|
@@ -0,0 +1,417 @@
|
|
|
|
+import pandas as pd
|
|
|
|
+import pymysql
|
|
|
|
+from sqlalchemy import create_engine
|
|
|
|
+import datetime
|
|
|
|
+import pdb
|
|
|
|
+
|
|
|
|
+#建立引擎
|
|
|
|
+engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s/%s") % ('root', 'pengmin', 'localhost', 'qixiangdb'))
|
|
|
|
+#连接到qx数据库
|
|
|
|
+conn_qx = pymysql.connect(
|
|
|
|
+ host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com',
|
|
|
|
+ user='qx_cas',
|
|
|
|
+ password='Qx@123456',#Qx@123456
|
|
|
|
+ database='qx_cas',
|
|
|
|
+ charset='utf8'
|
|
|
|
+ )
|
|
|
|
+#连接到本地数据库,输出物
|
|
|
|
+conn_local = pymysql.connect(
|
|
|
|
+ host='localhost',
|
|
|
|
+ user='root',
|
|
|
|
+ password='pengmin',
|
|
|
|
+ database='qixiangdb',
|
|
|
|
+ charset='utf8'
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+#计算下一个soc
|
|
|
|
+def getNextSoc(start_soc):
|
|
|
|
+ '''输入当前的soc,寻找目标soc函数'''
|
|
|
|
+ if start_soc>80:
|
|
|
|
+ next_soc=80
|
|
|
|
+ elif start_soc>60:
|
|
|
|
+ next_soc=60
|
|
|
|
+ elif start_soc>40:
|
|
|
|
+ next_soc=40
|
|
|
|
+ elif start_soc>20:
|
|
|
|
+ next_soc=20
|
|
|
|
+ else:
|
|
|
|
+ next_soc=5#下一次目标soc
|
|
|
|
+ return next_soc
|
|
|
|
+#更新全部5个区间段的factor
|
|
|
|
+def updtSnFct(sn_factor_df,end_soc,delta_range,range_soc):
|
|
|
|
+ '''输入当前的soc区间段,里程变量量,soc变化量,输出新的df
|
|
|
|
+ sn_factor_df为dataframe,delta_range单位为km,range_soc单位为km/persoc'''
|
|
|
|
+ if end_soc==80:
|
|
|
|
+ updtFctByCol(sn_factor_df,'a0',delta_range,range_soc)
|
|
|
|
+ elif end_soc==60:
|
|
|
|
+ updtFctByCol(sn_factor_df,'a1',delta_range,range_soc)
|
|
|
|
+ elif end_soc==40:
|
|
|
|
+ updtFctByCol(sn_factor_df,'a2',delta_range,range_soc)
|
|
|
|
+ elif end_soc==20:
|
|
|
|
+ updtFctByCol(sn_factor_df,'a3',delta_range,range_soc)
|
|
|
|
+ elif end_soc<20:
|
|
|
|
+ updtFctByCol(sn_factor_df,'a4',delta_range,range_soc)
|
|
|
|
+ return sn_factor_df
|
|
|
|
+#更新一列的factor
|
|
|
|
+def updtFctByCol(sn_factor_df,colmun_name,delta_range,range_soc):
|
|
|
|
+ '''更新制定列的factor,sn_factor_df为dataframe,新的系数更新到第一行。delta_range单位为km,
|
|
|
|
+ range_soc单位为km/persoc,默认按照100km更新续驶里程权重'''
|
|
|
|
+ range_soc_old=sn_factor_df.loc[0,colmun_name]#读取第0行的老factor
|
|
|
|
+ debounce_range=100#更新权重
|
|
|
|
+ new_factor=range_soc*((delta_range)/debounce_range)+range_soc_old*(1-delta_range/debounce_range)
|
|
|
|
+ #在第1行,存储新的factor
|
|
|
|
+ sn_factor_df.loc[1,colmun_name]=new_factor
|
|
|
|
+ return sn_factor_df
|
|
|
|
+#更新今日的factor
|
|
|
|
+def updtTodayFct(factor_input,sn_day_df):
|
|
|
|
+ '''更新今日的Factor***'''
|
|
|
|
