1
0

2 Commits 852a65abc8 ... 35891dba68

Autor SHA1 Nachricht Datum
  shangguanlie23 35891dba68 Merge branch 'dev' of http://git.fast-fun.cn:92/lmstack/data_analyze_platform into dev vor 3 Jahren
  shangguanlie23 28a6e1f333 增加内阻电压估计函数,析锂主函数中增加电压内阻估计,输出结果同析锂输出结果。两者运行周期均为一周 vor 3 Jahren

+ 41 - 9
LIB/MIDDLE/SaftyCenter/Liplated/main.py

@@ -6,11 +6,16 @@ from apscheduler.schedulers.blocking import BlockingScheduler
 import log
 from pandas.core.frame import DataFrame
 import Li_plated
+import vol_sor_est
+from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import BatParam
 
 #...................................电池包电芯安全诊断函数......................................................................................................................
-def cell_platd_test():
+def cell_platd_sorvol_test():
     global SNnums
     global df_Diag_lipltd
+    global df_diag_sor
+    global df_diag_vol
+    global df_diag_volsor
     start=time.time()
     now_time=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
     now_time=datetime.datetime.strptime(now_time,'%Y-%m-%d %H:%M:%S')
@@ -33,8 +38,8 @@ def cell_platd_test():
             continue
             # sys.exit()
         #读取原始数据库数据........................................................................................................................................................
-        start_time = '2021-11-15 12:00:00'
-        end_time = '2021-11-18 12:00:00'
+        start_time = '2021-11-23 12:00:00'
+        end_time = '2021-11-24 12:00:00'
         dbManager = DBManager.DBManager()
         df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
         df_bms = df_data['bms']
@@ -43,12 +48,33 @@ def cell_platd_test():
         #析锂诊断................................................................................................................................................................
         if not df_bms.empty:
             Diag_lipltd_temp = Li_plated.Liplated_test(sn,celltype,df_bms)#析锂检测
-            df_Diag_lipltd_add = Diag_lipltd_temp.liplated_detect()        
+            df_Diag_lipltd_add = Diag_lipltd_temp.liplated_detect()
+            Diag_sorvol_temp = vol_sor_est.vol_sor_est(sn,celltype,df_bms)#电压内阻估计
+            [df_diag_sor_add, df_diag_vol_add, df_diag_sorvol_add] = Diag_sorvol_temp.volsor_cal()           
         if not df_Diag_lipltd_add.empty:
             df_Diag_lipltd_temp = df_Diag_lipltd.append(df_Diag_lipltd_add)
-            df_Diag_lipltd = df_Diag_lipltd_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
+            df_Diag_lipltd = df_Diag_lipltd_temp.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = True)
+            df_Diag_lipltd.reset_index(drop = True)
             df_Diag_lipltd.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
             df_Diag_lipltd.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\02析锂检测\01下载数据\格林美-力信7255\SNnums_6040_liplated_sn.csv',index=False,encoding='GB18030')
+        if not df_diag_sor_add.empty:
+            df_diag_sor = df_diag_sor.append(df_diag_sor_add)
+            df_diag_sor = df_diag_sor.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
+            df_diag_sor.reset_index(drop = True)
+            df_diag_sor.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
+            df_diag_sor.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\内阻偏离.csv',index=False,encoding='GB18030')
+        if not df_diag_vol_add.empty:
+            df_diag_vol = df_diag_vol.append(df_diag_vol_add)
+            df_diag_vol = df_diag_vol.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
+            df_diag_vol.reset_index(drop = True)
+            df_diag_vol.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
+            df_diag_vol.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压偏离.csv',index=False,encoding='GB18030')
+        if not df_diag_sorvol_add.empty:
+            df_diag_volsor = df_diag_volsor.append(df_diag_sorvol_add)
+            df_diag_volsor = df_diag_volsor.drop_duplicates(subset = ['sn','time'], keep = 'first', inplace = False)
+            df_diag_volsor.reset_index(drop = True)
+            df_diag_volsor.sort_values(by = ['sn'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
+            df_diag_volsor.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压内阻偏离.csv',index=False,encoding='GB18030')
         end=time.time()
         print(end-start)
 
