import CBMSBatDiag from SC_SamplingSafty import SamplingSafty import datetime import pandas as pd from LIB.BACKEND import DBManager, Log from sqlalchemy import create_engine import time, datetime from apscheduler.schedulers.blocking import BlockingScheduler from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import DBDownload from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import log from pandas.core.frame import DataFrame import datacompy from SaftyCenter.Common import FeiShuData from SaftyCenter.Common import QX_BatteryParam #...................................电池包电芯安全诊断函数...................................................................................................................... def diag_cal(): global SNnums global df_Diag_Ram start=time.time() end_time=datetime.datetime.now() start_time=end_time-datetime.timedelta(seconds=130) start_time=start_time.strftime('%Y-%m-%d %H:%M:%S') end_time=end_time.strftime('%Y-%m-%d %H:%M:%S') df_read_Yunw = FeiShuData.getFeiShuDATA()#运维表格数据 df_read_Yunw.rename(columns={'电池编码':'product_id'},inplace=True) df_read_Yunw.rename(columns={'内容描述':'info'},inplace=True) df_read_Yunw.rename(columns={'发生时间':'start_time'},inplace=True) df_read_Yunw.rename(columns={'维修信息':'advice'},inplace=True) for sn in SNnums: print(sn) if 'PK500' in sn: celltype=1 #6040三元电芯 elif 'PK502' in sn: celltype=2 #4840三元电芯 elif 'K504B' in sn: celltype=99 #60ah林磷酸铁锂电芯 elif 'MGMLXN750' in sn: celltype=3 #力信50ah三元电芯 elif 'MGMCLN750' or 'UD' in sn: celltype=4 #CATL 50ah三元电芯 else: print('SN:{},未找到对应电池类型!!!'.format(sn)) continue # sys.exit() param=QX_BatteryParam.BatteryInfo(celltype) print(sn) #读取原始数据库数据........................................................................................................................................................ dbManager = DBManager.DBManager() df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms']) df_bms = df_data['bms'] #读取结果数据库数据........................................................................................................................................................ host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com' port=3306 db='qx_cas' user='qx_read' password='Qx@123456' mode=1 tablename1='cellstateestimation_soh' tablename2='cellstateestimation_uniform_socvoltdiff' #电池诊断................................................................................................................................................................ DBRead=DBDownload.DBDownload(host, port, db, user, password,mode) with DBRead as DBRead: df_soh=DBRead.getdata('time_st,sn,soh,cellsoh', tablename=tablename1, sn=sn, timename='time_sp', st=start_time, sp=end_time) df_uniform=DBRead.getdata('time,sn,cellsoc_diff,cellmin_num,cellmax_num', tablename=tablename2, sn=sn, timename='time', st=start_time, sp=end_time) #电池诊断................................................................................................................................................................ CellFltInfo=DataFrame(columns=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice']) df_Diag_Ram_sn = df_Diag_Ram.loc[df_Diag_Ram['product_id']==sn]#历史故障 df_Diag_Ram_sn_else = pd.concat([df_Diag_Ram,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['product_id','code','start_time','Batpos','info'],keep=False)#sn之外的故障 CellFltInfo = df_Diag_Ram_sn.drop('Batpos',axis=1) df_Diag_Ram_fix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 1] df_Diag_Ram_unfix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 0] if not df_bms.empty: df_Diag_Batdiag_update_xq=SamplingSafty.main(sn,param,df_bms,CellFltInfo)#学琦计算故障 BatDiag=CBMSBatDiag.BatDiag(sn,celltype,df_bms, df_soh, df_uniform, CellFltInfo)#鹏飞计算 df_Diag_Batdiag_update=BatDiag.diag() df_Diag_Cal_Update_add = pd.concat([CellFltInfo,df_Diag_Batdiag_update_xq,df_Diag_Batdiag_update])#重新计算的该SN下的故障 df_Diag_Cal_Update_temp = df_Diag_Cal_Update_add.drop_duplicates(subset=['product_id','start_time','end_time','code','info'], keep='first', inplace=False, ignore_index=False)#去除相同故障 df_Diag_cal_early_unfix = pd.DataFrame() df_sn_car_fix = pd.DataFrame() df_Diag_Cal_finish = pd.DataFrame() df_Diag_cal_early_fix = pd.DataFrame() if not df_Diag_Cal_Update_temp.empty: #------------------------------合并两者故障,并将同一sn号下的车辆故障放一起---------------------------------------------- df_Diag_Cal_Update = df_Diag_Cal_Update_temp#替换上一行 df_Diag_Cal_finish = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] != '0000-00-00 00:00:00'] df_Diag_Cal_new = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] == '0000-00-00 00:00:00'] df_Diag_Cal_finish['Batpos'] = 1 df_Diag_Cal_new['Batpos'] = 0 