+ sn_factor_df_last=factor_input
|
|
|
|
+ start_soc=sn_day_df.loc[0,'soc']#首行soc
|
|
|
|
+ next_soc=getNextSoc(start_soc)#下一个目标soc
|
|
|
|
+ start_range=sn_day_df.loc[0,'vehodo']#首行vehodo
|
|
|
|
+ sn=sn_day_df.loc[0,'name']#sn号
|
|
|
|
+
|
|
|
|
+ for index in range(len(sn_day_df)-1):
|
|
|
|
+ #寻找分割点,
|
|
|
|
+ index_soc=sn_day_df.loc[index,'soc']#当前行soc
|
|
|
|
+ next_index_soc=sn_day_df.loc[index+1,'soc']#下一行soc
|
|
|
|
+
|
|
|
|
+ if (index_soc>=next_soc)&(next_index_soc<next_soc):
|
|
|
|
+ #当前行soc>目标soc,下一行低soc<目标soc,说明到达了分割点80-60-40-20
|
|
|
|
+ delta_soc_tonext=start_soc-next_soc#两个距离点的soc差,单位为%
|
|
|
|
+ delta_range_tonext=sn_day_df.loc[index,'vehodo']-start_range#两个时间点的距离差,单位为m
|
|
|
|
+ delta_range_tonext_km=delta_range_tonext/1000#两个时间点的距离差,单位为km
|
|
|
|
+ range_soc_tonext=(delta_range_tonext_km)/delta_soc_tonext#单位soc可行驶的公里数
|
|
|
|
+
|
|
|
|
+ # print(sn+'start_soc: '+str(start_soc),'next_soc: '+str(next_soc),'delta_vehodo; '+str(round(delta_range_tonext_km,3))
|
|
|
|
+ # +'km'+' range_soc:'+str(round(range_soc_tonext,3)))#调试用语句,看单次factor变化量
|
|
|
|
+
|
|
|
|
+ if (delta_range_tonext_km>1)&(delta_range_tonext_km<5*delta_soc_tonext):
|
|
|
|
+ #里程变化量>1km。且<5倍的soc变化量,大于此值认为不合理。
|
|
|
|
+ sn_factor_df_last=updtSnFct(sn_factor_df_last,next_soc,delta_range_tonext_km,range_soc_tonext)
|
|
|
|
+
|
|
|
|
+ start_soc=next_index_soc#变更开始soc
|
|
|
|
+ next_soc=getNextSoc(start_soc)#变更结束soc
|
|
|
|
+ start_range=sn_day_df.loc[index+1,'vehodo']#变更开始里程
|
|
|
|
+
|
|
|
|
+ return sn_factor_df_last
|
|
|
|
+#对driveinfo进行预处理
|
|
|
|
+def snDayDfPreProcess(sn_day_df):
|
|
|
|
+ '''预处理,判断是否在dirvemode,获取drivemode条件下的累计行驶距离。
|
|
|
|
+ 增加delta_soc列,drive_flg列,vehodo列'''
|
|
|
|
+ sn_day_df=sn_day_df.reset_index(drop=True)#重置index
|
|
|
|
+ #增加列,计算delta_soc
|
|
|
|
+ for index in range(len(sn_day_df)):
|
|
|
|
+ if index==0:
|
|
|
|
+ sn_day_df.loc[index,'delta_soc']=0
|
|
|
|
+ else:
|
|
|
|
+ sn_day_df.loc[index,'delta_soc']=sn_day_df.loc[index,'soc']-sn_day_df.loc[index-1,'soc']
|
|
|
|
+ #增加列,判断是否在drive状态
|
|
|
|
+ drive_flg=False
|
|
|
|
+ accum_distance=0
|
|
|
|
+ for index in range(len(sn_day_df)):
|
|
|
|
+ if index==0:
|
|
|
|
+ sn_day_df.loc[index,'drive_status']=drive_flg
|
|
|
|
+ sn_day_df.loc[index,'vehodo']=0
|
|
|
|
+ else:
|
|
|
|
+ if (sn_day_df.loc[index,'delta_soc']<-0.1)|\
|
|
|
|
+ ((sn_day_df.loc[index,'delta_soc']<=0)&(sn_day_df.loc[index,'distance']>500)):#soc处于下降状态,说明在drive
|
|
|
|
+ drive_flg=True#置true
|
|
|
|
+ elif sn_day_df.loc[index,'delta_soc']>0.1:#soc处于上升状态,说明不在drive
|
|
|
|
+ drive_flg=False#置false
