|
@@ -93,9 +93,9 @@ def diag_cal():
|
|
|
if df_feishu_sta.empty:
|
|
|
df_Diag_cal_early_unfix = df_Diag_Cal_new
|
|
|
else:
|
|
|
- df_Diag_cal_later = df_Diag_Cal_new.loc[df_Diag_Cal_new['start_time'] > max(df_feishu_sta['start_time'])]
|
|
|
+ df_Diag_cal_later = df_Diag_Cal_new.loc[pd.to_datetime(df_Diag_Cal_new['start_time']) > max(pd.to_datetime(df_feishu_sta['start_time']))]
|
|
|
df_Diag_cal_early = pd.concat([df_Diag_Cal_new,df_Diag_cal_later,df_Diag_cal_later]).drop_duplicates(subset=['product_id','code','start_time'],keep=False)
|
|
|
- df_feishu_sta_latest = df_feishu_sta.loc[df_feishu_sta['start_time'] == max(df_feishu_sta['start_time'])]
|
|
|
+ df_feishu_sta_latest = df_feishu_sta.loc[pd.to_datetime(df_feishu_sta['start_time']) == max(pd.to_datetime(df_feishu_sta['start_time']))]
|
|
|
df_feishu_diag_unfix = (df_feishu_sta_latest['advice'] == '需正常返仓') | (df_feishu_sta_latest['advice'] == '需紧急返仓')
|
|
|
if any(df_feishu_diag_unfix):
|
|
|
df_Diag_cal_early_unfix = df_Diag_Cal_new
|