|
@@ -0,0 +1,169 @@
|
|
|
+import pandas as pd
|
|
|
+import pdb
|
|
|
+from sklearn.ensemble import IsolationForest
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+# 计算充电过程
|
|
|
+def preprocess(df):
|
|
|
+ # 滤除前后电压存在一增一减的情况(采样异常)
|
|
|
+ pass
|
|
|
+
|
|
|
+# 计算电压的偏离度
|
|
|
+def cal_volt_uniform(dfin, volt_column, window=10, step=5, threshold=3):
|
|
|
+
|
|
|
+ df = dfin.copy()
|
|
|
+ time_list = dfin['time'].tolist()
|
|
|
+
|
|
|
+ # 电压滤波
|
|
|
+ df_volt = df[volt_column]
|
|
|
+ df_volt_rolling = df_volt.rolling(window).mean()[window-1::step] # 滑动平均值
|
|
|
+ time_list = time_list[window-1::step]
|
|
|
+
|
|
|
+ # 电压偏离度
|
|
|
+ mean = df_volt_rolling.mean(axis=1)
|
|
|
+ std = df_volt_rolling.std(axis=1)
|
|
|
+ df_volt_rolling_norm = df_volt_rolling.sub(mean, axis=0).div(std,axis=0)
|
|
|
+ df_volt_rolling_norm = df_volt_rolling_norm.reset_index(drop=True)
|
|
|
+ return df_volt_rolling_norm, time_list
|
|
|
+
|
|
|
+
|
|
|
+# 计算电压变化量的偏离度
|
|
|
+def cal_voltdiff_uniform(dfin, volt_column, window=10, step=5, window2=10, step2=5,threshold=3):
|
|
|
+
|
|
|
+ df = dfin.copy()
|
|
|
+ time_list = dfin['time'].tolist()
|
|
|
+
|
|
|
+ # 电压滤波
|
|
|
+ df_volt = df[volt_column]
|
|
|
+ df_volt_rolling = df_volt.rolling(window).mean()[window-1::step] # 滑动平均值
|
|
|
+ time_list = time_list[window-1::step]
|
|
|
+
|
|
|
+ # 计算电压变化量的绝对值(# 计算前后的差值的绝对值, 时间列-1)
|
|
|
+ df_volt_diff = abs(df_volt_rolling.diff()[1:])
|
|
|
+ df_volt_diff = df_volt_diff.reset_index(drop=True)
|
|
|
+ time_list = time_list[1:]
|
|
|
+
|
|
|
+ # 压差归一化(偏离度)
|
|
|
+ # mean = df_volt_diff.mean(axis=1)
|
|
|
+ # std = df_volt_diff.std(axis=1)
|
|
|
+ # df_voltdiff_norm = df_volt_diff.sub(mean, axis=0).div(std,axis=0)
|
|
|
+ df_voltdiff_norm = df_volt_diff.copy()
|
|
|
+
|
|
|
+ # 压差偏离度滑动平均滤波
|
|
|
+ df_voltdiff_rolling = df_voltdiff_norm.rolling(window2).mean()[window2-1::step2] # 滑动平均值
|
|
|
+ time_list = time_list[window2-1::step2]
|
|
|
+ mean = df_voltdiff_rolling.mean(axis=1)
|
|
|
+ std = df_voltdiff_rolling.std(axis=1)
|
|
|
+ df_voltdiff_rolling_norm = df_voltdiff_rolling.sub(mean, axis=0).div(std,axis=0)
|
|
|
+ df_voltdiff_rolling_norm = df_voltdiff_rolling_norm.reset_index(drop=True)
|
|
|
+ return df_voltdiff_rolling_norm, time_list
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ # this_alarm = {}
|
|
|
+ # df_alarm = df_voltdiff_rolling_norm[abs(df_voltdiff_rolling_norm)>threshold].dropna(how='all')
|
|
|
+ # for index in df_alarm.index:
|
|
|
+ # df_temp = df_alarm.loc[index, :].dropna(how='all', axis=0)
|
|
|
+ # this_alarm.update({df_cell_volt.loc[index+1, 'date']:[str(df_temp.keys().tolist()), str([round(x, 2) for x in df_temp.values.tolist()])]})
|
|
|
+ # df_alarm1 = pd.DataFrame(this_alarm)
|
|
|
+
|
|
|
+
|
|
|
+ # return pd.DataFrame(df_alarm1.values.T, index=df_alarm1.columns, columns=df_alarm1.index), pd.DataFrame(df_alarm2.values.T, index=df_alarm2.columns, columns=df_alarm2.index)
|
|
|
+
|
|
|
+ # 孤立森林算法
|
|
|
+ def iso_froest(df):
|
|
|
+
|
|
|
+ #1. 生成训练数据
|
|
|
+ rng = np.random.RandomState(42)
|
|
|
+ X = 0.3 * rng.randn(100, 2) #生成100 行,2 列
|
|
|
+ X_train = np.r_[X + 2, X - 2]
|
|
|
+ print(X_train)
|
|
|
+ # 产生一些异常数据
|
|
|
+ X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
|
|
|
+ iForest= IsolationForest(contamination=0.1)
|
|
|
+ iForest = iForest.fit(X_train)
|
|
|
+ #预测
|
|
|
+ pred = iForest.predict(X_outliers)
|
|
|
+ print(pred)
|
|
|
+ # [-1 1 -1 -1 -1 -1 -1 1 -
|
|
|
+
|
|
|
+# 计算相关系数
|
|
|
+def cal_coff(df):
|
|
|
+ cc_mean = np.mean(df, axis=0) #axis=0,表示按列求均值 ——— 即第一维
|
|
|
