فهرست منبع

重新上传电池预警代码

qingfeng 3 سال پیش
والد
کامیت
70546e5c3f

+ 674 - 0
LIB/MIDDLE/CellStateEstimation/BatSafetyWarning/V1_0_1/CBMSBatInterShort.py

@@ -0,0 +1,674 @@
+import pandas as pd
+import numpy as np
+import matplotlib.pyplot as plt
+# from pymysql import paramstyle
+from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import BatParam
+
+class BatInterShort():
+    def __init__(self,sn,celltype,df_bms,df_soh,df_last,df_last1,df_last2,df_last3,df_lfp):  #参数初始化
+
+        if (not df_lfp.empty) and celltype>50:
+            df_lfp.drop(['sn'],axis=1)
+            df_bms=pd.concat([df_lfp, df_bms], ignore_index=True)
+        else:
+            pass
+
+        self.sn=sn
+        self.celltype=celltype
+        self.param=BatParam.BatParam(celltype)
+        self.df_bms=df_bms
+        self.packcrnt=df_bms['总电流[A]']*self.param.PackCrntDec
+        self.packvolt=df_bms['总电压[V]']
+        self.bms_soc=df_bms['SOC[%]']
+        self.bmstime= pd.to_datetime(df_bms['时间戳'], format='%Y-%m-%d %H:%M:%S')
+
+        self.df_soh=df_soh
+        self.df_last=df_last
+        self.df_last1=df_last1
+        self.df_last2=df_last2
+        self.df_last3=df_last3
+        self.df_lfp=df_lfp
+
+        self.cellvolt_name=['单体电压'+str(x) for x in range(1,self.param.CellVoltNums+1)]
+        self.celltemp_name=['单体温度'+str(x) for x in range(1,self.param.CellTempNums+1)]
+    
+    def intershort(self):
+        if self.celltype<=50:
+            df_res, df_ram_last, df_ram_last1, df_ram_last3=self._ncm_intershort()
+            return df_res, df_ram_last, df_ram_last1,self.df_last2, df_ram_last3,self.df_lfp
+            
+        else:
+            df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp=self._lfp_intershort()
+            return df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp
+
+
+    #定义滑动滤波函数....................................................................................
+    def _np_move_avg(self,a, n, mode="same"): 
+        return (np.convolve(a, np.ones((n,)) / n, mode=mode))
+    
+    #寻找当前行数据的最小温度值.............................................................................
+    def _celltemp_weight(self,num):   
+        celltemp = list(self.df_bms.loc[num,self.celltemp_name])
+        celltemp=np.mean(celltemp)
+        self.celltemp=celltemp
+        if self.celltype==99:
+            if celltemp>=25:
+                self.tempweight=1
+                self.StandardStandingTime=3600
+            elif celltemp>=15:
+                self.tempweight=0.6
+                self.StandardStandingTime=7200
+            elif celltemp>=5:
+                self.tempweight=0.
+                self.StandardStandingTime=10800
+            else:
+                self.tempweight=0.1
+                self.StandardStandingTime=10800
+        else:
+            if celltemp>=20:
+                self.tempweight=1
+                self.StandardStandingTime=3600
+            elif celltemp>=10:
+                self.tempweight=0.8
+                self.StandardStandingTime=3600
+            elif celltemp>=5:
+                self.tempweight=0.6
+                self.StandardStandingTime=7200
+            else:
+                self.tempweight=0.2
+                self.StandardStandingTime=10800
+
+    #获取当前行所有电压数据........................................................................................
+    def _cellvolt_get(self,num): 
+        cellvolt = np.array(self.df_bms.loc[num,self.cellvolt_name])/1000
+        return cellvolt
+
+    #获取当前行所有soc差...........................................................................................