@@ -56,6 +82,9 @@ def cell_platd_test():
 if __name__ == "__main__":
     global SNnums
     global df_Diag_lipltd
+    global df_diag_sor
+    global df_diag_vol
+    global df_diag_volsor
     
     excelpath=r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\04故障诊断\01Screen_Problem\sn-20210903.xlsx'
     SNdata_6060 = pd.read_excel(excelpath, sheet_name='科易6060')
@@ -71,20 +100,23 @@ if __name__ == "__main__":
     SNnums_C7255=SNdata_C7255['SN号'].tolist()
     SNnums_U7255=SNdata_U7255['SN号'].tolist()
     #SNnums=SNnums_L7255 + SNnums_C7255 + SNnums_6040 + SNnums_4840 + SNnums_U7255+ SNnums_6060
-    # SNnums=['MGMCLN750N215I005','PK504B10100004341','PK504B00100004172','MGMLXN750N2189014']
-    SNnums = SNnums_6040 #SNnums_C7255 #SNnums_6040['MGMCLN750N215N049'] 
+    SNnums=['MGMCLN750N215N296','MGMCLN750N215N080', 'MGMCLN750N215I108', 'MGMCLN750N215N217']
+    # SNnums = SNnums_6040 #SNnums_C7255 #SNnums_6040['MGMCLN750N215N049'] 
     # SNnums = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\02析锂检测\liplated\疑似析锂电池sn.csv',encoding='GB18030')
     
     mylog=log.Mylog('log_diag.txt','error')
     mylog.logcfg()
     #............................模块运行前,先读取数据库中所有结束时间为0的数据,需要从数据库中读取................
     df_Diag_lipltd=pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\02析锂检测\01下载数据\格林美-力信7255\析锂.csv',encoding='GB18030')
+    df_diag_sor = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\内阻偏离.csv',encoding='GB18030')
+    df_diag_vol = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压偏离.csv',encoding='GB18030')
+    df_diag_volsor = pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压内阻偏离.csv',encoding='GB18030')
 
-    print('----------------输入--------')
     print('-------计算中-----------')
     #定时任务.......................................................................................................................................................................
     scheduler = BlockingScheduler()
-    scheduler.add_job(cell_platd_test, 'interval', seconds=10, id='diag_job')
+    scheduler.add_job(cell_platd_sorvol_test, 'interval', seconds=10, id='diag_job')
+    
 
     try:  
         scheduler.start()

