|
@@ -48,6 +48,8 @@ class SafetyWarning:
|
|
mk_z_list=[]
|
|
mk_z_list=[]
|
|
mk_Tau_list=[]
|
|
mk_Tau_list=[]
|
|
mk_slope_list=[]
|
|
mk_slope_list=[]
|
|
|
|
+ mk_s_list=[]
|
|
|
|
+ mk_svar_list=[]
|
|
|
|
|
|
if not self.df_short.empty:
|
|
if not self.df_short.empty:
|
|
short_current=self.df_short['short_current']
|
|
short_current=self.df_short['short_current']
|
|
@@ -87,8 +89,7 @@ class SafetyWarning:
|
|
cellvolt_rank=self.df_uniform['cellvolt_rank']
|
|
cellvolt_rank=self.df_uniform['cellvolt_rank']
|
|
cellvolt_rank=cellvolt_rank.str.replace("[", '')
|
|
cellvolt_rank=cellvolt_rank.str.replace("[", '')
|
|
cellvolt_rank=cellvolt_rank.str.replace("]", '')
|
|
cellvolt_rank=cellvolt_rank.str.replace("]", '')
|
|
-
|
|
|
|
- # plt.figure()
|
|
|
|
|
|
+
|
|
for i in range(self.param.CellVoltNums):
|
|
for i in range(self.param.CellVoltNums):
|
|
#漏电流故障判断...........................................................................
|
|
#漏电流故障判断...........................................................................
|
|
if not self.df_short.empty:
|
|
if not self.df_short.empty:
|
|
@@ -114,14 +115,14 @@ class SafetyWarning:
|
|
y=VoltChange[volt_column[i]]
|
|
y=VoltChange[volt_column[i]]
|
|
volt3sigma=np.array(Volt_3Sigma[volt_column[i]].map(lambda x:eval(x)))
|
|
volt3sigma=np.array(Volt_3Sigma[volt_column[i]].map(lambda x:eval(x)))
|
|
volt3sigma_sum=np.sum(volt3sigma<-3)
|
|
volt3sigma_sum=np.sum(volt3sigma<-3)
|
|
- # #电压变化率
|
|
|
|
- # a1,b1=np.polyfit(VoltChange['time'].tolist(),y.tolist(),1)
|
|
|
|
- # y1=a1*VoltChange['time']+b1
|
|
|
|
- # y_mean=y.mean()
|
|
|
|
- # R2=1-(np.sum((y1-y)**2))/(np.sum((y-y_mean)**2))
|
|
|
|
- # R2_list.append(R2)
|
|
|
|
|
|
+ #电压变化率
|
|
|
|
+ a1,b1=np.polyfit(VoltChange['time'].tolist(),y.tolist(),1)
|
|
|
|
+ y1=a1*VoltChange['time']+b1
|
|
|
|
+ y_mean=y.mean()
|
|
|
|
+ R2=1-(np.sum((y1-y)**2))/(np.sum((y-y_mean)**2))
|
|
|
|
+ R2_list.append(R2)
|
|
|
|
|
|
- # volt_rate.append(a1)
|
|
|
|
|
|
+ volt_rate.append(a1)
|
|
# plt.plot(xtime1,y1,label='单体电压'+str(i+1))
|
|
# plt.plot(xtime1,y1,label='单体电压'+str(i+1))
|
|
# plt.xlabel('时间', fontsize=25)
|
|
# plt.xlabel('时间', fontsize=25)
|
|
# plt.ylabel('SOC差', fontsize=25)
|
|
# plt.ylabel('SOC差', fontsize=25)
|
|
@@ -147,13 +148,15 @@ class SafetyWarning:
|
|
mk_z_list.append(mk_res.z)
|
|
mk_z_list.append(mk_res.z)
|
|
mk_Tau_list.append(mk_res.Tau)
|
|
mk_Tau_list.append(mk_res.Tau)
|
|
mk_slope_list.append(mk_res.slope)
|
|
mk_slope_list.append(mk_res.slope)
|
|
|
|
+ mk_s_list.append(mk_res.s)
|
|
|
|
