|
@@ -1,5 +1,4 @@
|
|
-
|
|
|
|
-from LIB.MIDDLE.FaultDetection.V1_0_1.CoreAlgo.aelstm import *
|
|
|
|
|
|
+from LIB.MIDDLE.FaultDetection.V1_0_2.aelstm import *
|
|
import pymysql
|
|
import pymysql
|
|
import datetime
|
|
import datetime
|
|
import pandas as pd
|
|
import pandas as pd
|
|
@@ -9,10 +8,13 @@ from sqlalchemy import create_engine
|
|
from urllib import parse
|
|
from urllib import parse
|
|
import datetime, time
|
|
import datetime, time
|
|
from apscheduler.schedulers.blocking import BlockingScheduler
|
|
from apscheduler.schedulers.blocking import BlockingScheduler
|
|
-from LIB.MIDDLE.CellStateEstimation.Common import log
|
|
|
|
import traceback
|
|
import traceback
|
|
import pickle
|
|
import pickle
|
|
from keras.models import load_model
|
|
from keras.models import load_model
|
|
|
|
+import logging
|
|
|
|
+import logging.handlers
|
|
|
|
+import os
|
|
|
|
+import re
|
|
|
|
|
|
|
|
|
|
#...................................故障检测函数......................................................................................................................
|
|
#...................................故障检测函数......................................................................................................................
|
|
@@ -33,11 +35,11 @@ def diag_cal():
|
|
password='Qx@123456'
|
|
password='Qx@123456'
|
|
|
|
|
|
#读取结果库数据......................................................
|
|
#读取结果库数据......................................................
|
|
- param='product_id,start_time,end_time,diff_min,SOC[%],AnoScoreV_sum_max,AnoScoreV_max_max,AnoScoreT_sum_max,AnoScoreT_max_max'
|
|
|
|
|
|
+ param='product_id,start_time,end_time,diff_min,SOC,AnoScoreV_sum_max,AnoScoreV_max_max,AnoScoreT_sum_max,AnoScoreT_max_max'
|
|
tablename='fault_detection'
|
|
tablename='fault_detection'
|
|
mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db)
|
|
mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db)
|
|
cursor = mysql.cursor()
|
|
cursor = mysql.cursor()
|
|
- sql = "select %s from %s where time_end='0000-00-00 00:00:00'" %(param,tablename)
|
|
|
|
|
|
+ sql = "select {} from {} where end_time='0000-00-00 00:00:00'".format(param,tablename)
|
|
cursor.execute(sql)
|
|
cursor.execute(sql)
|
|
res = cursor.fetchall()
|
|
res = cursor.fetchall()
|
|
df_diag_ram= pd.DataFrame(res,columns=param.split(','))
|
|
df_diag_ram= pd.DataFrame(res,columns=param.split(','))
|
|
@@ -47,10 +49,25 @@ def diag_cal():
|
|
"mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
|
|
"mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
|
|
user, parse.quote_plus(password), host, port, db
|
|
user, parse.quote_plus(password), host, port, db
|
|
))
|
|
))
|
|
-
|
|
|
|
- mylog=log.Mylog('log_info_charge.txt','error')
|
|
|
|
- mylog.logcfg()
|
|
|
|
-
|
|
|
|
|
|
+
|
|
|
|
+ scaler_list=[]
|
|
|
|
+ scaler2_list=[]
|
|
|
|
+ model_list=[]
|
|
|
|
+ model2_list=[]
|
|
|
|
+ for group in ['MGMLX','PK504','PK502','PK500','MGMCL']:
|
|
|
|
+ scaler = pickle.load(open('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerV_'+group+'_10.pkl', 'rb'))
|
|
|
|
+ scaler2 = pickle.load(open('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerT_'+group+'_10.pkl', 'rb'))
|
|
|
|
+ model = load_model('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/modelV_'+group+'_10.h5')
|
|
|
|
+ model2 = load_model('LIB/MIDDLE/FaultDetection/V1_0_2/train_out/modelT_'+group+'_10.h5')
|
|
|
|
+ scaler_list.append(scaler)
|
|
|
|
+ scaler2_list.append(scaler2)
|
|
|
|
+ model_list.append(model)
|
|
|
|
+ model2_list.append(model2)
|
|
|
|
+ scaler_dict={'MGMLX':scaler_list[0],'PK504':scaler_list[1],'PK502':scaler_list[2],'PK500':scaler_list[3],'MGMCL':scaler_list[4]}
|
|
|
|
+ scaler2_dict={'MGMLX':scaler2_list[0],'PK504':scaler2_list[1],'PK502':scaler2_list[2],'PK500':scaler2_list[3],'MGMCL':scaler2_list[4]}
|
|
|
|
+ model_dict={'MGMLX':model_list[0],'PK504':model_list[1],'PK502':model_list[2],'PK500':model_list[3],'MGMCL':model_list[4]}
|
|
|
|
+ model2_dict={'MGMLX':model2_list[0],'PK504':model2_list[1],'PK502':model2_list[2],'PK500':model2_list[3],'MGMCL':model2_list[4]}
|
|
|
|
+
|
|
|
|
|
|
#调用主函数................................................................................................................................................................
