|
@@ -0,0 +1,259 @@
|
|
|
+
|
|
|
+__author__ = 'lmstack'
|
|
|
+#coding=utf-8
|
|
|
+import os
|
|
|
+import datetime
|
|
|
+import pandas as pd
|
|
|
+from LIB.BACKEND import DBManager, Log
|
|
|
+from sqlalchemy import create_engine
|
|
|
+from sqlalchemy.orm import sessionmaker
|
|
|
+import time, datetime
|
|
|
+import dateutil.relativedelta
|
|
|
+import traceback
|
|
|
+from LIB.MIDDLE.CellStateEstimation.Common import log
|
|
|
+from pandas.core.frame import DataFrame
|
|
|
+from LIB.MIDDLE.SaftyCenter.Common import QX_BatteryParam
|
|
|
+from LIB.MIDDLE.SaftyCenter.diagfault.SC_SamplingSafty import SamplingSafty
|
|
|
+
|
|
|
+from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import DBDownload
|
|
|
+from urllib import parse
|
|
|
+import pymysql
|
|
|
+import pdb
|
|
|
+from apscheduler.schedulers.blocking import BlockingScheduler
|
|
|
+import datacompy
|
|
|
+from LIB.MIDDLE.SaftyCenter.Common import FeiShuData
|
|
|
+from LIB.MIDDLE.SaftyCenter.Common import QX_BatteryParam
|
|
|
+from LIB.MIDDLE.SaftyCenter.diagfault import CBMSBatDiag
|
|
|
+from LIB.MIDDLE.SaftyCenter.diagfault.SC_SamplingSafty import SamplingSafty
|
|
|
+
|
|
|
+def fun():
|
|
|
+ global df_sn
|
|
|
+ global db_res_engine
|
|
|
+ global logger
|
|
|
+ global df_Diag_Ram
|
|
|
+ # 读取结果数据库
|
|
|
+ host2='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
|
|
|
+ port2=3306
|
|
|
+ db2='safety_platform'
|
|
|
+ user2='qx_read'
|
|
|
+ password2='Qx@123456'
|
|
|
+ start=time.time()
|
|
|
+ end_time=datetime.datetime.now()
|
|
|
+ start_time=end_time-datetime.timedelta(seconds=120)
|
|
|
+ start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ end_time=end_time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ logger.info("cycle start !!!!!!!!!!!!!!!!!!!!")
|
|
|
+
|
|
|
+ start=time.time()
|
|
|
+ end_time=datetime.datetime.now()
|
|
|
+ start_time=end_time-datetime.timedelta(seconds=130)
|
|
|
+ start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ end_time=end_time.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ df_read_Yunw = FeiShuData.getFeiShuDATA()#运维表格数据
|
|
|
+ df_read_Yunw.rename(columns={'电池编码':'product_id'},inplace=True)
|
|
|
+ df_read_Yunw.rename(columns={'内容描述':'info'},inplace=True)
|
|
|
+ df_read_Yunw.rename(columns={'发生时间':'start_time'},inplace=True)
|
|
|
+ df_read_Yunw.rename(columns={'维修信息':'advice'},inplace=True)
|
|
|
+
|
|
|
+ for i in range(0, len(df_sn)):
|
|
|
+ try:
|
|
|
+ if df_sn.loc[i, 'imei'][5:9] == 'N640':
|
|
|
+ celltype=1 #6040三元电芯
|
|
|
+ elif df_sn.loc[i, 'imei'][5:9] == 'N440':
|
|
|
+ celltype=2 #4840三元电芯
|
|
|
+ elif df_sn.loc[i, 'imei'][5:9] == 'L660':
|
|
|
+ celltype=99 # 6060锂电芯
|
|
|
+ elif df_sn.loc[i, 'imei'][3:5] == 'LX' and df_sn.loc[i, 'imei'][5:9] == 'N750':
|
|
|
+ celltype=3 #力信 50ah三元电芯
|
|
|
+ elif df_sn.loc[i, 'imei'][3:5] == 'CL' and df_sn.loc[i, 'imei'][5:9] == 'N750':
|
|
|
+ celltype=4 #CATL 50ah三元电芯
|
|
|
+ else:
|
|
|
+ logger.info("pid-{} celltype-{} SN: {} SKIP!".format(os.getpid(), "未知", sn))
|
|
|
+ continue
|
|
|
+ sn = df_sn.loc[i, 'sn']
|
|
|
+
|
|
|
+ logger.info("pid-{} celltype-{} SN: {} START!".format(os.getpid(), celltype, sn))
|
|
|
+
|
|
|
+
|
|
|
+ param=QX_BatteryParam.BatteryInfo(celltype)
|
|
|
+ #读取原始数据库数据........................................................................................................................................................