|
|
|
|
+ accum_distance=0#清零
|
|
|
|
+ sn_day_df.loc[index,'drive_flg']=drive_flg
|
|
|
|
+ accum_distance+=sn_day_df.loc[index,'distance']#对行驶里程进行累加
|
|
|
|
+ sn_day_df.loc[index,'vehodo']=accum_distance
|
|
|
|
+ #筛选所有的drive信息行
|
|
|
|
+ sn_day_drive_df=sn_day_df.loc[sn_day_df['drive_flg']==True,:]
|
|
|
|
+ #按时间进行一次筛选,此处丢弃了晚上0点以后的行车数据
|
|
|
|
+
|
|
|
|
+ sn_day_drive_df=sn_day_drive_df.reset_index(drop=True)#重置index
|
|
|
|
+
|
|
|
|
+ return sn_day_drive_df
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#更新所有sn,连读多天的的factor
|
|
|
|
+def updtAllSnFct(start_date,end_date):
|
|
|
|
+ '''计算开始时间到结束时间的,所有sn的factor'''
|
|
|
|
+ start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')#开始时间
|
|
|
|
+ end_date_datetime=datetime.datetime.strptime(end_date,'%Y-%m-%d')#开始时间
|
|
|
|
+ delta_day=(end_date_datetime-start_date_datetime).days#间隔天数
|
|
|
|
+ i=1
|
|
|
|
+ while i<=delta_day:
|
|
|
|
+ end_date=(start_date_datetime+datetime.timedelta(days=i)).strftime("%Y-%m-%d")
|
|
|
|
+ updtAllSnTodayFct(start_date,end_date)#调用函数
|
|
|
|
+ # print('update all sn factor from '+start_date+" to "+end_date)
|
|
|
|
+ start_date=end_date
|
|
|
|
+ i+=1#自加
|
|
|
|
+#更新所有sn,一天的factor
|
|
|
|
+def updtAllSnTodayFct(start_date,end_date):
|
|
|
|
+ ''''更新今天所有sn的factorx信息,start_date和end_date相隔一天。此处还可优化'''
|
|
|
|
+ conn_local = pymysql.connect(
|
|
|
|
+ host='localhost',
|
|
|
|
+ user='root',
|
|
|
|
+ password='pengmin',
|
|
|
|
+ database='qixiangdb',
|
|
|
|
+ charset='utf8'
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ start_date_str="'"+start_date+"'"
|
|
|
|
+ end_date_str="'"+end_date+"'"
|
|
|
|
+ sql_cmd="select * from drive_info where time between "+start_date_str+" and "+end_date_str+" and distance!=0;"
|
|
|
|
+ range_soc_df = pd.read_sql(sql_cmd, conn_qx)#使用read_sql方法查询qx数据库
|
|
|
|
+
|
|
|
|
+ #筛选出所有当日数据之后,筛选当日有更新的sn
|
|
|
|
+ today_sn_list=range_soc_df['name'].unique().tolist()#[:100]#先一次更新5个
|
|
|
|
+ #建立空的dataframe,用于承接所有更新的factor信息
|
|
|
|
+ today_sn_fct_df=pd.DataFrame([],columns=['sn','date','a0','a1','a2','a3','a4'])
|
|
|
|
+
|
|
|
|
+ for sn in today_sn_list:
|
|
|
|
+ #寻找factor_df,里面是否有sn号,如果没有sn对应信息,则新增信息。
|
|
|
|
+ sn_str="'"+sn+"'"
|
|
|
|
+ update_today_factor_flg=True
|
|
|
|
+ sql_cmd3="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date="+start_date_str+" and sn="+sn_str
|
|
|
|
+ factor_today_df=pd.read_sql(sql_cmd3, conn_local)#使用read_sql方法查询local数据库
|
|
|
|
+ if len(factor_today_df)>=1:
|
|
|
|
+ print(sn+' '+start_date_str+' factor exist in table! Factor not update.')