+    def _celldeltsoc_get(self,num,dict_baltime,capacity): 
+        cellsoc=[]
+        celldeltsoc=[]
+        for j in range(1, self.param.CellVoltNums+1):   #获取每个电芯电压对应的SOC值
+            cellvolt=self.df_bms.loc[num,'单体电压' + str(j)]/1000
+            ocv_soc=np.interp(cellvolt,self.param.LookTab_OCV,self.param.LookTab_SOC)
+            if j in dict_baltime.keys():
+                ocv_soc=ocv_soc+dict_baltime[j]*self.param.BalCurrent/(capacity*3600)   #补偿均衡电流
+            else:
+                pass
+            cellsoc.append(ocv_soc)
+        
+        if self.celltype==1 or self.celltype==2:
+            consum_num=7
+            cellsoc1=cellsoc[:self.param.CellVoltNums-consum_num]    #切片,将bms耗电的电芯和非耗电的电芯分离开
+            cellsocmean1=(sum(cellsoc1)-max(cellsoc1)-min(cellsoc1))/(len(cellsoc1)-2)
+            cellsoc2=cellsoc[self.param.CellVoltNums-consum_num:]
+            cellsocmean2=(sum(cellsoc2)-max(cellsoc2)-min(cellsoc2))/(len(cellsoc2)-2)
+            
+            for j in range(len(cellsoc)):   #计算每个电芯的soc差
+                if j<self.param.CellVoltNums-consum_num:
+                    celldeltsoc.append(cellsoc[j]-cellsocmean1)
+                else:
+                    celldeltsoc.append(cellsoc[j]-cellsocmean2)
+            return np.array(celldeltsoc), np.array(cellsoc)
+
+        else:
+            cellsocmean=(sum(cellsoc)-max(cellsoc)-min(cellsoc))/(len(cellsoc)-2)
+            for j in range(len(cellsoc)):   #计算每个电芯的soc差
+                celldeltsoc.append(cellsoc[j]-cellsocmean)
+            return np.array(celldeltsoc), np.array(cellsoc)
+ 
+    #获取所有电芯的As差
+    def _cellDeltAs_get(self,chrg_st,chrg_end,dict_baltime):
+        cellAs=[]
+        celldeltAs=[]
+        for j in range(1, self.param.CellVoltNums+1):   #获取每个电芯电压>峰值电压的充入As数
+            if j in dict_baltime.keys():    #补偿均衡电流
+                As=-self.param.BalCurrent*dict_baltime[j]
+            else:    
+                As=0
+            As_tatol=0
+            symbol=0
+            for m in range(chrg_st+1,chrg_end):
+                As=As-self.packcrnt[m]*(self.bmstime[m]-self.bmstime[m-1]).total_seconds()
+                if symbol<5:
+                    if self.df_bms.loc[m,'单体电压'+str(j)]/1000>self.param.PeakCellVolt[symbol]:
+                        As_tatol=As_tatol+As
+                        symbol=symbol+1
+                    else:
+                        continue
+                else:
+                    cellAs.append(As_tatol/5)
+                    break
+        
+        if self.celltype==99:
+            consum_num=10
+            cellAs1=cellAs[:self.param.CellVoltNums-consum_num]    #切片,将bms耗电的电芯和非耗电的电芯分离开
+            cellAsmean1=(sum(cellAs1)-max(cellAs1)-min(cellAs1))/(len(cellAs1)-2)
+            cellAs2=cellAs[self.param.CellVoltNums-consum_num:]
+            cellAsmean2=(sum(cellAs2)-max(cellAs2)-min(cellAs2))/(len(cellAs2)-2)
+            
+            for j in range(len(cellAs)):   #计算每个电芯的soc差
+                if j<self.param.CellVoltNums-consum_num:
+                    celldeltAs.append(cellAs[j]-cellAsmean1)
+                else:
+                    celldeltAs.append(cellAs[j]-cellAsmean2)
+        else:
+            cellAsmean=(sum(cellAs)-max(cellAs)-min(cellAs))/(len(cellAs)-2)
+            for j in range(len(cellAs)):   #计算每个电芯的soc差
+                celldeltAs.append(cellAs[j]-cellAsmean)
+            
+        return np.array(celldeltAs)
+
+    #计算每个电芯的均衡时长..........................................................................................................................