+ 247 - 0
LIB/MIDDLE/SaftyCenter/Liplated/vol_sor_est.py

@@ -0,0 +1,247 @@
+import pandas as pd
+import numpy as np
+import datetime
+import time, datetime
+import math
+import itertools
+from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import BatParam
+
+class vol_sor_est:
+    def __init__(self,sn,celltype,df_bms):  #参数初始化
+
+        self.sn=sn
+        self.celltype=celltype
+        self.param=BatParam.BatParam(celltype)#鹏飞param中为BatParam,学琦为BatteryInfo
+        self.df_bms=pd.DataFrame(df_bms)
+        self.packcrnt=df_bms['总电流[A]']*self.param.PackCrntDec
+        self.packvolt=df_bms['总电压[V]']
+        self.bms_soc=df_bms['SOC[%]']
+        self.bmstime= pd.to_datetime(df_bms['时间戳'], format='%Y-%m-%d %H:%M:%S')
+
+        self.cellvolt_list=['单体电压'+str(x) for x in range(1,self.param.CellVoltNums+1)]
+        self.celltemp_name=['单体温度'+str(x) for x in range(1,self.param.CellTempNums+1)]
+        self.bmssta = df_bms['充电状态']
+    #定义加权滤波函数..................................................................................................
+    def moving_average(interval, windowsize):
+        window = np.ones(int(windowsize)) / float(windowsize)
+        re = np.convolve(interval, window, 'same')
+        return re
+#.............................................内阻及电压估计............................................................................
+    def volsor_cal(self):
+        start_time = time.time()
+        dischrg_data_temp = self.df_bms.loc[(self.df_bms['充电状态'] == 3) & (self.df_bms['总电流[A]'] < -3) & (self.df_bms['SOC[%]'] > 60)]#放电数据
+        dischrg_data = dischrg_data_temp.reset_index(drop=True)
+        df_voltout_result = pd.DataFrame(columns = ['sn','time','volout_confr','volout_amplt'])
+        if not dischrg_data_temp.empty:
+            temp_rest_time = dischrg_data['时间戳']
+            rest_time = pd.to_datetime(temp_rest_time)
+            delta_time = (np.diff(rest_time)/pd.Timedelta(1, 'min'))#计算时间差的分钟数
+            pos = np.where(delta_time > 10)
+            pos_ful_tem = np.insert(pos, 0, 0)
+            pos_len = len(pos_ful_tem)
+            data_len = len(rest_time)
+            pos_ful = np.insert(pos_ful_tem, pos_len, data_len-1)
+            splice_num = []
+            for item in range(0,len(pos_ful)-1):
+                splice_num.extend(item*np.ones(pos_ful[item +1]-pos_ful[item]))
+            splice_num = np.insert(splice_num, 0, 0)
+            dischrg_data_temp['dischrgr_rest'] = splice_num
+            #---------------------------对分段数据使用RLS算法估计电压及内阻-------------------------------------------
+            def theta2RC(theta, dt):
+                #计算电池OCV及阻值
+                OCV = theta[0,0] / (1-theta[0,1])
+                R0 = (theta[0,3] - theta[0,2]) / (1 + theta[0,1])
+                R1 = -(theta[0,3] + theta[0,2]) / (1 - theta[0,1]) - R0
+                Tau = dt/2*(1 + theta[0,1]) / (1 - theta[0,1])
+                return [OCV,R0,R1,Tau]
+            cellvolt_name = self.cellvolt_list
+            dischrgr_check_data = dischrg_data_temp.drop(['GSM信号','故障等级','故障代码','开关状态','单体压差','绝缘电阻','总电压[V]','充电状态','单体压差'],axis=1,inplace=False)
+            dischrgr_check_data.fillna(value=0)
+            df_est_vol_ful = pd.DataFrame()
+            df_est_sor_ful = pd.DataFrame()
+            k = 0
+            for i in range(0,len(pos_ful)-1):#len(pos_ful)-1#每段放电数据计算
+                df_distest_data_temp = dischrgr_check_data.loc[dischrgr_check_data['dischrgr_rest'] == i]
+                df_distest_data = df_distest_data_temp.reset_index(drop = True)
+                df_distime = pd.to_datetime(df_distest_data['时间戳'])
+                df_disvolt = df_distest_data[cellvolt_name]/1000
+                df_discrnt = df_distest_data['总电流[A]']
+                df_dissoc = df_distest_data['SOC[%]']
+                df_est_vol = pd.DataFrame()
+                df_est_sor = pd.DataFrame()
+                if len(df_discrnt) > 120:
+                    end = time.time()
+                    print('第' + str(k) + '段数据' + str(df_distime[0]))
+                    print(end - start_time)
+                    for item in cellvolt_name:#每个电芯的循环计算