|
|
|
|
+ update_today_factor_flg=False
|
|
|
|
+
|
|
|
|
+ sql_cmd2="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date<"+start_date_str+" and sn="+sn_str
|
|
|
|
+ #此处可以限定每次查询的数量,例如不高于5行
|
|
|
|
+ factor_df=pd.read_sql(sql_cmd2, conn_local)#使用read_sql方法查询local数据库
|
|
|
|
+
|
|
|
|
+ #按照sn号和日期进行去重,避免运行时重复产生factor数据,保留第一次出现的行。
|
|
|
|
+ factor_df=factor_df.drop_duplicates(subset=['sn','date'],keep='first')
|
|
|
|
+
|
|
|
|
+ if len(factor_df)==0:
|
|
|
|
+ #如果没有搜索到factor历史数据,则声明一个新的进行初始化
|
|
|
|
+ start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')
|
|
|
|
+ yesterday=(start_date_datetime+datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
|
|
|
|
+ #为sn申请一个新的factor,初始值为1
|
|
|
|
+ factor_df=pd.DataFrame({'sn':sn,'date':yesterday,'a0':[1],'a1':[1],'a2':[1],'a3':[1],'a4':[1]})
|
|
|
|
+ sn_factor_df=factor_df.loc[factor_df['sn']==sn,:]#筛选sn对应的factor
|
|
|
|
+ sn_factor_df=sn_factor_df.sort_values(by='date',ascending='True')#按照日期排序
|
|
|
|
+
|
|
|
|
+ sn_factor_df_last=sn_factor_df.tail(1).copy()#寻找最后一行,代表最近日期
|
|
|
|
+ sn_factor_df_last=sn_factor_df_last.append(sn_factor_df_last)#新增加一行,用于存储新的factor
|
|
|
|
+ sn_factor_df_last=sn_factor_df_last.reset_index(drop=True)#重置index
|
|
|
|
+ sn_factor_df_last.loc[1,'date']=start_date#更改后一行的date为当前日期
|
|
|
|
+ #筛选对应车辆的信息
|
|
|
|
+ condition_sn=(range_soc_df['name']==sn)
|
|
|
|
+ sn_day_df=range_soc_df.loc[condition_sn,:].copy()
|
|
|
|
+ sn_day_df=sn_day_df.reset_index(drop=True)
|
|
|
|
+ #使用updtTodayFct函数更新今天的factor
|
|
|
|
+ if len(sn_day_df)>=2:
|
|
|
|
+ #使用process函数,进行预处理
|
|
|
|
+ sn_day_df=snDayDfPreProcess(sn_day_df)#预处理函数
|
|
|
|
+ # 临时措施,删除每天晚上0点以后的数据,5点以前的数据,防止对驾驶cycle判断产生影响。
|
|
|
|
+ day_start_time=datetime.datetime.strptime(start_date,'%Y-%m-%d')
|
|
|
|
+ day_morning_time=day_start_time+datetime.timedelta(hours=5)
|
|
|
|
+ morning_time_str=day_morning_time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
+ sn_day_df=sn_day_df.loc[sn_day_df['time']>morning_time_str,:]#去除掉了每天晚上0点以后的数据,短期措施
|
|
|
|
+ sn_day_df=sn_day_df.reset_index(drop=True)#重置index
|
|
|
|
+
|
|
|
|
+ if len(sn_day_df)>=2:
|
|
|
|
+ sn_factor_df_new=updtTodayFct(sn_factor_df_last,sn_day_df)#
|
|
|
|
+ if (len(sn_factor_df_new)>=2)&(update_today_factor_flg):#如果factor
|
|
|
|
+ today_sn_fct_df=today_sn_fct_df.append(sn_factor_df_new.loc[1,:])#筛选第一行,进行拼接,最后写入到数据库中
|
|
|
|
+
|
|
|
|