+ cc_std = np.std(df, axis=0)
|
|
|
+ cc_zscore = (df-cc_mean)/cc_std #标准化
|
|
|
+ cc_zscore = cc_zscore.dropna(axis=0, how='any')
|
|
|
+
|
|
|
+ cc_zscore_corr = cc_zscore.corr(method='spearman')
|
|
|
+
|
|
|
+ result = []
|
|
|
+ for i in range(len(cc_zscore_corr)):
|
|
|
+ v = abs(np.array((sorted(cc_zscore_corr.iloc[i]))[2:-1])).mean() # 去掉1 和两个最小值后求均值
|
|
|
+ result.append(v)
|
|
|
+ return cc_zscore_corr, result
|
|
|
+
|
|
|
+
|
|
|
+def instorage(sn, df_voltdiff_result, df_volt_result):
|
|
|
+
|
|
|
+ df_all_result = pd.DataFrame(columns=['sn', 'time', 'cellnum', 'value', 'type'])
|
|
|
+
|
|
|
+ value_list = []
|
|
|
+ cellnum_list = []
|
|
|
+ time_list = []
|
|
|
+ type_list = []
|
|
|
+ df_result = df_voltdiff_result.copy().drop(columns='time')
|
|
|
+ time_list_1 = df_voltdiff_result['time']
|
|
|
+ df_result = df_result[(df_result>3) | (df_result<-3)].dropna(axis=0, how='all').dropna(axis=1, how='all')
|
|
|
+ for column in df_result.columns:
|
|
|
+ df = df_result[[column]].dropna(axis=0, how='all')
|
|
|
+ value_list.extend(df[column].tolist())
|
|
|
+ cellnum_list.extend([column]*len(df))
|
|
|
+ time_list.extend([time_list_1[x] for x in df.index])
|
|
|
+ length_1 = len(value_list)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ df_result = df_volt_result.copy().drop(columns='time')
|
|
|
+ time_list_2 = df_volt_result['time']
|
|
|
+ df_result = df_result[(df_result>3) | (df_result<-3)].dropna(axis=0, how='all').dropna(axis=1, how='all')
|
|
|
+ for column in df_result.columns:
|
|
|
+ df = df_result[[column]].dropna(axis=0, how='all')
|
|
|
+ value_list.extend(df[column].tolist())
|
|
|
+ cellnum_list.extend([column]*len(df))
|
|
|
+ time_list.extend([time_list_2[x] for x in df.index])
|
|
|
+
|
|
|
+ length_2 = len(value_list) - length_1
|
|
|
+ type_list.extend(['电压变化量离群'] * length_1)
|
|
|
+ type_list.extend(['电压离群'] * length_2)
|
|
|
+ df_all_result['sn'] = [sn] * len(value_list)
|
|
|
+ df_all_result['cellnum'] = cellnum_list
|
|
|
+ df_all_result['value'] = value_list
|
|
|
+ df_all_result['time'] = time_list
|
|
|
+ df_all_result['type'] = type_list
|
|
|
+ return df_all_result
|
|
|
+
|
|
|
+# 报警.如果在某个窗口内,有超过ratio个的点,偏离度超过threshold, 则报警
|
|
|
+def alarm(dfin, volt_column, alarm_window=10, alarm_ratio=0.8, alarm_threshold=2.5):
|
|
|
+
|
|
|
+
|
|
|
+ time_list = dfin['time'].tolist()
|
|
|
+ df_result = dfin[volt_column].copy()
|
|
|
+ alarm_result = pd.DataFrame(columns=['type', 'num', 'alarm_time'])
|
|
|
+ df_result_1 = df_result.copy()
|
|
|
+ df_result_1[df_result_1<alarm_threshold] = 0
|
|
|
+ df_result_1[df_result_1>alarm_threshold] = 1
|
|
|
+ df_result_1 = df_result_1.rolling(alarm_window).sum()
|
|
|
+ for column in volt_column:
|
|
|
+ if len(df_result_1[df_result_1[column]>alarm_window * alarm_ratio])>0:
|
|
|
+ alarm_result = alarm_result.append({'type':'1', 'num':column, 'alarm_time':time_list[df_result_1[df_result_1[column]>alarm_window * alarm_ratio].index[0]]}, ignore_index=True)
|
|
|
+
|
|
|
+ # time_list = time_list[window-1::step]
|
|
|
+
|
|
|
+ df_result_2 = df_result.copy()
|
|
|
+ df_result_2[df_result_2>-alarm_threshold] = 0
|
|
|
+ df_result_2[df_result_2<-alarm_threshold] = 1
|
|
|
+ df_result_2 = df_result_2.rolling(alarm_window).sum()
|
|
|
+ for column in volt_column:
|
|
|
+ if len(df_result_2[df_result_2[column]>alarm_window * alarm_ratio])>0:
|
|
|
+ alarm_result = alarm_result.append({'type':'2', 'num':column, 'alarm_time':time_list[df_result_2[df_result_2[column]>alarm_window * alarm_ratio].index[0]]}, ignore_index=True)
|
|
|
+ return alarm_result
|