+                        dt_temp = np.diff(df_distime)/pd.Timedelta(1, 'seconds')
+                        data_len = len(dt_temp)#时间微分后的长度
+                        dt = np.append(dt_temp, dt_temp[data_len-1])#计算时间间隔并补充
+                        crnt = df_discrnt
+                        Ut = df_disvolt[item]
+                        unit_mat = np.mat(np.eye(4))
+
+                        for j in range(data_len + 1):#每个电芯的实际计算过程
+                            theta = [3.4, 0.448, -0.0108, 0.0106]
+                            P = np.mat(10**6*np.eye(4))
+                            lambd = 0.96
+                            Err = [0]
+                            Err2 = [0]*(data_len + 1)
+                            OCV = [0]
+                            R0 = [0]
+                            R1 = [0]
+                            Tau = [0]
+                            Theta = np.mat(np.zeros([data_len + 1, 4]))
+                            Theta[0,:] = theta
+                            U1 = [0]
+                            Vt = [0]
+                            for m in range(1,data_len + 1):
+                                phi = np.mat([1 , Ut[m], crnt[m], crnt[m-1]]).T #测量向量4×1的向量
+                                K = np.dot(P, phi)/(lambd + np.dot(np.dot(phi.T, P),phi)) #增益的递推公式,为4×1的向量
+                                P = np.dot((unit_mat - np.dot(K, phi.T)),P)/lambd #协方差矩阵的递归公式
+                                Err.append(Ut[m] - np.dot(Theta[m-1,:], phi)) #误差
+                                theta = Theta[m-1, :] + Err[m]*K.T #待估向量theta的递归公式
+                                Theta[m,:] = theta #theta估计向量矩阵化
+                                [ocv,r0,r1,tau] = theta2RC(Theta[m,:], dt[m])
+                                Errtemp = []
+                                for ss in range(0, min(m-1, 29) + 1):
+                                    ocv,r0,r1,tau = theta2RC(Theta[m - ss, :], dt[m])
+                                    U1.append(U1[m-1]*math.exp(-dt[m]/tau) + (1 - math.exp(-dt[m]/tau))*r1*crnt[m])
+                                    Vt.append(ocv - U1[m] - crnt[m]*r0)
+                                    Err2[m] = Ut[m] - Vt[m]
+                                    if abs(Err2[m] <= 0.05):
+                                        break
+                                    elif ss == 29:
+                                        id, Err2[m] = min(enumerate(Errtemp))
+                                        [ocv,r0,r1,tau] = theta2RC(Theta[m - id, :], dt[m])
+                                    else:
+                                        Errtemp.append(abs(Err2[m]))
+                                OCV.append(ocv)
+                                R0.append(r0)
+                                R1.append(r1)
+                                Tau.append(tau)
+                        df_est_vol[item] = OCV
+                        df_est_sor[item] = R0
+                    df_est_vol['dischrgr_num'] = k
+                    df_est_vol['时间戳'] = df_distest_data['时间戳']
+                    df_est_sor['dischrgr_num'] = k
+                    df_est_sor['时间戳'] = df_distest_data['时间戳']
+                    k = k + 1
+                    df_est_vol_ful = df_est_vol_ful.append(df_est_vol)
+                    df_est_sor_ful = df_est_sor_ful.append(df_est_sor)
+            df_est_vol_ful.reset_index(drop = True)
+            df_est_sor_ful.reset_index(drop = True)
+            #---------------------------------------------------------统计内阻及电压估计状态-------------------------------------------------------
+            df_voltout_result = pd.DataFrame(columns = ['sn','time','volout_confr','volout_amplt'])
+            df_sortout_result = pd.DataFrame(columns = ['sn','time','sorout_confr','sorout_amplt'])
+            df_volsortout_result = pd.DataFrame(columns = ['sn','time','volsorout_confr','volsorout_amplt'])
+            df_delt_vol_total = pd.DataFrame()
+            df_delt_sor_total = pd.DataFrame()
+            m = 1
+            for i in range(0,k):#有多少段数据
+                df_ana_vol_temp = df_est_vol_ful.loc[df_est_vol_ful['dischrgr_num'] == i].reset_index(drop = True)#选取某段数据
+                df_ana_sor_temp = df_est_sor_ful.loc[df_est_sor_ful['dischrgr_num'] == i].reset_index(drop = True)#选取某段数据