+ #将today_sn_fct_df写入到数据库中,今天所有factor更新的系数,一次写入。
|
|
|
|
+ if len(today_sn_fct_df)>=1:
|
|
|
|
+ today_sn_fct_df.to_sql('tb_sn_factor',con=engine,chunksize=10000,if_exists='append',index=False)
|
|
|
|
+
|
|
|
|
+#更新一个sn,连续多天的factor
|
|
|
|
+def updtOneSnFct(sn,start_date,end_date):
|
|
|
|
+ '''计算开始时间到结束时间的,一个sn的所有factor。
|
|
|
|
+ 重复多次调用,updtOneSnTodayFct。
|
|
|
|
+ '''
|
|
|
|
+ start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')#开始时间
|
|
|
|
+ end_date_datetime=datetime.datetime.strptime(end_date,'%Y-%m-%d')#开始时间
|
|
|
|
+ delta_day=(end_date_datetime-start_date_datetime).days#间隔天数
|
|
|
|
+ i=1
|
|
|
|
+ while i<=delta_day:
|
|
|
|
+ end_date=(start_date_datetime+datetime.timedelta(days=i)).strftime("%Y-%m-%d")
|
|
|
|
+ # print('update one '+sn+'factor from '+start_date+" to "+end_date)
|
|
|
|
+ updtOneSnTodayFct(sn,start_date,end_date)#调用函数,更新当日的factor。
|
|
|
|
+ start_date=end_date
|
|
|
|
+ i+=1#自加
|
|
|
|
+#更新一个sn,一天的factor
|
|
|
|
+def updtOneSnTodayFct(sn,start_date,end_date):
|
|
|
|
+ '''更新一个sn,一天的factor。'''
|
|
|
|
+ #重新建立连接,更新数据库
|
|
|
|
+ conn_local = pymysql.connect(
|
|
|
|
+ host='localhost',
|
|
|
|
+ user='root',
|
|
|
|
+ password='pengmin',
|
|
|
|
+ database='qixiangdb',
|
|
|
|
+ charset='utf8'
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ start_date_str="'"+start_date+"'"
|
|
|
|
+ end_date_str="'"+end_date+"'"
|
|
|
|
+ sn_str="'"+sn+"'"
|
|
|
|
+ sql_cmd="select * from drive_info where time between "+start_date_str+" and "+end_date_str+\
|
|
|
|
+ " and distance!=0 and name="+sn_str
|
|
|
|
+ range_soc_df = pd.read_sql(sql_cmd, conn_qx)#使用read_sql方法查询qx数据库
|
|
|
|
+
|
|
|
|
+ if len(range_soc_df)>0:
|
|
|
|
+ #筛选出所有当日数据之后,筛选当日有更新的sn
|
|
|
|
+ today_sn_list=range_soc_df['name'].unique().tolist()
|
|
|
|
+ #建立空的dataframe,用于承接所有更新的factor信息
|
|
|
|
+ today_sn_fct_df=pd.DataFrame([],columns=['sn','date','a0','a1','a2','a3','a4'])
|
|
|
|
+
|
|
|
|
+ for sn in today_sn_list:
|
|
|
|
+ #寻找factor_df,里面是否有sn号,如果没有sn对应信息,则新增信息。
|
|
|
|
+ sn_str="'"+sn+"'"
|
|
|
|
+
|
|
|
|
+ update_today_factor_flg=True
|
|
|
|
+ sql_cmd3="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date="+start_date_str+" and sn="+sn_str
|
|
|
|
+ factor_today_df=pd.read_sql(sql_cmd3, conn_local)#使用read_sql方法查询local数据库
|
|
|
|
+ if len(factor_today_df)>=1:
|
|
|
|
+ print(sn+' '+start_date_str+' factor exist in table! Factor not update.')
