ standingtime1=0
|
|
|
+ cellvolt_now1=self._cellvolt_get(i)
|
|
|
+ if max(cellvolt_now1)<self.param.OcvInflexionBelow-0.002:
|
|
|
+ if firsttime1==1:
|
|
|
+ dict_baltime1=self._bal_time(dict_bal1) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_last1=self._celldeltsoc_get(i,dict_baltime1,capacity)
|
|
|
+ time_last1=self.bmstime[i]
|
|
|
+ firsttime1=0
|
|
|
+ else:
|
|
|
+ dict_baltime1=self._bal_time(dict_bal1) #获取每个电芯的均衡时间
|
|
|
+ deltsoc_now1=self._celldeltsoc_get(i,dict_baltime1,capacity)
|
|
|
+ time_now1=self.bmstime[i]
|
|
|
+
|
|
|
+ if abs(max(deltsoc_now1)-max(deltsoc_last1))<10:
|
|
|
+ list_sub1=[a-b for a, b in zip(deltsoc_now1, deltsoc_last1)]
|
|
|
+ list_pud1=[0.01*capacity*3600*1000/(time_now1-time_last1).total_seconds()]*self.param.CellVoltNums
|
|
|
+ leak_current1=[a*b for a,b in zip(list_sub1,list_pud1)]
|
|
|
+ leak_current1=np.array(leak_current1)
|
|
|
+ leak_current1=np.round(leak_current1,3)
|
|
|
+ leak_current1=list(leak_current1)
|
|
|
+
|
|
|
+
|
|
|
+ df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)] #计算结果存入Dataframe
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ time_last1=time_now1 #更新时间
|
|
|
+ deltsoc_last1=deltsoc_now1 #更新soc差
|
|
|
+ dict_bal1={}
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ else:
|
|
|
+ dict_bal={}
|
|
|
+ firsttime=1
|
|
|
+ standingtime=0
|
|
|
+ standingtime1=0
|
|
|
+ pass
|
|
|
+
|
|
|
+ #获取充电数据——开始..............................................................................................................
|
|
|
+ try:
|
|
|
+ balstat=int(self.df_bms.loc[i,'单体均衡状态']) #统计均衡状态
|
|
|
+ if balstat>0.5:
|
|
|
+ bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
|
|
|
+ bal_step=int(bal_step)
|
|
|
+ if str(balstat) in dict_bal3.keys():
|
|
|
+ dict_bal3[str(balstat)]=dict_bal3[str(balstat)]+bal_step
|
|
|
+ else:
|
|
|
+ dict_bal3[str(balstat)]=bal_step
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ except:
|
|
|
+ dict_bal3={}
|
|
|
+
|
|
|
+ if charging==0:
|
|
|
+
|
|
|
+ if self.packcrnt[i]<=-1 and self.packcrnt[i+1]<=-1 and self.packcrnt[i+2]<=-1 and self.bms_soc[i]<40: #判断充电开始
|
|
|
+ cellvolt_now=self._cellvolt_get(i)
|
|
|
+ if min(cellvolt_now)<self.param.CellFullChrgVolt-0.15:
|
|
|
+ charging=1
|
|
|
+ if len(chrg_start)>len(chrg_end):
|
|
|
+ chrg_start[-1]=i
|
|
|
+ else:
|
|
|
+ chrg_start.append(i)
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ else: #充电中
|
|
|
+ if (self.bmstime[i+1]-self.bmstime[i]).total_seconds()>180: #如果充电过程中时间间隔>180s,则舍弃该次充电
|
|
|
+ chrg_start.remove(chrg_start[-1])
|
|
|
+ charging=0
|
|
|
+ continue
|
|
|
+ elif self.packcrnt[i]<=-1 and self.packcrnt[i+1]<=-1 and self.packcrnt[i+2]<-1:
|
|
|
+ cellvolt_now=self._cellvolt_get(i)
|
|
|
+ if min(cellvolt_now)>self.param.CellFullChrgVolt-0.13: #电压>满充电压-0.13V,即3.37V
|
|
|
+ self._celltemp_weight(i)
|
|
|
+ if i-chrg_start[-1]>10 and self.celltemp>10:
|
|
|
+ chrg_end.append(i+1)
|
|
|
+ dict_bal_list.append(dict_bal3)
|
|
|
+ dict_bal3={}
|
|
|
+ charging=0
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ chrg_start.remove(chrg_start[-1])
|
|
|
+ charging=0
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ #基于充电数据计算单体电芯的漏电流..........................................................................................................
|
|
|
+ if len(chrg_end)>1:
|
|
|
+ for i in range(len(chrg_end)):
|
|
|
+ if i<1:
|
|
|
+ dict_baltime={}
|
|
|
+ deltAs_last=self._cellDeltAs_get(chrg_start[i],chrg_end[i],dict_baltime)
|
|
|
+ time_last=self.bmstime[chrg_end[i]]
|
|
|
+ else:
|
|
|
+ dict_baltime=self._bal_time(dict_bal_list[i]) #获取每个电芯的均衡时间
|
|
|
+ deltAs_now=self._cellDeltAs_get(chrg_start[i],chrg_end[i],dict_baltime) #获取每个电芯的As差
|
|
|
+ time_now=self.bmstime[chrg_end[i]]
|
|
|
+
|
|
|
+ list_sub=[a-b for a, b in zip(deltAs_now, deltAs_last)]
|
|
|
+ list_pud=[-1000/(time_now-time_last).total_seconds()]*self.param.CellVoltNums
|
|
|
+ leak_current=[a*b for a,b in zip(list_sub,list_pud)]
|
|
|
+ leak_current=np.array(leak_current)
|
|
|
+ leak_current=np.round(leak_current,3)
|
|
|
+ leak_current=list(leak_current)
|
|
|
+
|
|
|
+ df_res.loc[len(df_res)]=[time_last,time_now,self.sn,3,str(leak_current),str(dict_baltime)] #计算结果存入Dataframe
|
|
|
+ deltAs_last=deltAs_now
|
|
|
+ time_last=time_now
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+
|
|
|
+ if df_res.empty:
|
|
|
+ return pd.DataFrame()
|
|
|
+ else:
|
|
|
+ return df_res
|