|
|
|
+ dbManager = DBManager.DBManager()
|
|
|
+ df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
|
|
|
+ df_bms = df_data['bms']
|
|
|
+
|
|
|
+ #读取结果数据库数据........................................................................................................................................................
|
|
|
+ host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
|
|
|
+ port=3306
|
|
|
+ db='qx_cas'
|
|
|
+ user='qx_read'
|
|
|
+ password='Qx@123456'
|
|
|
+ mode=1
|
|
|
+ tablename1='cellstateestimation_soh'
|
|
|
+ tablename2='cellstateestimation_uniform_socvoltdiff'
|
|
|
+ #电池诊断................................................................................................................................................................
|
|
|
+ DBRead=DBDownload.DBDownload(host, port, db, user, password,mode)
|
|
|
+ with DBRead as DBRead:
|
|
|
+ df_soh=DBRead.getdata('time_st,sn,soh,cellsoh', tablename=tablename1, sn=sn, timename='time_sp', st=start_time, sp=end_time)
|
|
|
+ df_uniform=DBRead.getdata('time,sn,cellsoc_diff,cellmin_num,cellmax_num', tablename=tablename2, sn=sn, timename='time', st=start_time, sp=end_time)
|
|
|
+
|
|
|
+ #电池诊断................................................................................................................................................................
|
|
|
+ CellFltInfo=DataFrame(columns=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice'])
|
|
|
+ df_Diag_Ram_sn = df_Diag_Ram.loc[df_Diag_Ram['product_id']==sn]#历史故障
|
|
|
+ df_Diag_Ram_sn_else = pd.concat([df_Diag_Ram,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['product_id','code','start_time','Batpos','info'],keep=False)#sn之外的故障
|
|
|
+ CellFltInfo = df_Diag_Ram_sn.drop('Batpos',axis=1)
|
|
|
+ df_Diag_Ram_add = pd.DataFrame()
|
|
|
+ df_Diag_Ram_Update_change = pd.DataFrame()
|
|
|
+ if not df_bms.empty:
|
|
|
+ df_Diag_Batdiag_update_xq=SamplingSafty.main(sn,param,df_bms,CellFltInfo)#学琦计算故障
|
|
|
+ BatDiag=CBMSBatDiag.BatDiag(sn,celltype,df_bms, df_soh, df_uniform, CellFltInfo)#鹏飞计算
|
|
|
+ df_Diag_Batdiag_update=BatDiag.diag()
|
|
|
+ df_Diag_Cal_Update_add = pd.concat([CellFltInfo,df_Diag_Batdiag_update_xq,df_Diag_Batdiag_update])#重新计算的该SN下的故障
|
|
|
+ df_Diag_Cal_Update_temp = df_Diag_Cal_Update_add.drop_duplicates(subset=['product_id','start_time','end_time','code','info'], keep='first', inplace=False, ignore_index=False)#去除相同故障
|
|
|
+ df_Diag_cal_early_unfix = pd.DataFrame()
|
|
|
+ df_Diag_Cal_finish = pd.DataFrame()
|
|
|
+ df_Diag_cal_early_fix = pd.DataFrame()
|
|
|
+ if not df_Diag_Cal_Update_temp.empty:
|
|
|
+ #------------------------------合并两者故障,并将同一sn号下的车辆故障放一起----------------------------------------------
|
|
|
+ df_Diag_Cal_Update = df_Diag_Cal_Update_temp#替换上一行
|
|
|
+ df_Diag_Cal_finish = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] != '0000-00-00 00:00:00']
|
|
|
+ df_Diag_Cal_new = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] == '0000-00-00 00:00:00']
|
|
|
+ df_Diag_Cal_finish['Batpos'] = 1
|
|
|
+ df_Diag_Cal_new['Batpos'] = 0
|
|
|
+ df_feishu_sta = df_read_Yunw.loc[(df_read_Yunw['product_id'] == sn)]#飞书中该sn车辆状态
|
|
|
+ if df_feishu_sta.empty:#飞书中没有该sn记录故障的新增
|
|
|
+ df_Diag_cal_early_unfix = df_Diag_Cal_new#如果为新出故障,则直接记录在df_diag_frame中
|
|
|
+ else:
|
|
|
+ df_Diag_cal_later = df_Diag_Cal_new.loc[pd.to_datetime(df_Diag_Cal_new['start_time']) > max(pd.to_datetime(df_feishu_sta['start_time']))]#故障表中故障时间晚于飞书记录时间的新增
|
|
|