|
|
|
|
+ update_today_factor_flg=False
|
|
|
|
+
|
|
|
|
+ sql_cmd2="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date<="+start_date_str+" and sn="+sn_str
|
|
|
|
+ factor_df=pd.read_sql(sql_cmd2, conn_local)#使用read_sql方法查询local数据库
|
|
|
|
+ #按照sn号和日期进行去重,避免运行时重复产生factor数据,保留第一次出现的行。
|
|
|
|
+ factor_df=factor_df.drop_duplicates(subset=['sn','date'],keep='first')
|
|
|
|
+ # pdb.set_trace()
|
|
|
|
+ if len(factor_df)==0:
|
|
|
|
+ #如果没有搜索到factor历史数据,则声明一个新的进行初始化
|
|
|
|
+ start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')
|
|
|
|
+ yesterday=(start_date_datetime+datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
|
|
|
|
+ factor_df=pd.DataFrame({'sn':sn,'date':yesterday,'a0':[1],'a1':[1],'a2':[1],'a3':[1],'a4':[1]})
|
|
|
|
+ today_sn_fct_df=today_sn_fct_df.append(factor_df.loc[0,:])#将初始化的行记录到数据库
|
|
|
|
+
|
|
|
|
+ sn_factor_df=factor_df.loc[factor_df['sn']==sn,:]#筛选sn对应的factor
|
|
|
|
+ sn_factor_df=sn_factor_df.sort_values(by='date',ascending='True')#按照日期排序
|
|
|
|
+
|
|
|
|
+ sn_factor_df_last=sn_factor_df.tail(1).copy()#寻找最后一行,代表最近日期
|
|
|
|
+ sn_factor_df_last=sn_factor_df_last.append(sn_factor_df_last)#新增加一行,用于存储新的factor
|
|
|
|
+ sn_factor_df_last=sn_factor_df_last.reset_index(drop=True)#重置index
|
|
|
|
+ sn_factor_df_last.loc[1,'date']=start_date#更改后一行的date为当前日期
|
|
|
|
+ #筛选对应车辆的信息
|
|
|
|
+ condition_sn=(range_soc_df['name']==sn)
|
|
|
|
+ sn_day_df=range_soc_df.loc[condition_sn,:].copy()
|
|
|
|
+ sn_day_df=sn_day_df.reset_index(drop=True)
|
|
|
|
+ #使用updtTodayFct函数更新今天的factor
|
|
|
|
+ if len(sn_day_df)>=2:
|
|
|
|
+ #使用process函数,进行预处理
|
|
|
|
+ sn_day_df=snDayDfPreProcess(sn_day_df)#!!!!!!!!!!!增加
|
|
|
|
+ # 临时措施,删除每天晚上0点以后的数据,5点以前的数据,防止对驾驶cycle判断产生影响。
|
|
|
|
+ day_start_time=datetime.datetime.strptime(start_date,'%Y-%m-%d')
|
|
|
|
+ day_morning_time=day_start_time+datetime.timedelta(hours=5)
|
|
|
|
+ morning_time_str=day_morning_time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
+ sn_day_df=sn_day_df.loc[sn_day_df['time']>morning_time_str,:]#去除掉了每天晚上0点以后的数据,短期措施
|
|
|
|
+ sn_day_df=sn_day_df.reset_index(drop=True)#重置index
|
|
|
|
+
|
|
|
|
+ if len(sn_day_df)>=2:
|
|
|
|
+ sn_factor_df_new=updtTodayFct(sn_factor_df_last,sn_day_df)#更新fator的主函数
|
|
|
|
+
|
|
|
|
+ if (len(sn_factor_df_new)>=2)&(update_today_factor_flg):#如果今日factor没有更新
|
|
|
|
+ today_sn_fct_df=today_sn_fct_df.append(sn_factor_df_new.loc[1,:])#筛选第一行,进行拼接,最后写入到数据库中
|
|
|
|
+
|
|
|
|
+ # #将today_sn_fct_df写入到数据库中
|
|
|
|
+ if len(today_sn_fct_df)>=1:
|
|
|
|
+ today_sn_fct_df.to_sql('tb_sn_factor',con=engine,chunksize=10000,if_exists='append',index=False)
|
|
|
|
+ # print(sn+' factor will be update in table tb_sn_factor!')