df_feishu_sta = df_read_Yunw.loc[(df_read_Yunw['product_id'] == sn)]#飞书中该sn车辆状态 if df_feishu_sta.empty: df_Diag_cal_early_unfix = df_Diag_Cal_new#如果为新出故障,则直接记录在df_diag_frame中 else: df_Diag_cal_later = df_Diag_Cal_new.loc[df_Diag_Cal_new['start_time'] > max(df_feishu_sta['start_time'])]#故障表中故障时间晚于飞书记录时间 df_Diag_cal_early = pd.concat([df_Diag_Cal_new,df_Diag_cal_later,df_Diag_cal_later]).drop_duplicates(subset=['product_id','code','start_time'],keep=False)#故障表中故障时间早于飞书记录时间 df_feishu_sta_latest = df_feishu_sta.loc[df_feishu_sta['start_time'] == max(df_feishu_sta['start_time'])]#飞书中该SN下的最新故障 df_feishu_diag_unfix = (df_feishu_sta_latest['advice'] == '需正常返仓') | (df_feishu_sta_latest['advice'] == '需紧急返仓') df_sn_car_unfix = pd.DataFrame() if any(df_feishu_diag_unfix): df_Diag_cal_early_unfix = df_Diag_Cal_new else: df_Diag_cal_early_fix = df_Diag_cal_early df_Diag_cal_early_unfix = df_Diag_cal_later if not df_Diag_cal_early_fix.empty: df_Diag_cal_early_fix['Batpos'] = 1 df_Diag_Ram_Update = pd.concat([df_Diag_cal_early_unfix,df_Diag_cal_early_fix,df_Diag_Cal_finish]) df_Diag_Ram_Update.sort_values(by = ['start_time'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序 df_temp5 = pd.concat([df_Diag_Ram_Update,df_Diag_Ram_sn_else]) df_Diag_Ram_sum = df_temp5.drop_duplicates(subset=['product_id','start_time','end_time','code','info'], keep='first', inplace=False, ignore_index=False)#去除相同故障 df_tempnum = df_Diag_Ram_sum.groupby(['product_id']).size()#获取每个sn的故障总数 col1 = df_tempnum[df_tempnum>1].reset_index()[['product_id']]#多故障sn号 col2 = df_tempnum[df_tempnum==1].reset_index()[['product_id']]#单故障sn号 df_temp1 = pd.DataFrame() if not col1.empty: for item in col1['product_id']: temp_data = df_Diag_Ram_sum.loc[df_Diag_Ram_sum['product_id'] == item] temp_data.sort_values(by = ['start_time'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序 df_temp1 = df_temp1.append(temp_data) df_temp2 = pd.merge(col2,df_Diag_Ram_sum,on=["product_id"])#单故障码数据筛选 df_temp3 = pd.concat([df_temp1,df_temp2])#多故障及单故障合并 df_temp4 = df_temp3.reset_index(drop=True) df_Diag_Ram = df_temp4 df_Diag_Ram_fix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 1] df_Diag_Ram_unfix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 0] if len(df_Diag_Ram) > 0: df_Diag_Ram.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result.csv',index=False,encoding='GB18030') if len(df_Diag_Ram_fix) > 0: df_Diag_Ram_fix.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result_fix.csv',index=False,encoding='GB18030') if len(df_Diag_Ram_unfix) > 0: df_Diag_Ram_unfix.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problemm\result_unfix.csv',index=False,encoding='GB18030') end=time.time() print(end-start) #...............................................主函数....................................................................................................................... if __name__ == "__main__": global SNnums excelpath=r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\sn-20210903.xlsx' SNdata_6060 = pd.read_excel(excelpath, sheet_name='科易6060') SNdata_6040 = pd.read_excel(excelpath, sheet_name='科易6040') SNdata_4840 = pd.read_excel(excelpath, sheet_name='科易4840') SNdata_L7255 = pd.read_excel(excelpath, sheet_name='格林美-力信7255') SNdata_C7255 = pd.read_excel(excelpath, sheet_name='格林美-CATL7255') SNdata_U7255 = pd.read_excel(excelpath, sheet_name='优旦7255') SNnums_6060=SNdata_6060['SN号'].tolist() SNnums_6040=SNdata_6040['SN号'].tolist() SNnums_4840=SNdata_4840['SN号'].tolist() SNnums_L7255=SNdata_L7255['SN号'].tolist() SNnums_C7255=SNdata_C7255['SN号'].tolist() SNnums_U7255=SNdata_U7255['SN号'].tolist() #SNnums=SNnums_L7255 + SNnums_C7255 + SNnums_6040 + SNnums_4840 + SNnums_U7255+ SNnums_6060 # SNnums=['MGMCLN750N215I005','PK504B10100004341','PK504B00100004172','MGMLXN750N2189014'] SNnums = ['MGMLXN750N21B5004'] #SNnums_6040 mylog=log.Mylog('log_diag.txt','error') mylog.logcfg() #............................模块运行前,先读取数据库中所有结束时间为0的数据,需要从数据库中读取................ result=pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result.csv',encoding='gbk') # df_Diag_Ram=result[result['end_time']=='0000-00-00 00:00:00'] df_Diag_Ram=result#[result['Batpos'] == 0]#将故障依然存在的赋值 print('----------------输入--------') print(df_Diag_Ram) print('-------计算中-----------') #定时任务....................................................................................................................................................................... scheduler = BlockingScheduler() scheduler.add_job(diag_cal, 'interval', seconds=120, id='diag_job') try: scheduler.start() except Exception as e: scheduler.shutdown() print(repr(e)) mylog.logopt(e)