+    def _bal_time(self,dict_bal):
+        dict_baltime={}
+        dict_baltime1={}
+        for key in dict_bal:
+            count=1
+            x=eval(key)
+            while x>0:
+                if x & 1==1:    #判断最后一位是否为1
+                    if count in dict_baltime.keys():
+                        dict_baltime[count] = dict_baltime[count] + dict_bal[key]
+                    else:
+                        dict_baltime[count] = dict_bal[key]
+                else:
+                    pass
+                count += 1
+                x >>= 1    #右移一位
+        
+        dict_baltime=dict(sorted(dict_baltime.items(),key=lambda dict_baltime:dict_baltime[0]))
+        for key in dict_baltime:    #解析均衡的电芯编号
+            if self.celltype==1:    #科易6040
+                if key<14:
+                    dict_baltime1[key]=dict_baltime[key]
+                elif key<18:
+                    dict_baltime1[key-1]=dict_baltime[key]
+                else:
+                    dict_baltime1[key-3]=dict_baltime[key]
+            elif self.celltype==1:    #科易4840
+                if key<4:
+                    dict_baltime1[key-1]=dict_baltime[key]
+                elif key<8:
+                    dict_baltime1[key-1]=dict_baltime[key]
+                elif key<14:
+                    dict_baltime1[key-3]=dict_baltime[key]
+                elif key<18:
+                    dict_baltime1[key-4]=dict_baltime[key]
+                else:
+                    dict_baltime1[key-6]=dict_baltime[key]
+            else:
+                dict_baltime1=dict_baltime
+        return dict_baltime1
+
+    #三元电池的内短路电流计算...........................................................................................................................................................
+    def _ncm_intershort(self):
+        df_res=pd.DataFrame(columns=['time_st', 'time_sp', 'sn', 'method','short_current','baltime'])
+        df_ram_last=self.df_last
+        df_ram_last1=self.df_last1
+        df_ram_last3=self.df_last3
+
+        #容量初始化
+        if self.df_soh.empty:
+            batsoh=self.df_bms.loc[0,'SOH[%]']
+            capacity=self.param.Capacity*batsoh/100
+        else:
+            batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh']
+            capacity=self.param.Capacity*batsoh/100
+
+        #参数初始化
+        if df_ram_last.empty:  
+            firsttime=1
+            dict_bal={}
+        else:
+            deltsoc_last=df_ram_last.loc[0,'deltsoc']
+            cellsoc_last=df_ram_last.loc[0,'cellsoc']
+            time_last=df_ram_last.loc[0,'time']
+            firsttime=0
+            dict_bal={}
+        if df_ram_last1.empty:
+            firsttime1=1
+            dict_bal1={}
+        else:
+            deltsoc_last1=df_ram_last1.loc[0,'deltsoc1']
+            time_last1=df_ram_last1.loc[0,'time1']
+            firsttime1=0
+            dict_bal1={}
+        if df_ram_last3.empty:
+            standingtime=0
+            standingtime1=0
+        else:
+            standingtime=df_ram_last3.loc[0,'standingtime']
+            standingtime1=df_ram_last3.loc[0,'standingtime1']
+            dict_bal1={}
+            if abs(self.packcrnt[0])<0.01 and standingtime>1 and standingtime1>1:
+                standingtime=standingtime+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
+                standingtime1=standingtime1+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
+            else:
+                pass
+
+        for i in range(1,len(self.df_bms)-1):
+
+            if firsttime1==0:   #满电静置算法--计算均衡状态对应的均衡时间
+                try:
+                    balstat=int(self.df_bms.loc[i,'单体均衡状态'])
+                    if balstat>0.5:
+                        bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds()  #均衡步长
+                        bal_step=int(bal_step)
+                        if str(balstat) in dict_bal1.keys():
+                            dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step
+                        else:
+                            dict_bal1[str(balstat)]=bal_step
+                    else:
+                        pass
+                except:
+                    dict_bal1={}
+            else:
+                pass
+
+            if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1 and abs(self.packcrnt[i+1]) < 0.1:     
+                delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
+                standingtime=standingtime+delttime
+                standingtime1=standingtime1+delttime
+                self._celltemp_weight(i)
+
+                #长时间静置法计算内短路-开始.....................................................................................................................................