|
|
|
|
+ return sn_factor_df_new
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#更新最新的factor,一天调用一次。
|
|
|
|
+def updtNewestFctTb():
|
|
|
|
+
|
|
|
|
+ '''更新tb_sn_factor_newest,只保留最新日期的factor。
|
|
|
|
+ 从tb_sn_factor中,筛选最新的日期。
|
|
|
|
+ 函数每天运行一次,从tb_sn_factor中筛选最新日期的factor。'''
|
|
|
|
+
|
|
|
|
+ current_time=datetime.datetime.now()#当前时间
|
|
|
|
+ current_time_str=current_time.strftime('%Y-%m-%d %H:%M:%S')#时间格式化为字符串,年-月-日 时-分-秒
|
|
|
|
+ current_time_str="'"+current_time_str+"'"
|
|
|
|
+
|
|
|
|
+ sql_cmd_4="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date<"+current_time_str
|
|
|
|
+ factor_all_df = pd.read_sql(sql_cmd_4, conn_local)#使用read_sql方法查询qx数据库
|
|
|
|
+ #筛选今天之前的所有factor,只保留最近的一天。
|
|
|
|
+ sn_list=factor_all_df['sn'].unique().tolist()#筛选sn序列
|
|
|
|
+ newest_sn_fct_df=pd.DataFrame([],columns=['sn','date','a0','a1','a2','a3','a4'])#声明空df
|
|
|
|
+
|
|
|
|
+ for sn in sn_list:
|
|
|
|
+ condition_sn=(factor_all_df['sn']==sn)
|
|
|
|
+ factor_pick_df=factor_all_df.loc[condition_sn,:]#按照sn进行筛选
|
|
|
|
+ factor_pick_df=factor_pick_df.sort_values(by='date')#按照日期排序
|
|
|
|
+ factor_last_df=factor_pick_df.tail(1)#选择最后日期
|
|
|
|
+ newest_sn_fct_df=newest_sn_fct_df.append(factor_last_df)#拼接到空df中
|
|
|
|
+
|
|
|
|
+ #按照日期排序,只保留最近的一天,输出factor_unique_df,方法为replace。
|
|
|
|
+ #本函数,每天需要运行一次,用于更新factor。
|
|
|
|
+ newest_sn_fct_df.to_sql('tb_sn_factor_newest',con=engine,chunksize=10000,\
|
|
|
|
+ if_exists='replace',index=False)
|
|
|
|
+#使用factor和soc推荐剩余续驶里程
|
|
|
|
+def calDistFromFct(input_df):
|
|
|
|
+ '''根据sn-time-soc-a0-a1-a2-a3-a4,使用factor正向计算计算VehElecRng。'''
|
|
|
|
+ row_df=input_df.copy()
|
|
|
|
+ soc=row_df['soc']#获取soc
|
|
|
|
+ factor=[]
|
|
|
|
+ factor.append(row_df['a4'])#0~20之间的factor
|
|
|
|
+ factor.append(row_df['a3'])#20~40之间的factor
|
|
|
|
+ factor.append(row_df['a2'])#40~60之间的factor
|
|
|
|
+ factor.append(row_df['a1'])#60~80之间的factor
|
|
|
|
+ factor.append(row_df['a0'])#80~100之间的factor
|
|
|
|
+
|
|
|
|
+ gap=20
|
|
|
|
+ yushu=soc%gap#余数部分
|
|
|
|
+ zhengshu=soc//gap#整数部分
|
|
|
|
+ i=0
|
|
|
|
+ range=0
|
|
|
|
+ while i<zhengshu:
|
|
|
|
+ dur_factor=factor[i]#当前权重
|
|
|
|
+ range+=dur_factor*gap#分段累加里程
|
|
|
|
+ i=i+1
|
|
|
|
+ if yushu>0.01:#避免soc=100时报错
|
|
|
|
+ range=range+yushu*factor[zhengshu]#最后把余项对应的里程加上
|
|
|
|
+ row_df['vehelecrng']=range#给VehElecRng列赋值
|
|
|
|
+ return row_df
|
|
|
|
