|
@@ -2,6 +2,7 @@ import pandas as pd
|
|
|
import pymysql
|
|
|
from sqlalchemy import create_engine
|
|
|
import datetime
|
|
|
+from sqlalchemy.orm import sessionmaker
|
|
|
import pdb
|
|
|
|
|
|
# #建立引擎
|
|
@@ -342,11 +343,13 @@ def updtNewestFctTb(db_local, db_engine, sn_table_name='tb_sn_factor', sn_newest
|
|
|
factor_pick_df=factor_pick_df.sort_values(by='date')#按照日期排序
|
|
|
factor_last_df=factor_pick_df.tail(1)#选择最后日期
|
|
|
newest_sn_fct_df=newest_sn_fct_df.append(factor_last_df)#拼接到空df中
|
|
|
+
|
|
|
|
|
|
#按照日期排序,只保留最近的一天,输出factor_unique_df,方法为replace。
|
|
|
#本函数,每天需要运行一次,用于更新factor。
|
|
|
- newest_sn_fct_df.to_sql(sn_newest_table_name,con=db_engine,chunksize=10000,\
|
|
|
- if_exists='replace',index=False)
|
|
|
+ # newest_sn_fct_df.to_sql(sn_newest_table_name,con=db_engine,chunksize=10000,\
|
|
|
+ # if_exists='replace',index=False)
|
|
|
+ return newest_sn_fct_df
|
|
|
#使用factor和soc推荐剩余续驶里程
|
|
|
def calDistFromFct(input_df):
|
|
|
'''根据sn-time-soc-a0-a1-a2-a3-a4,使用factor正向计算计算VehElecRng。'''
|
|
@@ -413,6 +416,7 @@ def updtVehElecRng(db_qx, db_local, db_engine, range_table_name='tb_sn_factor_so
|
|
|
sn_soc_factor_range_df=sn_soc_factor_range_df.append(sn_soc_factor_range_row)#拼接
|
|
|
|
|
|
##任务5,将sn_soc_factor_range_df写入到tb_sn_factor_soc_range中,使用替换关系。
|
|
|
- sn_soc_factor_range_df.to_sql(range_table_name,con=db_engine,chunksize=10000,\
|
|
|
- if_exists='replace',index=False)
|
|
|
+ # sn_soc_factor_range_df.to_sql(range_table_name,con=db_engine,chunksize=10000,\
|
|
|
+ # if_exists='replace',index=False)
|
|
|
+ return sn_soc_factor_range_df
|
|
|
|