+                df_vol_cho = df_ana_vol_temp[cellvolt_name[0]]#挑选某个电池的估计电压,判断估计范围是否正常
+                df_vol_logi = [(df_vol_cho > 2.5) & (df_vol_cho < 4.3)]
+                df_vol_arr = np.array(df_vol_logi).astype(int)
+                df_vol_cho_logi = df_vol_arr[0]
+                num_times = [(k, len(list(v))) for k, v in itertools.groupby(df_vol_cho_logi)]
+                num_times_len = len(num_times)
+                fitter_len = num_times[num_times_len - 1][1]#拟合好后的数据长度
+                ini_len = len(df_vol_cho)#初始数据长度
+                if (num_times[num_times_len - 1][0] == 1) & (num_times[num_times_len - 1][1] > 0.6*fitter_len):
+                    df_delt_vol_accum = pd.DataFrame()
+                    df_delt_sor_accum = pd.DataFrame()
+                    df_delt_vol = pd.DataFrame()
+                    df_delt_sor = pd.DataFrame()
+                    volout_confr = []#偏离与否
+                    volout_amplt = []#偏离幅度
+                    sorout_confr = []#偏离与否
+                    sorout_amplt = []#偏离幅度
+                    volsorout_confr = []
+                    volsorout_amplt = []
+                    df_ana_vol_spl = df_ana_vol_temp[(ini_len-fitter_len):(ini_len-1)]#筛选出拟合至合理范围的电压及内阻
+                    df_ana_sor_spl = df_ana_sor_temp[(ini_len-fitter_len):(ini_len-1)]
+                    df_ana_vol = df_ana_vol_spl[cellvolt_name]#筛选出的拟合电压在合理范围内的数据
+                    df_ana_sor = df_ana_sor_spl[cellvolt_name]
+                    df_ana_vol_min = np.min(df_ana_vol, axis = 1)
+                    df_ana_vol_max = np.max(df_ana_vol, axis = 1)
+                    df_ana_sor_max = np.max(df_ana_sor, axis = 1)
+                    df_ana_sor_min = np.min(df_ana_sor, axis = 1)
+                    df_ana_vol_mean = (np.sum(df_ana_vol, axis = 1) - df_ana_vol_min - df_ana_vol_max)/(df_ana_vol.shape[1] - 2)#估计电压均值
+                    df_ana_sor_mean = (np.sum(df_ana_sor, axis = 1) - df_ana_sor_min - df_ana_sor_max)/(df_ana_sor.shape[1] - 2)#估计内阻均值
+                    for item in cellvolt_name:
+                        df_delt_vol[item] = df_ana_vol[item] - df_ana_vol_mean#计算各电芯拟合电压与同时刻电压均值的差值
+                        df_delt_sor[item] = df_ana_sor[item] - df_ana_sor_mean
+                    df_delt_vol_min = np.min(df_delt_vol, axis = 1)
+                    df_delt_vol_max = np.max(df_delt_vol, axis = 1)
+                    df_delt_sor_min = np.min(df_delt_sor, axis = 1)
+                    df_delt_sor_max = np.max(df_delt_sor, axis = 1)
+                    df_delt_vol_mean = (np.sum(df_delt_vol, axis = 1) - df_delt_vol_min - df_delt_vol_max)/(df_delt_vol.shape[1] - 2)#估计电压差值的均值
+                    df_delt_sor_mean = (np.sum(df_delt_sor, axis = 1) - df_delt_sor_min - df_delt_sor_max)/(df_delt_sor.shape[1] - 2)#估计电压差值的均值
+                    df_delt_vol_std = np.std(df_delt_vol, axis = 1)
+                    df_delt_sor_std = np.std(df_delt_sor, axis = 1)
+                    df_delt_data_len = len(df_delt_vol_std)
+                    for cell_num in cellvolt_name:
+                        df_delt_vol_cal = (df_delt_vol[cell_num] - df_delt_vol_mean)/df_delt_vol_std#计算每个电压与均值的偏差
+                        df_delt_sor_cal = (df_delt_sor[cell_num] - df_delt_sor_mean)/df_delt_sor_std#计算每个内阻与均值的偏差
+                        df_delt_vol_confr = abs(df_delt_vol_cal) > 3#电压估计值与均值差值大于3sigma
+                        df_delt_sor_confr = abs(df_delt_sor_cal) > 3#电压估计值与均值差值大于3sigma
+                        df_delt_vol_confr_num = np.sum(df_delt_vol_confr!=0)#统计电压离群度的非零数
+                        df_delt_sor_confr_num = np.sum(df_delt_sor_confr!=0)#统计电阻离群度的非零数
+                        df_delt_vol_sor_cal = df_delt_vol_cal*df_delt_sor_cal
+                        df_delt_vol_sor_confr = abs(df_delt_vol_sor_cal) > 9#电压估计值内阻估计值乘积与均值差值大于3sigma
+                        df_delt_vol_sor_confr_num = np.sum(df_delt_vol_sor_confr!=0)#统计非零数
+                        df_length_limit = df_delt_data_len/10
+                        df_delt_vol_accum = pd.concat([df_delt_vol_accum, df_delt_vol_cal], axis = 1)
