|
@@ -49,32 +49,32 @@ def cell_platd_sorvol_test():
|
|
|
if not df_bms.empty:
|
|
|
Diag_lipltd_temp = Li_plated.Liplated_test(sn,celltype,df_bms)#析锂检测
|
|
|
df_Diag_lipltd_add = Diag_lipltd_temp.liplated_detect()
|
|
|
- Diag_sorvol_temp = vol_sor_est.vol_sor_est(sn,celltype,df_bms)#电压内阻估计
|
|
|
- [df_diag_sor_add, df_diag_vol_add, df_diag_sorvol_add] = Diag_sorvol_temp.volsor_cal()
|
|
|
+ # Diag_sorvol_temp = vol_sor_est.vol_sor_est(sn,celltype,df_bms)#电压内阻估计
|
|
|
+ # [df_diag_sor_add, df_diag_vol_add, df_diag_sorvol_add] = Diag_sorvol_temp.volsor_cal()
|
|
|
if not df_Diag_lipltd_add.empty:
|
|
|
df_Diag_lipltd_temp = df_Diag_lipltd.append(df_Diag_lipltd_add)
|
|
|
df_Diag_lipltd = df_Diag_lipltd_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
|
|
|
df_Diag_lipltd.reset_index(drop = True)
|
|
|
df_Diag_lipltd.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
|
|
|
df_Diag_lipltd.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\02析锂检测\01下载数据\格林美-力信7255\SNnums_6040_liplated_sn.csv',index=False,encoding='GB18030')
|
|
|
- if not df_diag_sor_add.empty:
|
|
|
- df_diag_sor_temp = df_diag_sor.append(df_diag_sor_add)
|
|
|
- df_diag_sor = df_diag_sor_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
|
|
|
- df_diag_sor.reset_index(drop = True)
|
|
|
- df_diag_sor.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
|
|
|
- df_diag_sor.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\内阻偏离.csv',index=False,encoding='GB18030')
|
|
|
- if not df_diag_vol_add.empty:
|
|
|
- df_diag_vol_temp = df_diag_vol.append(df_diag_vol_add)
|
|
|
- df_diag_vol = df_diag_vol_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
|
|
|
- df_diag_vol.reset_index(drop = True)
|
|
|
- df_diag_vol.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
|
|
|
- df_diag_vol.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压偏离.csv',index=False,encoding='GB18030')
|
|
|
- if not df_diag_sorvol_add.empty:
|
|
|
- df_diag_volsor_temp = df_diag_volsor.append(df_diag_sorvol_add)
|
|
|
- df_diag_volsor = df_diag_volsor_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
|
|
|
- df_diag_volsor.reset_index(drop = True)
|
|
|
- df_diag_volsor.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
|
|
|
- df_diag_volsor.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压内阻偏离.csv',index=False,encoding='GB18030')
|
|
|
+ # if not df_diag_sor_add.empty:
|
|
|
+ # df_diag_sor_temp = df_diag_sor.append(df_diag_sor_add)
|
|
|
+ # df_diag_sor = df_diag_sor_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
|
|
|
+ # df_diag_sor.reset_index(drop = True)
|
|
|
+ # df_diag_sor.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
|
|
|
+ # df_diag_sor.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\内阻偏离.csv',index=False,encoding='GB18030')
|
|
|
+ # if not df_diag_vol_add.empty:
|
|
|
+ # df_diag_vol_temp = df_diag_vol.append(df_diag_vol_add)
|
|
|
+ # df_diag_vol = df_diag_vol_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
|
|
|
+ # df_diag_vol.reset_index(drop = True)
|
|
|
+ # df_diag_vol.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
|
|
|
+ # df_diag_vol.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压偏离.csv',index=False,encoding='GB18030')
|
|
|
+ # if not df_diag_sorvol_add.empty:
|
|
|
+ # df_diag_volsor_temp = df_diag_volsor.append(df_diag_sorvol_add)
|
|
|
+ # df_diag_volsor = df_diag_volsor_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
|
|
|
+ # df_diag_volsor.reset_index(drop = True)
|
|
|
+ # df_diag_volsor.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
|
|
|
+ # df_diag_volsor.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压内阻偏离.csv',index=False,encoding='GB18030')
|
|
|
end=time.time()
|
|
|
print(end-start)
|
|
|
|
|
@@ -108,9 +108,9 @@ if __name__ == "__main__":
|
|
|
mylog.logcfg()
|
|
|
#............................模块运行前,先读取数据库中所有结束时间为0的数据,需要从数据库中读取................
|
|
|
df_Diag_lipltd=pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\02析锂检测\01下载数据\格林美-力信7255\析锂.csv',encoding='GB18030')
|
|
|
- df_diag_sor = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\内阻偏离.csv',encoding='GB18030')
|
|
|
- df_diag_vol = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压偏离.csv',encoding='GB18030')
|
|
|
- df_diag_volsor = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压内阻偏离.csv',encoding='GB18030')
|
|
|
+ # df_diag_sor = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\内阻偏离.csv',encoding='GB18030')
|
|
|
+ # df_diag_vol = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压偏离.csv',encoding='GB18030')
|
|
|
+ # df_diag_volsor = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压内阻偏离.csv',encoding='GB18030')
|
|
|
|
|
|
print('-------计算中-----------')
|
|
|
#定时任务.......................................................................................................................................................................
|