+ mk_svar_list.append(mk_res.var_s)
|
|
"""
|
|
"""
|
|
trend:趋势;
|
|
trend:趋势;
|
|
h:有无趋势;
|
|
h:有无趋势;
|
|
p:趋势的显著水平,越小趋势越明显;
|
|
p:趋势的显著水平,越小趋势越明显;
|
|
z:检验统计量,正代表随时间增大趋势,负代表随时间减小趋势;
|
|
z:检验统计量,正代表随时间增大趋势,负代表随时间减小趋势;
|
|
Tau:反映两个序列的相关性,接近1的值表示强烈的正相关,接近-1的值表示强烈的负相关;
|
|
Tau:反映两个序列的相关性,接近1的值表示强烈的正相关,接近-1的值表示强烈的负相关;
|
|
- s:如果S是一个正数,那么后一部分的观测值相比之前的观测值会趋向于变大;如果S是一个负数,那么后一部分的观测值相比之前的观测值会趋向于变小
|
|
|
|
|
|
+ s:Mann-Kendal的分数,如果S是一个正数,那么后一部分的观测值相比之前的观测值会趋向于变大;如果S是一个负数,那么后一部分的观测值相比之前的观测值会趋向于变小
|
|
slope:趋势斜率
|
|
slope:趋势斜率
|
|
"""
|
|
"""
|
|
# print('单体电压{}:\n'.format(i+1), mk_res)
|
|
# print('单体电压{}:\n'.format(i+1), mk_res)
|
|
@@ -167,6 +170,8 @@ class SafetyWarning:
|
|
mk_z_list.append(0)
|
|
mk_z_list.append(0)
|
|
mk_Tau_list.append(0)
|
|
mk_Tau_list.append(0)
|
|
mk_slope_list.append(0)
|
|
mk_slope_list.append(0)
|
|
|
|
+ mk_s_list.append(0)
|
|
|
|
+ mk_svar_list.append(0)
|
|
|
|
|
|
#电芯SOC排名判断.............................................................................
|
|
#电芯SOC排名判断.............................................................................
|
|
if not self.df_uniform.empty:
|
|
if not self.df_uniform.empty:
|
|
@@ -189,8 +194,9 @@ class SafetyWarning:
|
|
df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice]
|
|
df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice]
|
|
break
|
|
break
|
|
else:
|
|
else:
|
|
- pass
|
|
|
|
|
|
+ pass
|
|
|
|
|
|
|
|
+ # plt.show()
|
|
#电池电压变化率离群度计算...............................................................................
|
|
#电池电压变化率离群度计算...............................................................................
|
|
volt_rate_std=np.std(volt_rate)
|
|
volt_rate_std=np.std(volt_rate)
|
|
volt_rate_mean=np.mean(volt_rate)
|
|
volt_rate_mean=np.mean(volt_rate)
|
|
@@ -199,7 +205,11 @@ class SafetyWarning:
|
|
#mk离群度计算
|
|
#mk离群度计算
|
|
mk_slope_std=np.std(mk_slope_list)
|
|
mk_slope_std=np.std(mk_slope_list)
|
|
mk_slope_mean=np.mean(mk_slope_list)
|
|
mk_slope_mean=np.mean(mk_slope_list)
|
|
- mk_slope_3sigma=(np.array(mk_slope_list)-mk_slope_mean)/mk_slope_std
|
|
|
|
|
|
+ mk_slope_3sigma=(np.array(mk_slope_list)-mk_slope_mean)/mk_slope_std
|
|
|
|
+
|
|
|
|
+ # mk_s_std=np.std(mk_s_list)
|
|
|
|
+ # mk_s_mean=np.mean(mk_s_list)
|
|
|
|
+ # mk_s_3sigma=(np.array(mk_s_list)-mk_s_mean)/mk_s_std
|
|
|
|
|
|
mk_z_std=np.std(mk_z_list)
|
|
mk_z_std=np.std(mk_z_list)
|
|
mk_z_mean=np.mean(mk_z_list)
|
|
mk_z_mean=np.mean(mk_z_list)
|
|
@@ -227,20 +237,20 @@ class SafetyWarning:
|
|
#mana-kendall趋势检测
|
|
#mana-kendall趋势检测
|
|
for i in range(len(mk_p_list)):