+                        df_delt_sor_accum = pd.concat([df_delt_sor_accum, df_delt_sor_cal], axis = 1)
+                        if df_delt_vol_confr_num > df_length_limit:
+                            volout_confr.append(1)#1为偏离,0为非偏离
+                            volout_amplt.append(max(abs(df_delt_vol_cal)))#偏离度
+                        else:
+                            volout_confr.append(0)#1为偏离,0为非偏离
+                            volout_amplt.append(0)#偏离度
+                        if df_delt_sor_confr_num > df_length_limit:
+                            sorout_confr.append(1)#1为偏离,0为非偏离
+                            sorout_amplt.append(max(abs(df_delt_vol_cal)))#偏离度
+                        else:
+                            sorout_confr.append(0)#1为偏离,0为非偏离
+                            sorout_amplt.append(0)#偏离度
+                        if df_delt_vol_sor_confr_num > df_length_limit:
+                            volsorout_confr.append(1)
+                            volsorout_amplt.append(max(abs(df_delt_vol_sor_cal)))#偏离度
+                        else:
+                            volsorout_confr.append(0)
+                            volsorout_amplt.append(0)#偏离度
+                    df_delt_vol_accum.columns = cellvolt_name
+                    df_delt_sor_accum.columns = cellvolt_name
+                    df_delt_vol_accum['dischrgr_num'] = m
+                    df_delt_sor_accum['dischrgr_num'] = m
+                    df_delt_vol_accum['时间戳'] = list(df_ana_vol_spl['时间戳'])
+                    df_delt_sor_accum['时间戳'] = list(df_ana_vol_spl['时间戳'])
+                    m = m + 1
+                    if any(volout_confr):
+                        df_volout_temp = pd.DataFrame({"sn":[self.sn], "time":[df_ana_vol_temp['时间戳'][0]], "volout_confr":[str(volout_confr)], "volout_amplt":[str(volout_amplt)]})
+                        df_voltout_result = df_voltout_result.append(df_volout_temp)
+                        df_voltout_result = df_voltout_result.reset_index(drop = True)
+                        df_voltout_result.sort_values(by = ['time'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
+                        # df_voltout_result.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压偏离.csv',index=False,encoding='GB18030')
+                    if any(sorout_confr):
+                        df_sorout_temp = pd.DataFrame({"sn":[self.sn], "time":[df_ana_vol_temp['时间戳'][0]], "sorout_confr":[str(sorout_confr)], "sorout_amplt":[str(sorout_amplt)]})
+                        df_sortout_result = df_sortout_result.append(df_sorout_temp)
+                        df_sortout_result = df_sortout_result.reset_index(drop = True)
+                        df_sortout_result.sort_values(by = ['time'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
+                        # df_sortout_result.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\内阻偏离.csv',index=False,encoding='GB18030')
+                    if any(volsorout_confr):
+                        df_volsorout_temp = pd.DataFrame({"sn":[self.sn], "time":[df_ana_vol_temp['时间戳'][0]], "volsorout_confr":[str(volsorout_confr)], "volsorout_amplt":[str(volsorout_amplt)]})
+                        df_volsortout_result = df_volsortout_result.append(df_volsorout_temp)
+                        df_volsortout_result = df_volsortout_result.reset_index(drop = True)
+                        df_volsortout_result.sort_values(by = ['time'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
+                        # df_volsortout_result.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\lzx\01算法开发\05内阻及电压估计\02算法检测\判断结果\电压内阻偏离.csv',index=False,encoding='GB18030')
+        end_time = time.time()
+        print(end_time - start_time)
+        if not df_voltout_result.empty:
+            return [df_sortout_result, df_voltout_result, df_volsortout_result]
+        else:
+            return [pd.DataFrame(), pd.DataFrame(), pd.DataFrame()]
+        #----------------------------------------------------对估计电压及内阻作图-----------------------------------------------------------------

BIN
LIB/MIDDLE/SaftyCenter/Liplated/内阻偏离.xlsx


BIN
LIB/MIDDLE/SaftyCenter/Liplated/电压偏离.xlsx


BIN
LIB/MIDDLE/SaftyCenter/Liplated/电压内阻偏离.xlsx