+ df_Diag_cal_early = pd.concat([df_Diag_Cal_new,df_Diag_cal_later,df_Diag_cal_later]).drop_duplicates(subset=['product_id','code','start_time'],keep=False)#故障表中故障时间早于飞书记录时间
|
|
|
+ df_feishu_sta_latest = df_feishu_sta.loc[pd.to_datetime(df_feishu_sta['start_time']) == max(pd.to_datetime(df_feishu_sta['start_time']))]#飞书中该SN下的最新故障
|
|
|
+ df_feishu_diag_unfix = (df_feishu_sta_latest['advice'] == '需正常返仓') | (df_feishu_sta_latest['advice'] == '需紧急返仓')
|
|
|
+ if any(df_feishu_diag_unfix):
|
|
|
+ df_Diag_cal_early_unfix = df_Diag_Cal_new
|
|
|
+ else:
|
|
|
+ df_Diag_cal_early_fix = df_Diag_cal_early
|
|
|
+ df_Diag_cal_early_unfix = df_Diag_cal_later
|
|
|
+ if not df_Diag_cal_early_fix.empty:
|
|
|
+ df_Diag_cal_early_fix['Batpos'] = 1
|
|
|
+ df_Diag_Ram_Update = pd.concat([df_Diag_cal_early_unfix,df_Diag_cal_early_fix,df_Diag_Cal_finish])
|
|
|
+ df_Diag_Ram_Update.sort_values(by = ['start_time'], axis = 0, ascending=True,inplace=True)#该sn下当次诊断的故障状态
|
|
|
+ df_Diag_Ram_add = pd.concat([df_Diag_Ram_Update,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['start_time','code'],keep=False)#此次判断中新增故障
|
|
|
+ df_Diag_Ram_Update_old = pd.concat([df_Diag_Ram_Update,df_Diag_Ram_add,df_Diag_Ram_add]).drop_duplicates(subset=['start_time','code'],keep=False)#此次判断中新增故障
|
|
|
+ df_Diag_Ram_Update_change = pd.concat([df_Diag_Ram_Update_old,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['start_time','code','Batpos'],keep=False)#此次判断中新增故障
|
|
|
+ df_Diag_Ram = pd.concat([df_Diag_Ram_sn_else,df_Diag_Cal_new])
|
|
|
+
|
|
|
+ # if (len(df_Diag_Ram_add) > 0) | (len(df_Diag_Ram_Update_change) > 0):#历史及现有故障
|
|
|
+ # df_Diag_Ram.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result.csv',index=False,encoding='GB18030')
|
|
|
+ if len(df_Diag_Ram_add) > 0:#新增故障
|
|
|
+ df_Diag_Ram_add.columns = ['product_id', 'start_time', 'end_time', 'code', 'level', 'info', 'advice', 'Batpos']
|
|
|
+ df_Diag_Ram_add['factory'] = '骑享'
|
|
|
+ df_Diag_Ram_add.to_sql("all_fault_info",con=db_res_engine, if_exists="append",index=False)
|
|
|
+ # df_Diag_Ram_add.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result_add.csv',index=False,encoding='GB18030')
|
|
|
+ if len(df_Diag_Ram_Update_change) > 0:#更改故障
|
|
|
+ df_Diag_Ram_Update_change = df_Diag_Ram_Update_change.reset_index(drop=True)
|
|
|
+ try:
|
|
|
+ conn = pymysql.connect(host=host2, port=port2, user=user2, password=password2, database=db2)
|
|
|
+ cursor = conn.cursor()
|
|
|
+ for i in range(0,len(df_Diag_Ram_Update_change)):
|
|
|
+ cursor.execute('''
|
|
|
+ update all_fault_info set end_time='{}', Batpos={}, where product_id='{}' and code={} and start_time='{}'
|
|
|
+ '''.format(df_Diag_Ram_Update_change.loc[i,'end_time'], df_Diag_Ram_Update_change.loc[i, 'Batpos'],
|
|
|
+ df_Diag_Ram_Update_change.loc[i,'product_id'], df_Diag_Ram_Update_change.loc[i,'code'],
|
|
|
+ df_Diag_Ram_Update_change.loc[i,'start_time']))
|
|
|
+ conn.commit()
|
|
|
+ conn.close();
|
|
|
+ except:
|
|
|
+ logger.error(traceback.format_exc)
|
|
|
+ logger.error(u"{} :{},{} 任务运行错误\n".format(sn,start_time,end_time), exc_info=True)
|
|
|
+ conn.close();
|
|
|
+ # df_Diag_Ram_Update_change.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problemm\result_change.csv',index=False,encoding='GB18030')
|
|
|
+ end=time.time()
|
|
|
+ logger.info("pid-{} celltype-{} SN: {} DONE!".format(os.getpid(), celltype, sn))
|
|
|
+ except:
|
|
|
+ logger.error(traceback.format_exc)
|
|
|
+ logger.error(u"{} :{},{} 任务运行错误\n".format(sn,start_time,end_time), exc_info=True)
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+