+                if firsttime==1:    
+                    if standingtime>self.StandardStandingTime*2:      #静置时间满足要求
+                        standingtime=0
+                        cellvolt_now=self._cellvolt_get(i)
+                        cellvolt_min=min(cellvolt_now)
+                        cellvolt_max=max(cellvolt_now)
+                        cellvolt_last=self._cellvolt_get(i-1)
+                        deltvolt=max(abs(cellvolt_now-cellvolt_last))
+
+                        if 2<cellvolt_min<4.5 and 2<cellvolt_max<4.5 and deltvolt<0.005: 
+                            dict_baltime={}   #获取每个电芯的均衡时间
+                            deltsoc_last, cellsoc_last=self._celldeltsoc_get(i,dict_baltime,capacity)
+                            time_last=self.bmstime[i]
+                            firsttime=0
+                            df_ram_last.loc[0]=[self.sn,time_last,deltsoc_last,cellsoc_last]   #更新RAM信息
+                    else:
+                        pass                
+                elif standingtime>3600*10:
+                    standingtime=0
+                    cellvolt_now=self._cellvolt_get(i)
+                    cellvolt_min=min(cellvolt_now)
+                    cellvolt_max=max(cellvolt_now)
+                    cellvolt_last=self._cellvolt_get(i-1)
+                    deltvolt=max(abs(cellvolt_now-cellvolt_last))
+                    
+                    if 2<cellvolt_min<4.5 and 2<cellvolt_max<4.5 and deltvolt<0.005:
+                        dict_baltime=self._bal_time(dict_bal)   #获取每个电芯的均衡时间
+                        deltsoc_now, cellsoc_now=self._celldeltsoc_get(i,dict_baltime,capacity)
+                        time_now=self.bmstime[i]
+                        if -5<max(cellsoc_now-cellsoc_last)<5:
+                            df_ram_last.loc[0]=[self.sn,time_now,deltsoc_now,cellsoc_now] #更新RAM信息
+                            
+                            list_sub=deltsoc_now-deltsoc_last
+                            list_pud=(0.01*capacity*3600*1000)/(time_now-time_last).total_seconds()
+                            leak_current=list_sub*list_pud
+                            # leak_current=np.array(leak_current)
+                            leak_current=np.round(leak_current,3)
+                            leak_current=list(leak_current)
+                            
+                            df_res.loc[len(df_res)]=[time_last,time_now,self.sn,1,str(leak_current),str(dict_baltime)]  #计算结果存入Dataframe
+                            time_last=time_now  #更新时间
+                            deltsoc_last=deltsoc_now    #更新soc差
+                            dict_bal={}
+                        else:
+                            firsttime=1
+                else: 
+                    try:  
+                        balstat=int(self.df_bms.loc[i,'单体均衡状态'])
+                        if balstat>0.5:
+                            bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds()  #均衡步长
+                            bal_step=int(bal_step)
+                            if str(balstat) in dict_bal.keys():
+                                dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step
+                            else:
+                                dict_bal[str(balstat)]=bal_step
+                        else:
+                            pass
+                    except:
+                        dict_bal={}
+
+                #满电静置法计算内短路-开始.....................................................................................................................................................
+                if self.StandardStandingTime<standingtime1:  
+                    standingtime1=0
+                    cellvolt_now1=self._cellvolt_get(i)
+                    cellvolt_max1=max(cellvolt_now1)
+                    cellvolt_min1=min(cellvolt_now1)
+                    cellvolt_last1=self._cellvolt_get(i-1)
+                    deltvolt1=max(abs(cellvolt_now1-cellvolt_last1))
+                    cellsoc_now1=np.interp(cellvolt_max1,self.param.LookTab_OCV,self.param.LookTab_SOC)
+
+                    if cellsoc_now1>=self.param.FullChrgSoc-10 and 2<cellvolt_min1<4.5 and 2<cellvolt_max1<4.5 and deltvolt1<0.005:
+                        if firsttime1==1:
+                            dict_baltime1={}   #获取每个电芯的均衡时间
+                            deltsoc_last1, cellsoc_last1=self._celldeltsoc_get(i,dict_baltime1,capacity)
+                            time_last1=self.bmstime[i]
+                            firsttime1=0
+                            df_ram_last1.loc[0]=[self.sn,time_last1,deltsoc_last1]    #更新RAM信息
+                        else:
+                            dict_baltime1=self._bal_time(dict_bal1)   #获取每个电芯的均衡时间
+                            time_now1=self.bmstime[i]
+                            if (time_now1-time_last1).total_seconds()>3600*12:
+                                deltsoc_now1, cellsoc_now1=self._celldeltsoc_get(i,dict_baltime1,capacity)
+                                df_ram_last1.loc[0]=[self.sn,time_now1,deltsoc_now1] #更新RAM信息
+
+                                list_sub1=deltsoc_now1-deltsoc_last1
+                                list_pud1=(0.01*capacity*3600*1000)/(time_now1-time_last1).total_seconds()
+                                leak_current1=list_sub1*list_pud1
+                                # leak_current1=np.array(leak_current1)
+                                leak_current1=np.round(leak_current1,3)
+                                leak_current1=list(leak_current1)
+                                
+                                df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)]  #计算结果存入Dataframe
+                                time_last1=time_now1  #更新时间
+                                deltsoc_last1=deltsoc_now1    #更新soc差
+                                dict_bal1={}
+                            else:
+                                pass
+                    else:
+                        pass
+                else:   
+                    pass
+
+            else:
+                df_ram_last=pd.DataFrame(columns=['sn','time','deltsoc','cellsoc'])   #电流>0,清空上次静置的SOC差
+                dict_bal={} 
+                firsttime=1
+                standingtime=0
+                standingtime1=0
+                pass
+        
+        #更新RAM的standingtime
+        df_ram_last3.loc[0]=[self.sn,self.bmstime[len(self.bmstime)-1],standingtime,standingtime1]
+
+        #返回计算结果
+        if df_res.empty:    
+            return pd.DataFrame(), df_ram_last, df_ram_last1, df_ram_last3
+        else:
+            return df_res, df_ram_last, df_ram_last1, df_ram_last3
+
+    #磷酸铁锂电池内短路计算程序.............................................................................................................................
