import datetime # import os import pandas as pd # import Tools # import sys # import xlutils from xlrd import open_workbook from xlutils.copy import copy # import CONFIGURE.PathSetting as PathSetting # sys.path.append(PathSetting.backend_path) from LIB.BACKEND import DBManager dbManager = DBManager.DBManager() class SignalMonitor(): def __init__(self): pass @staticmethod def _set_working_states(df_state): for i in range(0, len(df_state)): if abs(df_state.loc[i, 'current']) >= 0.45: df_state.loc[i, 'PackState'] = 0 else: df_state.loc[i, 'PackState'] = 1 # path = r'D:\daily_data_analysis_01.csv' # df_state.to_csv(path, index=True, encoding='GB2312') return df_state @staticmethod def _set_standby_states(df_state): index = 0 set = 0 while index < len(df_state)-1: index = index + 1 if set == 0: if df_state.loc[index, 'PackState'] == 1 and df_state.loc[index-1, 'PackState'] == 0: set = 1 start_time = df_state.loc[index-1, 'Timestamp'] timeDelta = datetime.timedelta(minutes=10) end_time = start_time + timeDelta df_state.loc[index, 'PackState'] = 0 else: if df_state.loc[index, 'Timestamp'] <= end_time: df_state.loc[index, 'PackState'] = 0 if abs(df_state.loc[index, 'current']) >= 0.45: start_time = df_state.loc[index-1, 'Timestamp'] timeDelta = datetime.timedelta(minutes=10) end_time = start_time + timeDelta else: set = 0 # path = r'D:\daily_data_analysis_02.csv' # df_state.to_csv(path, index=True, encoding='GB2312') return df_state @staticmethod def _set_lowpwr_states(df_state): index = 0 set = 0 while index < len(df_state)-1: index = index + 1 if df_state.loc[index,'PackState'] == 1: if set ==0: start_time = df_state.loc[index,'Timestamp'] timeDelta = datetime.timedelta(minutes=300) end_time = start_time + timeDelta set = 1 else: if df_state.loc[index,'Timestamp'] > end_time: df_state.loc[index,'PackState'] = 2 else: set = 0 # path = r'D:\daily_data_analysis_03.csv' # df_state.to_csv(path, index=True, encoding='GB2312') return df_state @staticmethod def _judge_offline_state_between_messages(sn, PackState_new, PackState_old, Timestamp_new, Timestamp_old, lat, long, df_res, mode): delta_time = (Timestamp_new - Timestamp_old).total_seconds() max_state = max(PackState_new, PackState_old) if max_state == 0: if mode == 'BMS': thres1 = 60 thres2 = 300 elif mode == 'GPS': thres1 = 120 thres2 = 600 elif max_state == 1: if mode == 'BMS': thres1 = 1200 thres2 = 2400 elif mode == 'GPS': thres1 = 2400 thres2 = 4800 else: if mode == 'BMS': thres1 = 3600 thres2 = 7200 elif mode == 'GPS': thres1 = 7200 thres2 = 14400 if delta_time <= thres1: LineState = 0 elif delta_time <= thres2: LineState = 1 else: LineState = 2 if LineState > 0: if mode == 'BMS': df_res = df_res.append({'sn':sn[0], 'PackState':PackState_new*16+PackState_old, 'LineState':LineState, 'StartTime':Timestamp_old, 'EndTime':Timestamp_new, 'OfflineTime':delta_time}, ignore_index=True) elif mode == 'GPS': df_res = df_res.append({'sn':sn[0], 'PackState':PackState_new*16+PackState_old, 'LineState':LineState, 'StartTime':Timestamp_old, 'EndTime':Timestamp_new, 'OfflineTime':delta_time, 'latitude':lat, 'longitude':long}, ignore_index=True) return LineState, df_res @staticmethod