|
|
#调用主函数................................................................................................................................................................
|
|
for sn in SNnums:
|
|
for sn in SNnums:
|
|
@@ -60,38 +77,40 @@ def diag_cal():
|
|
data_bms = df_data['bms']
|
|
data_bms = df_data['bms']
|
|
data_bms['sn']=sn
|
|
data_bms['sn']=sn
|
|
if len(data_bms)>0:
|
|
if len(data_bms)>0:
|
|
|
|
+ logger.info("SN: {} 数据开始预处理".format(sn))
|
|
data_stand=data_groups(data_bms,sn,start_time,end_time)
|
|
data_stand=data_groups(data_bms,sn,start_time,end_time)
|
|
df_stand=split(data_stand)
|
|
df_stand=split(data_stand)
|
|
res=pd.DataFrame()
|
|
res=pd.DataFrame()
|
|
if len(df_stand)>0:
|
|
if len(df_stand)>0:
|
|
#读取训练产出的缩放指标:均值&方差
|
|
#读取训练产出的缩放指标:均值&方差
|
|
- scaler = pickle.load(open('D:/Develop/User/Zhuxi/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerV_'+group+'_10.pkl', 'rb'))
|
|
|
|
- scaler2 = pickle.load(open('D:/Develop/User/Zhuxi/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerT_'+group+'_10.pkl', 'rb'))
|
|
|
|
|
|
+ logger.info("SN: {} 数据开始模型预测".format(sn))
|
|
|
|
+ scaler = scaler_dict[group]
|
|
|
|
+ scaler2 = scaler2_dict[group]
|
|
#读取训练产出的模型状态空间:电压模型&温度模型
|
|
#读取训练产出的模型状态空间:电压模型&温度模型
|
|
- model = load_model('D:/Develop/User/Zhuxi/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/modelV_'+group+'_10.h5')
|
|
|
|
- model2 = load_model('D:/Develop/User/Zhuxi/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/modelT_'+group+'_10.h5')
|
|
|
|
|
|
+ model = model_dict[group]
|
|
|
|
+ model2 = model2_dict[group]
|
|
res=prediction(df_stand,scaler,scaler2,model,model2)
|
|
res=prediction(df_stand,scaler,scaler2,model,model2)
|
|
if len(res)>0:
|
|
if len(res)>0:
|
|
df_res2,diff=threshold(res,group,end_time)
|
|
df_res2,diff=threshold(res,group,end_time)
|
|
- df_diag_ram_sn=pd.Series()
|
|
|
|
- if not df_diag_ram.empty: #结果库非空
|
|
|
|
- df_diag_ram_sn=df_diag_ram[df_diag_ram['sn']==sn]
|
|
|
|
- if not df_diag_ram_sn.empty: #该sn相关结果非空
|
|
|
|
- new_res,update_res=arrange(df_res2,df_diag_ram_sn,start_time,diff)
|
|
|
|
- if len(update_res)>0:
|
|
|
|
- cursor.execute("DELETE FROM fault_detection WHERE time_end = '0000-00-00 00:00:00' and sn='{}'".format(sn))
|
|
|
|
- mysql.commit()
|
|
|
|
- update_res.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
|
|
|
|
- #新增结果存入结果库................................................................
|
|
|
|
- if len(new_res)>0:
|
|
|
|
- new_res.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
|
|
|
|
|
|
+ df_diag_ram_sn=df_diag_ram[df_diag_ram['product_id']==sn]
|
|
|
|
+ if not df_diag_ram_sn.empty: #该sn相关结果非空
|
|
|
|
+ new_res,update_res=arrange(df_res2,df_diag_ram_sn,start_time,diff)
|
|
|
|
+ if len(update_res)>0:
|
|
|
|
+ cursor.execute("DELETE FROM fault_detection WHERE end_time = '0000-00-00 00:00:00' and product_id='{}'".format(sn))
|
|
|
|
+ mysql.commit()
|
|
|
|
+ update_res.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
|
|
|
|
+ #新增结果存入结果库................................................................
|
|
|
|
+ if len(new_res)>0:
|
|
|
|
+ new_res.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
|
|
|
|
+ else:
|
|
|
|
+ df_res2.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
|
|
|
|
|
|
- end=time.time()
|
|
|
|
- print(end-start)
|
|
|
|
|
|
+ # end=time.time()
|
|
|
|
+ # print(end-start)
|
|
|
|
|
|
except Exception as e:
|
|
except Exception as e:
|
|
- print(repr(e))
|
|
|
|
- mylog.logopt(e)
|
|
|
|
|
|
+ logger.error(str(e))
|
|
|
|
+ logger.error(traceback.format_exc())
|
|
|
|
|
|
cursor.close()
|
|
cursor.close()
|
|
mysql.close()
|
|
mysql.close()
|
|
@@ -99,13 +118,50 @@ def diag_cal():
|
|
#...............................................主函数起定时作用.......................................................................................................................