+    def _lfp_intershort(self):
+        column_name=['time_st', 'time_sp', 'sn', 'method','short_current','baltime']
+        df_res=pd.DataFrame(columns=column_name)
+        df_ram_last=self.df_last
+        df_ram_last1=self.df_last1
+        df_ram_last2=self.df_last2
+        df_ram_last3=self.df_last3
+        df_ram_lfp=pd.DataFrame(columns=self.df_bms.columns.tolist())
+
+        #容量初始化
+        if self.df_soh.empty:
+            batsoh=self.df_bms.loc[0,'SOH[%]']
+            capacity=self.param.Capacity*batsoh/100
+        else:
+            batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh']
+            capacity=self.param.Capacity*batsoh/100
+        #参数初始化
+        if df_ram_last.empty:  
+            firsttime=1
+            dict_bal={}
+        else:
+            deltsoc_last=df_ram_last.loc[0,'deltsoc']
+            cellsoc_last=df_ram_last.loc[0,'cellsoc']
+            time_last=df_ram_last.loc[0,'time']
+            firsttime=0
+            dict_bal={}
+        if df_ram_last1.empty:
+            firsttime1=1
+            dict_bal1={}
+        else:
+            deltsoc_last1=df_ram_last1.loc[0,'deltsoc1']
+            time_last1=df_ram_last1.loc[0,'time1']
+            firsttime1=0
+            dict_bal1={}
+        if df_ram_last2.empty:
+            firsttime2=1
+            charging=0
+            dict_bal2={}
+        else:
+            deltAs_last2=df_ram_last2.loc[0,'deltAs2']
+            time_last2=df_ram_last2.loc[0,'time2']
+            firsttime2=0
+            charging=0
+            dict_bal2={}
+        if df_ram_last3.empty:
+            standingtime=0
+            standingtime1=0
+        else:
+            standingtime=df_ram_last3.loc[0,'standingtime']
+            standingtime1=df_ram_last3.loc[0,'standingtime1']
+            dict_bal1={}
+            if abs(self.packcrnt[0])<0.01 and standingtime>1 and standingtime1>1:
+                standingtime=standingtime+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
+                standingtime1=standingtime1+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
+            else:
+                pass
+
+        for i in range(1,len(self.df_bms)-1):
+
+            #静置法计算内短路..........................................................................................................................
+            if firsttime1==0:   #满电静置算法--计算均衡状态对应的均衡时间
+                try:
+                    balstat=int(self.df_bms.loc[i,'单体均衡状态'])
+                    if balstat>0.5:
+                        bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds()  #均衡步长
+                        bal_step=int(bal_step)
+                        if str(balstat) in dict_bal1.keys():
+                            dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step
+                        else:
+                            dict_bal1[str(balstat)]=bal_step
+                    else:
+                        pass
+                except:
+                    dict_bal1={}
+            else:
+                pass
+
+            if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1 and abs(self.packcrnt[i+1]) < 0.1:     
+                delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
+                standingtime=standingtime+delttime
+                standingtime1=standingtime1+delttime
+                self._celltemp_weight(i)
+
+                #长时间静置法计算内短路-开始.....................................................................................................................................