def _get_offline_info(sn, df_state, df_last_state, df_res, mode): index = 0 if len(df_last_state) == 0: df_state.loc[0,'LineState'] = 0 while index < len(df_state)-1: index = index + 1 if mode == 'BMS': LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], None, None, df_res, mode=mode) elif mode == 'GPS': LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], df_state.loc[index-1, 'latitude'], df_state.loc[index-1, 'longitude'], df_res, mode=mode) df_state.loc[index, 'LineState'] = LineState else: df_last_info = df_last_state.loc[len(df_last_state) - 1] if mode == 'BMS': df_state.loc[0,'LineState'], df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[0, 'PackState'], df_last_info['PackState'], df_state.loc[0, 'Timestamp'], df_last_info['Timestamp'], None, None, df_res, mode=mode) elif mode == 'GPS': df_state.loc[0,'LineState'], df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[0, 'PackState'], df_last_info['PackState'], df_state.loc[0, 'Timestamp'], df_last_info['Timestamp'], df_state.loc[0, 'latitude'], df_state.loc[0, 'longitude'], df_res, mode=mode) while index < len(df_state)-1: index = index + 1 if mode == 'BMS': LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], None, None, df_res, mode=mode) elif mode == 'GPS': LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], df_state.loc[index-1, 'latitude'], df_state.loc[index-1, 'longitude'], df_res, mode=mode) df_state.loc[index, 'LineState'] = LineState # SignalMonitor._file_write(r'D:\result_03.xls', df_state) return df_res @staticmethod def _set_gps_working_states(df_state, df_state_gps): for i in range(0, len(df_state_gps)): if df_state_gps.loc[i, 'Timestamp'] <= df_state.loc[0, 'Timestamp']: df_state_gps.loc[i, 'PackState'] = df_state.loc[0, 'PackState'] elif df_state_gps.loc[i, 'Timestamp'] >= df_state.loc[len(df_state)-1, 'Timestamp']: df_state_gps.loc[i:len(df_state_gps)-1, 'PackState'] = df_state.loc[len(df_state)-1, 'PackState'] break else: index0 = max(df_state[df_state['Timestamp'] <= df_state_gps.loc[i, 'Timestamp']].index) index1 = min(df_state[df_state['Timestamp'] >= df_state_gps.loc[i, 'Timestamp']].index) front = (df_state_gps.loc[i, 'Timestamp'] - df_state.loc[index0, 'Timestamp']).total_seconds() back = (df_state.loc[index1, 'Timestamp'] - df_state_gps.loc[i, 'Timestamp']).total_seconds() if front > back: df_state_gps.loc[i, 'PackState'] = df_state.loc[index1, 'PackState'] elif front == back: df_state_gps.loc[i, 'PackState'] = max(df_state.loc[index1, 'PackState'], df_state.loc[index0, 'PackState']) else: df_state_gps.loc[i, 'PackState'] = df_state.loc[index0, 'PackState'] return df_state_gps @staticmethod def _file_write(path, df_res): r_xls = open_workbook(path) # 读取excel文件 sheet = len(r_xls.sheets()) row = r_xls.sheets()[sheet-1].nrows # 获取已有的行数 excel = copy(r_xls) # 将xlrd的对象转化为xlwt的对象 table = excel.get_sheet(sheet-1) # 获取要操作的sheet #对excel表追加一行内容 # print(row) current_row = row num = len(df_res.columns) for i in range(0, len(df_res)): for j in range(0, num): table.write(current_row, j, df_res.iloc[i][j]) #括号内分别为行数、列数、内容 current_row = current_row + 1 if current_row == 65500: table = r_xls.add_sheet('sheet'+ str(sheet)) sheet = sheet + 1 current_row = 0 excel.save(path) # 保存并覆盖文件 def get_bms_offline_stat(self, sn, st, et, df_res, df_last_state, cal_Period=24): # 计算一段时间内BMS信号统计数据 df_state = pd.DataFrame(columns=['sn', 'current', 'Timestamp', 'PackState', 'LineState']) # print("start_time is {}, limit_time is {}".format(st, limit_time)) relative_delta_time = datetime.timedelta(hours=6) # 将时间往前推nh,以便更准确计算BMS状态 end_time = st + datetime.timedelta(hours=cal_Period) # 结束时间 relative_time = st - relative_delta_time relative_time = relative_time.strftime('%Y-%m-%d %H:%M:%S') end_time_str = end_time.strftime('%Y-%m-%d %H:%M:%S') df_data = dbManager.get_data(sn=sn[0], start_time=relative_time, end_time=end_time_str, data_groups=['bms']) df_bms = df_data['bms'] df_bms = df_bms.drop_duplicates(['时间戳']) df_bms = df_bms.reset_index(drop=True) df_bms['时间戳'] = pd.to_datetime(df_bms['时间戳']) print('{} BMS data read Well Done!'.format(sn[0])) df_state['current'] = df_bms['总电流[A]'] df_state['Timestamp'] = df_bms['时间戳'] df_state['sn'] = sn[0] if len(df_state[df_state['Timestamp'] >= st]) > 0: # 无数据则不计算 df_state = SignalMonitor._set_working_states(df_state) # 根据电流初步定义BMS状态 if len(df_state) > 1: df_state = SignalMonitor._set_standby_states(df_state) # 根据静置时间修正standby状态 df_state = SignalMonitor._set_lowpwr_states(df_state) # 根据静置持续时间设置lowpwr状态 df_state_spec = df_state[df_state['Timestamp'] >= st] df_state_spec = df_state_spec.reset_index(drop=True) # 去除为准确计算BMS状态而多获取的数据 df_res = SignalMonitor._get_offline_info(sn, df_state_spec, df_last_state, df_res, 'BMS') # 计算设定时间段内信号质量数据 df_last_info = df_state_spec.loc[len(df_state_spec) - 1] df_last_state = df_last_state.append(df_last_info) # 记录该段时间内最后数据 df_last_state = df_last_state.reset_index(drop=True) return df_res,df_state, df_last_state def get_gps_offline_stat(self,sn, st, et, df_state, df_res_gps, df_last_state_gps, cal_Period=24): # 计算一段时间内GPS信号统计数据 df_state_gps = pd.DataFrame(columns=['sn', 'Timestamp', 'PackState', 'LineState', 'latitude', 'longitude']) # print("start_time is {}, limit_time is {}".format(st, limit_time)) end_time = st + datetime.timedelta(hours=cal_Period) # 结束时间 start_time_str = st.strftime('%Y-%m-%d %H:%M:%S') end_time_str = end_time.strftime('%Y-%m-%d %H:%M:%S') df_data = dbManager.get_data(sn=sn[0], start_time=start_time_str, end_time=end_time_str, data_groups=['gps']) df_gps = df_data['gps'] df_gps = df_gps.drop_duplicates(['时间戳']) df_gps = df_gps.reset_index(drop=True) df_gps['时间戳'] = pd.to_datetime(df_gps['时间戳']) print('{} GPS data read Well Done!'.format(sn[0])) df_state_gps['Timestamp'] = df_gps['时间戳'] df_state_gps['sn'] = sn[0] df_state_gps['latitude'] = df_gps['纬度'] df_state_gps['longitude'] = df_gps['经度'] if len(df_state_gps) > 0: # 无数据则不计算 df_state_gps = SignalMonitor._set_gps_working_states(df_state, df_state_gps) # 根据同时间段内BMS状态计算GPS数据对应的BMS状态 df_res_gps = SignalMonitor._get_offline_info(sn, df_state_gps, df_last_state_gps, df_res_gps, 'GPS') # 计算设定时间段内信号质量数据 df_last_info = df_state_gps.loc[len(df_state_gps) - 1] df_last_state_gps = df_last_state_gps.append(df_last_info) # 记录该段时间内最后数据 df_last_state_gps = df_last_state_gps.reset_index(drop=True) return df_res_gps, df_last_state_gps