|
|
for i in range(len(mk_p_list)):
|
|
#适用动态工况判断
|
|
#适用动态工况判断
|
|
- if mk_trend_list[i]=='decreasing' and mk_p_list[i]<self.param.mk_p and mk_z_list[i]<self.param.mk_z and mk_Tau_list[i]<self.param.mk_Tau and mk_slope_3sigma[i]<-3 and mk_slope_list[i]<self.param.mk_slope and abs(cellsoh_3sigma[i])<2.5:
|
|
|
|
|
|
+ if mk_trend_list[i]=='decreasing' and mk_p_list[i]<self.param.mk_p and mk_z_list[i]<self.param.mk_z and mk_Tau_list[i]<self.param.mk_Tau and mk_slope_3sigma[i]<-3 and mk_slope_list[i]<self.param.mk_slope and abs(cellsoh_3sigma[i])<2.5 and volt_rate_3sigma[i]<-3:
|
|
faultcode=110
|
|
faultcode=110
|
|
faultlv=4
|
|
faultlv=4
|
|
faultinfo='电芯{}发生热失控安全预警'.format(i+1)
|
|
faultinfo='电芯{}发生热失控安全预警'.format(i+1)
|
|
faultadvice='2联系用户远离电池,立刻召回电池'
|
|
faultadvice='2联系用户远离电池,立刻召回电池'
|
|
df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice]
|
|
df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice]
|
|
#适用静态工况判断
|
|
#适用静态工况判断
|
|
- elif self.celltype<=50 and mk_trend_list[i]=='decreasing' and mk_p_list[i]<self.param.mk_p and mk_z_list[i]<-6 and (mk_Tau_list[i]<-0.9 or mk_z_3sigma[i]<-3) and mk_slope_3sigma[i]<-3.5 and mk_slope_list[i]<-0.025:
|
|
|
|
|
|
+ elif self.celltype<=50 and mk_trend_list[i]=='decreasing' and mk_p_list[i]<self.param.mk_p and mk_z_list[i]<-6 and (mk_Tau_list[i]<-0.9 or mk_z_3sigma[i]<-3) and mk_slope_3sigma[i]<-3.5 and mk_slope_list[i]<-0.025 and volt_rate_3sigma[i]<-3:
|
|
faultcode=110
|
|
faultcode=110
|
|
faultlv=4
|
|
faultlv=4
|
|
faultinfo='电芯{}发生热失控安全预警'.format(i+1)
|
|
faultinfo='电芯{}发生热失控安全预警'.format(i+1)
|
|
faultadvice='2联系用户远离电池,立刻召回电池'
|
|
faultadvice='2联系用户远离电池,立刻召回电池'
|
|
df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice]
|
|
df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice]
|
|
- elif self.celltype>50 and mk_trend_list[i]=='decreasing' and mk_p_list[i]<self.param.mk_p and mk_z_list[i]<-6 and (mk_Tau_list[i]<-0.9 or mk_z_3sigma[i]<-3) and mk_slope_3sigma[i]<-3.5 and mk_slope_list[i]<-0.25:
|
|
|
|
|
|
+ elif self.celltype>50 and mk_trend_list[i]=='decreasing' and mk_p_list[i]<self.param.mk_p and mk_z_list[i]<-6 and (mk_Tau_list[i]<-0.9 or mk_z_3sigma[i]<-3) and mk_slope_3sigma[i]<-3.5 and mk_slope_list[i]<-0.25 and volt_rate_3sigma[i]<-3:
|
|
faultcode=110
|
|
faultcode=110
|
|
faultlv=4
|
|
faultlv=4
|
|
faultinfo='电芯{}发生热失控安全预警'.format(i+1)
|
|
faultinfo='电芯{}发生热失控安全预警'.format(i+1)
|
|
@@ -249,5 +259,4 @@ class SafetyWarning:
|
|
else:
|
|
else:
|
|
pass
|
|
pass
|
|
|
|
|
|
- # plt.show()
|
|
|
|
return df_res
|
|
return df_res
|