|
|
|
+ # 时间设置
|
|
|
+ # now_time = datetime.datetime.now()
|
|
|
+ # pre_time = now_time + dateutil.relativedelta.relativedelta(days=-1)# 前一日
|
|
|
+ # end_time=datetime.datetime.strftime(now_time,"%Y-%m-%d 00:00:00")
|
|
|
+ # start_time=datetime.datetime.strftime(pre_time,"%Y-%m-%d 00:00:00")
|
|
|
+
|
|
|
+ history_run_flag = False # 历史数据运行标志
|
|
|
+
|
|
|
+
|
|
|
+ # 更新sn列表
|
|
|
+ host='rm-bp10j10qy42bzy0q7.mysql.rds.aliyuncs.com'
|
|
|
+ port=3306
|
|
|
+ db='qixiang_oss'
|
|
|
+ user='qixiang_oss'
|
|
|
+ password='Qixiang2021'
|
|
|
+ conn = pymysql.connect(host=host, port=port, user=user, password=password, database=db)
|
|
|
+ cursor = conn.cursor()
|
|
|
+ cursor.execute("select sn, imei, add_time from app_device")
|
|
|
+ res = cursor.fetchall()
|
|
|
+ df_sn = pd.DataFrame(res, columns=['sn', 'imei', 'add_time'])
|
|
|
+ df_sn = df_sn.reset_index(drop=True)
|
|
|
+ conn.close();
|
|
|
+
|
|
|
+ # 数据库配置
|
|
|
+ host = 'rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
|
|
|
+ port = 3306
|
|
|
+ user = 'qx_cas'
|
|
|
+ password = parse.quote_plus('Qx@123456')
|
|
|
+ database = 'qx_cas'
|
|
|
+
|
|
|
+ db_engine = create_engine(
|
|
|
+ "mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
|
|
|
+ user, password, host, port, database
|
|
|
+ ))
|
|
|
+ DbSession = sessionmaker(bind=db_engine)
|
|
|
+
|
|
|
+ # 运行历史数据配置
|
|
|
+
|
|
|
+ df_first_data_time = pd.read_sql("select * from bat_first_data_time", db_engine)
|
|
|
+
|
|
|
+
|
|
|
+ # 日志配置
|
|
|
+ now_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()).replace(":","_")
|
|
|
+ log_path = 'log/' + now_str
|
|
|
+ if not os.path.exists(log_path):
|
|
|
+ os.makedirs(log_path)
|
|
|
+ log = Log.Mylog(log_name='saftyCenter_diagfault', log_level = 'info')
|
|
|
+ log.set_file_hl(file_name='{}/info.log'.format(log_path), log_level='info', size=1024* 1024 * 100)
|
|
|
+ log.set_file_hl(file_name='{}/error.log'.format(log_path), log_level='error', size=1024* 1024 * 100)
|
|
|
+ logger = log.get_logger()
|
|
|
+
|
|
|
+ logger.info("pid is {}".format(os.getpid()))
|
|
|
+
|
|
|
+ # 算法参数
|
|
|
+ host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
|
|
|
+ port=3306
|
|
|
+ db='safety_platform'
|
|
|
+ user='qx_read'
|
|
|
+ password=parse.quote_plus('Qx@123456')
|
|
|
+ tablename='all_fault_info'
|
|
|
+ db_res_engine = create_engine(
|
|
|
+ "mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
|
|
|
+ user, password, host, port, db
|
|
|
+ ))
|
|
|
+
|
|
|
+
|
|
|
+ #............................模块运行前,先读取数据库中所有结束时间为0的数据,需要从数据库中读取................
|
|
|
+ # print("select start_time, end_time, product_id, code, level, info, advice, factory from {}".format(tablename))
|
|
|
+ df_Diag_Ram=pd.read_sql("select start_time, end_time, product_id, code, level, info, advice, Batpos from all_fault_info where factory = '{}'".format('骑享'), db_res_engine)
|
|
|
+ # result = result[['start_time', 'end_time', 'product_id', 'code', 'level', 'info', 'advice']]
|
|
|
+ # df_Diag_Ram=result[result['end_time']=='0000-00-00 00:00:00']
|
|
|
+
|
|
|
+
|
|
|
+ #定时任务.......................................................................................................................................................................
|
|
|
+ scheduler = BlockingScheduler()
|
|
|
+
|
|
|
+ scheduler.add_job(fun, 'interval', seconds=300, id='diag_job')
|
|
|
+ try:
|
|
|
+ scheduler.start()
|
|
|
+ except Exception as e:
|
|
|
+ scheduler.shutdown()
|
|
|
+ logger.error(str(e))
|
|
|
+
|