+                if firsttime==1:    
+                    if standingtime>self.StandardStandingTime:      #静置时间满足要求
+                        standingtime=0
+                        cellvolt_now=self._cellvolt_get(i)
+                        cellvolt_min=min(cellvolt_now)
+                        cellvolt_max=max(cellvolt_now)
+                        cellvolt_last=self._cellvolt_get(i-1)
+                        deltvolt=max(abs(cellvolt_now-cellvolt_last))
+
+                        if 2<cellvolt_max<self.param.OcvInflexionBelow-0.002 and 2<cellvolt_min<4.5 and abs(deltvolt)<0.003:
+                            dict_baltime={}  #获取每个电芯的均衡时间
+                            deltsoc_last, cellsoc_last=self._celldeltsoc_get(i,dict_baltime,capacity)
+                            time_last=self.bmstime[i]
+                            firsttime=0
+                            df_ram_last.loc[0]=[self.sn,time_last,deltsoc_last,cellsoc_last]   #更新RAM信息
+                        else:
+                            pass
+                    else:
+                        pass                
+                elif standingtime>3600*10:
+                    standingtime=0
+                    cellvolt_now=np.array(self._cellvolt_get(i))
+                    cellvolt_min=min(cellvolt_now)
+                    cellvolt_max=max(cellvolt_now)
+                    cellvolt_last=np.array(self._cellvolt_get(i-1))
+                    deltvolt=max(abs(cellvolt_now-cellvolt_last))
+
+                    if 2<cellvolt_max<self.param.OcvInflexionBelow-0.002 and 2<cellvolt_min<4.5  and abs(deltvolt)<0.003:
+                        dict_baltime=self._bal_time(dict_bal)   #获取每个电芯的均衡时间
+                        deltsoc_now, cellsoc_now=self._celldeltsoc_get(i, dict_baltime,capacity)    #获取每个电芯的SOC差
+                        time_now=self.bmstime[i]
+                        if -5<max(cellsoc_now-cellsoc_last)<5:
+                            df_ram_last.loc[0]=[self.sn,time_now,deltsoc_now,cellsoc_now]   #更新RAM信息
+
+                            list_sub=deltsoc_now-deltsoc_last
+                            list_pud=(0.01*capacity*3600*1000)/(time_now-time_last).total_seconds()
+                            leak_current=list_sub*list_pud
+                            # leak_current=np.array(leak_current)
+                            leak_current=np.round(leak_current,3)
+                            leak_current=list(leak_current)
+                            
+                            df_res.loc[len(df_res)]=[time_last,time_now,self.sn,1,str(leak_current),str(dict_baltime)]  #计算结果存入Dataframe
+                            time_last=time_now  #更新时间
+                            deltsoc_last=deltsoc_now    #更新soc差
+                            dict_bal={}
+                        else:
+                            firsttime=1
+                    else:
+                        pass
+                else: 
+                    try:  
+                        balstat=int(self.df_bms.loc[i,'单体均衡状态'])
+                        if balstat>0.5:
+                            bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds()  #均衡步长
+                            bal_step=int(bal_step)
+                            if str(balstat) in dict_bal.keys():
+                                dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step
+                            else:
+                                dict_bal[str(balstat)]=bal_step
+                        else:
+                            pass
+                    except:
+                        dict_bal={}
+
+                #非平台区间静置法计算内短路-开始.....................................................................................................................................................