+#更新当前时间对应的里程,每5min调用一次
|
|
|
|
+def updtVehElecRng(input_time='2021-07-29 12:01:00'):
|
|
|
|
+ '''更新续驶里程,到tb_sn_factor_soc_range。
|
|
|
|
+ 部署时设置每5min更新一次。
|
|
|
|
+ '''
|
|
|
|
+ #设置一个时间作为结束时间
|
|
|
|
+ # current_time=datetime.datetime.now()
|
|
|
|
+ current_time_raw=input_time#当前时间
|
|
|
|
+ current_time=datetime.datetime.strptime(current_time_raw,'%Y-%m-%d %H:%M:%S')#字符串转时间
|
|
|
|
+
|
|
|
|
+ #结束时间往前4min,59s,作为起始时间
|
|
|
|
+ before6min_time_str=(current_time+datetime.timedelta(minutes=-4,seconds=-59)).strftime('%Y-%m-%d %H:%M:%S')#6min前
|
|
|
|
+ before6min_time_str="'"+before6min_time_str+"'"
|
|
|
|
+ current_time_str=current_time.strftime('%Y-%m-%d %H:%M:%S')#时间格式化为字符串
|
|
|
|
+ current_time_str="'"+current_time_str+"'"
|
|
|
|
+
|
|
|
|
+ #从drive_info里面读取,该时间段内的name,time,soc三列
|
|
|
|
+ sql_cmd="select name,time,soc from drive_info where time between "+before6min_time_str+" and "+current_time_str
|
|
|
|
+ print(sql_cmd)
|
|
|
|
+ range_soc_df = pd.read_sql(sql_cmd, conn_qx)#使用read_sql方法查询qx数据库
|
|
|
|
+ range_soc_df.rename(columns={'name':'sn'},inplace=True)#将name列重命名为sn列
|
|
|
|
+
|
|
|
|
+ #任务2,从tb_sn_factor_newest里面读取最新的factor,获取距离今天最近的一个factor list
|
|
|
|
+ sql_cmd_1="select sn,a0,a1,a2,a3,a4 from tb_sn_factor_newest"
|
|
|
|
+ print(sql_cmd_1)
|
|
|
|
+ sn_factor_newest_df_raw = pd.read_sql(sql_cmd_1, conn_local)#使用read_sql方法查询qx数据库
|
|
|
|
+
|
|
|
|
+ #任务3,将range_soc_df和sn_factor_newest_df_raw,双表合并成为一个新表格。
|
|
|
|
+ sn_soc_factor_df=pd.merge(range_soc_df,sn_factor_newest_df_raw,how='left',on='sn')
|
|
|
|
+ sn_soc_factor_df.fillna(1,inplace=True)#如果range_soc_df中有sn号,但sn_factor_newest_df_raw中没有。用1填充。
|
|
|
|
+ # sn_soc_factor_df.head()
|
|
|
|
+ #填充完成后,sn-time-soc-a0-a1-a2-a3-a4都已经齐全。
|
|
|
|
+
|
|
|
|
+ #任务4,调用函数,将VehElecRng计算出来
|
|
|
|
+ sn_soc_factor_range_df=pd.DataFrame([],columns=['sn','time','soc','a0','a1','a2','a3','a4','vehelecrng'])
|
|
|
|
+ for index in sn_soc_factor_df.index.tolist():
|
|
|
|
+ input_df=sn_soc_factor_df.loc[index,:]#挑选
|
|
|
|
+ sn_soc_factor_range_row=calDistFromFct(input_df)#计算VehElecRng
|
|
|
|
+ sn_soc_factor_range_df=sn_soc_factor_range_df.append(sn_soc_factor_range_row)#拼接
|
|
|
|
+
|
|
|
|
+ ##任务5,将sn_soc_factor_range_df写入到tb_sn_factor_soc_range中,使用替换关系。
|
|
|
|
+ sn_soc_factor_range_df.to_sql('tb_sn_factor_soc_range',con=engine,chunksize=10000,\
|
|
|
|
+ if_exists='replace',index=False)
|
|
|
|
+
|