|
|
#...............................................主函数起定时作用.......................................................................................................................
|
|
if __name__ == "__main__":
|
|
if __name__ == "__main__":
|
|
|
|
|
|
- #excelpath=r'D:\Platform\platform_python\data_analyze_platform\USER\spf\01qixiang\sn-20210903.xlsx'
|
|
|
|
- excelpath='sn-20210903.xlsx'
|
|
|
|
- dataSOH = pd.read_excel('sn-20210903.xlsx',sheet_name='sn-20210903')
|
|
|
|
- SNnums = list(dataSOH['sn'])
|
|
|
|
|
|
+ # 日志
|
|
|
|
+ log_path = 'log/'
|
|
|
|
+ if not os.path.exists(log_path):
|
|
|
|
+ os.makedirs(log_path)
|
|
|
|
+ logger = logging.getLogger("main")
|
|
|
|
+ logger.setLevel(logging.DEBUG)
|
|
|
|
+
|
|
|
|
+ # 根据日期滚动(每天产生1个文件)
|
|
|
|
+ fh = logging.handlers.TimedRotatingFileHandler(filename='{}/main_info.log'.format(log_path), when="D", interval=1, backupCount=30,
|
|
|
|
+ encoding="utf-8")
|
|
|
|
+ formatter = logging.Formatter("%(asctime)s - %(name)s-%(levelname)s %(message)s")
|
|
|
|
+ fh.suffix = "%Y-%m-%d_%H-%M-%S"
|
|
|
|
+ fh.extMatch = re.compile(r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}")
|
|
|
|
+ fh.setFormatter(formatter)
|
|
|
|
+ fh.setLevel(logging.INFO)
|
|
|
|
+ logger.addHandler(fh)
|
|
|
|
+
|
|
|
|
+ fh = logging.handlers.TimedRotatingFileHandler(filename='{}/main_error.log'.format(log_path), when="D", interval=1, backupCount=30,
|
|
|
|
+ encoding="utf-8")
|
|
|
|
+ formatter = logging.Formatter("%(asctime)s - %(name)s-%(levelname)s %(message)s")
|
|
|
|
+ fh.suffix = "%Y-%m-%d_%H-%M-%S"
|
|
|
|
+ fh.extMatch = re.compile(r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}")
|
|
|
|
+ fh.setFormatter(formatter)
|
|
|
|
+ fh.setLevel(logging.ERROR)
|
|
|
|
+ logger.addHandler(fh)
|
|
|
|
+
|
|
|
|
+ logger.info("pid is {}".format(os.getpid()))
|
|
|
|
+
|
|
|
|
+ # # 更新sn列表
|
|
|
|
+ host='rm-bp10j10qy42bzy0q7.mysql.rds.aliyuncs.com'
|
|
|
|
+ port=3306
|
|
|
|
+ db='qixiang_oss'
|
|
|
|
+ user='qixiang_oss'
|
|
|
|
+ password='Qixiang2021'
|
|
|
|
+ conn = pymysql.connect(host=host, port=port, user=user, password=password, database=db)
|
|
|
|
+ cursor = conn.cursor()
|
|
|
|
+ cursor.execute("select sn, imei, add_time from app_device where status in (1,2,3)")
|
|
|
|
+ res = cursor.fetchall()
|
|
|
|
+ df_sn = pd.DataFrame(res, columns=['sn', 'imei', 'add_time'])
|
|
|
|
+ df_sn = df_sn.reset_index(drop=True)
|
|
|
|
+ conn.close();
|
|
|
|
+
|
|
|
|
+ SNnums = list(df_sn['sn'])
|
|
|
|
|
|
- mylog=log.Mylog('log_info_charge.txt','error')
|
|
|
|
- mylog.logcfg()
|
|
|
|
|
|
|
|
diag_cal()
|
|
diag_cal()
|
|
#定时任务.......................................................................................................................................................................
|
|
#定时任务.......................................................................................................................................................................
|
|
@@ -116,5 +172,5 @@ if __name__ == "__main__":
|
|
scheduler.start()
|
|
scheduler.start()
|
|
except Exception as e:
|
|
except Exception as e:
|
|
scheduler.shutdown()
|
|
scheduler.shutdown()
|
|
- print(repr(e))
|
|
|
|
- mylog.logopt(e)
|
|
|
|
|
|
+ logger.error(str(e))
|
|
|
|
+ logger.error(traceback.format_exc())
|