+                if standingtime1>self.StandardStandingTime: 
+                    standingtime1=0
+                    cellvolt_now1=self._cellvolt_get(i)
+                    cellvolt_max1=max(cellvolt_now1)
+                    cellvolt_min1=min(cellvolt_now1)
+                    cellvolt_last1=self._cellvolt_get(i-1)
+                    deltvolt1=max(abs(cellvolt_now1-cellvolt_last1))
+                
+                    if 2<cellvolt_max1<self.param.OcvInflexionBelow-0.002 and 2<cellvolt_min1<4.5 and deltvolt1<0.005:
+                        if firsttime1==1:
+                            dict_baltime1=self._bal_time(dict_bal1)   #获取每个电芯的均衡时间
+                            deltsoc_last1, cellsoc_last1=self._celldeltsoc_get(i,dict_baltime1,capacity)
+                            time_last1=self.bmstime[i]
+                            firsttime1=0
+                            df_ram_last1.loc[0]=[self.sn,time_last1,deltsoc_last1]    #更新RAM信息
+                        else:
+                            dict_baltime1=self._bal_time(dict_bal1)   #获取每个电芯的均衡时间
+                            deltsoc_now1, cellsoc_now1=self._celldeltsoc_get(i,dict_baltime1,capacity)
+                            time_now1=self.bmstime[i]
+                            df_ram_last1.loc[0]=[self.sn,time_now1,deltsoc_now1]    #更新RAM信息
+
+                            if (time_now1-time_last1).total_seconds()>3600*12:
+                                list_sub1=deltsoc_now1-deltsoc_last1
+                                list_pud1=(0.01*capacity*3600*1000)/(time_now1-time_last1).total_seconds()
+                                leak_current1=list_sub1*list_pud1
+                                # leak_current1=np.array(leak_current1)
+                                leak_current1=np.round(leak_current1,3)
+                                leak_current1=list(leak_current1)
+                                
+                                df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)]  #计算结果存入Dataframe
+                                time_last1=time_now1  #更新时间
+                                deltsoc_last1=deltsoc_now1    #更新soc差
+                                dict_bal1={}
+                            else:
+                                pass
+                    else:
+                        pass
+                else:   
+                    pass
+
+            else:
+                df_ram_last=pd.DataFrame(columns=['sn','time','deltsoc','cellsoc'])   #电流>0,清空上次静置的SOC差
+                dict_bal={} 
+                firsttime=1
+                standingtime=0
+                standingtime1=0
+                pass
+
+            #获取充电数据——开始..............................................................................................................
+            try:
+                balstat=int(self.df_bms.loc[i,'单体均衡状态'])  #统计均衡状态
+                if balstat>0.5:
+                    bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds()  #均衡步长
+                    bal_step=int(bal_step)
+                    if str(balstat) in dict_bal2.keys():
+                        dict_bal2[str(balstat)]=dict_bal2[str(balstat)]+bal_step
+                    else:
+                        dict_bal2[str(balstat)]=bal_step
+                else:
+                    pass
+            except:
+                dict_bal2={}
+
+            #判断充电状态
+            if self.packcrnt[i]<=-1 and self.packcrnt[i+1]<=-1 and self.packcrnt[i-1]<=-1:
+                if charging==0:
+                    if self.bms_soc[i]<40:
+                        cellvolt_now=self._cellvolt_get(i)
+                        if min(cellvolt_now)<self.param.CellFullChrgVolt-0.15:
+                            charging=1
+                            chrg_start=i
+                        else:
+                            pass
+                    else:
+                        pass
+
+                else: #充电中
+                    cellvolt_now=self._cellvolt_get(i)
+                    if (self.bmstime[i+1]-self.bmstime[i]).total_seconds()>180 or (self.packcrnt[i]>self.param.Capacity/3 and self.packcrnt[i+1]>self.param.Capacity/3):  #如果充电过程中时间间隔>180s,则舍弃该次充电
+                        charging=0
+                        continue
+                    elif min(cellvolt_now)>self.param.CellFullChrgVolt-0.13:   #电压>满充电压-0.13V,即3.37V
+                        self._celltemp_weight(i)
+                        if i-chrg_start>10 and self.celltemp>10:
+                            chrg_end=i+1
+                            charging=0
+
+                            #计算漏电流值...................................................................
