|
@@ -64,15 +64,13 @@ for k in range(l):
|
|
|
outliers1=detect_outliers(res1,pred1,threshold=30)
|
|
|
outliers2=detect_outliers(res2,pred2,threshold=16)
|
|
|
if (len(outliers1)>0) & (len(outliers2)>0):
|
|
|
- outliers=check_anomaly(outliers1,outliers2)
|
|
|
+ outliers=check_anomaly(outliers1,outliers2,res2)
|
|
|
if len(outliers)>5:
|
|
|
- outliers.to_csv('outliers'+sn+'.csv',encoding='gbk')
|
|
|
outliers['sn']=sn
|
|
|
+ outliers=outliers.reset_index()
|
|
|
anomalies=anomalies.append(outliers)
|
|
|
- anomalies.to_csv('anomalies.csv',encoding='gbk')
|
|
|
if df_diag_ram_sn.empty:
|
|
|
product_id=sn
|
|
|
- outliers=outliers.reset_index()
|
|
|
start_time=outliers.loc[0,'时间']
|
|
|
start_time=start_time[:14]+start_time[16]+'0:00'
|
|
|
if outliers.loc[-1,'时间'] == pred1.loc[-1,'时间']:
|