+                            if firsttime2==1:
+                                dict_baltime={}
+                                deltAs_last2=self._cellDeltAs_get(chrg_start,chrg_end,dict_baltime)
+                                time_last2=self.bmstime[chrg_end]
+                                df_ram_last2.loc[0]=[self.sn,time_last2,deltAs_last2]    #更新RAM信息
+                            else:
+                                dict_baltime=self._bal_time(dict_bal2)   #获取每个电芯的均衡时间
+                                deltAs_now2=self._cellDeltAs_get(chrg_start,chrg_end,dict_baltime)  #获取每个电芯的As差
+                                time_now2=self.bmstime[chrg_end]
+                                df_ram_last2.loc[0]=[self.sn,time_now2,deltAs_now2]    #更新RAM信息
+
+                                list_sub2=deltAs_now2-deltAs_last2
+                                list_pud2=-1000/(time_now2-time_last2).total_seconds()
+                                leak_current2=list_sub2*list_pud2
+                                # leak_current=np.array(leak_current)
+                                leak_current2=np.round(leak_current2,3)
+                                leak_current2=list(leak_current2)
+
+                                df_res.loc[len(df_res)]=[time_last2,time_now2,self.sn,3,str(leak_current2),str(dict_baltime)]  #计算结果存入Dataframe
+                                deltAs_last2=deltAs_now2
+                                time_last2=time_now2
+                                dict_bal2={}
+
+                        else:
+                            charging=0
+                            continue
+                    elif i==len(self.df_bms)-2:  #数据中断后仍在充电,将前段充电数据写入RAM
+                        df_ram_lfp=self.df_bms.iloc[chrg_start:]
+                        df_ram_lfp['sn']=self.sn
+                    else:
+                        pass
+            else:
+                pass
+
+    
+        #更新RAM
+        df_ram_last3.loc[0]=[self.sn,self.bmstime[len(self.bmstime)-1],standingtime,standingtime1]
+
+        #返回结果
+        if df_res.empty:    
+            return pd.DataFrame(), df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3,df_ram_lfp
+        else:
+            return df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp

+ 89 - 0
LIB/MIDDLE/CellStateEstimation/BatSafetyWarning/V1_0_1/CBMSSafetyWarning.py

@@ -0,0 +1,89 @@
+import pandas as pd
+import numpy as np
+import datetime
+from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import BatParam
+
+class SafetyWarning:
+    def __init__(self,sn,celltype,df_short,df_liplated,df_uniform):  #参数初始化
+
+        self.sn=sn
+        self.celltype=celltype
+        self.param=BatParam.BatParam(celltype)
+        self.df_short=df_short
+        self.df_liplated=df_liplated
+        self.df_uniform=df_uniform
+    
+    def diag(self):
+        if self.celltype<=50:
+            df_res=self._warning_diag()
+            return df_res    
+        else:
+            df_res=self._warning_diag()
+            return df_res
+        
+
+    #电池热安全预警诊断功能.................................................................................................
+    def _warning_diag(self):
+
+        df_res=pd.DataFrame(columns=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice'])
+
+        time=datetime.datetime.now()
+        time_sp='0000-00-00 00:00:00'
+
+        #参数初始化
+        shortfault=0
+        liplatedfault=0
+        uniformfault=0
+
+        for i in range(self.param.CellVoltNums):
+
+            #漏电流故障判断...........................................................................
+            if not self.df_short.empty:
+                short_current=self.df_short['short_current']
+                short_current=short_current.str.replace("[", '')
+                short_current=short_current.str.replace("]", '')
+                self.df_short['cellshort'+str(i+1)]=short_current.map(lambda x:eval(x.split(',')[i]))
+
+                cellshort=self.df_short['cellshort'+str(i+1)]
+                index_list=cellshort[cellshort<self.param.LeakCurrentLv2].index
+                if len(index_list)==2 and (index_list[1]-index_list[0])==1:
+                    shortfault=1
+                elif len(index_list)>3:
+                    shortfault=1
+                else:
+                    shortfault=0
+            
+            #析锂故障判断...............................................................................
+            if not self.df_liplated.empty:
+                liplated=self.df_liplated['liplated_amount']
+                liplated=liplated.str.replace("[", '')
+                liplated=liplated.str.replace("]", '')
+                self.df_liplated['liplated_amount'+str(i+1)]=liplated.map(lambda x:eval(x.split(',')[i]))
+
+                if max(self.df_liplated['liplated_amount'+str(i+1)])>30:
+                    liplatedfault=1
+                else:
+                    liplatedfault=0
+            else:
+                liplatedfault=0
+
+            #电芯SOC排名判断.............................................................................
+            if not self.df_uniform.empty:
+                if (i+1) in self.df_uniform['cellmin_num'].tolist():
+                    uniformfault=1
+                else:
+                    uniformfault=0
+            else:
+                uniformfault=0
+            
+            #电池热安全预警
+            if shortfault==1 and (liplatedfault==1 or uniformfault==1):
+                faultcode=110
+                faultlv=4
+                faultinfo='电芯{}发生热失控安全预警'.format(i+1)
+                faultadvice='联系用户远离电池,立刻召回电池'
+                df_res.loc[0]=[time, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice]
+            else:
+                pass
+            
+        return df_res