import CBMSBatChrgcopy import log #coding=utf-8 import datetime import pandas as pd from LIB.BACKEND import DBManager, Log from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import DBDownload # from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import log from sqlalchemy import create_engine import time, datetime import os import numpy as np from apscheduler.schedulers.blocking import BlockingScheduler import QX_BatteryParam import pymysql import matplotlib.pyplot as plt #...............................................主函数....................................................................................................................... if __name__ == "__main__": excelpath=r'D:\Work\Code_write\data_analyze_platform\test\lzx\01Qixiang\01电压排序\01算法\sn.csv' SNdata_didi_trw = pd.read_csv(excelpath, encoding='gbk') SNnums_didi_trw = SNdata_didi_trw['device_id'].tolist() SNnums = SNnums_didi_trw mylog=log.Mylog('log_diag.txt','error') mylog.logcfg() #print('---------------计算中-------------------------') start=time.time() for sn in SNnums: #读取结果数据库数据........................................................................................................................................................ host='47.97.96.242' port=3306 db='didi' user='root' password='qx123456' tablename='didi_data' param='date,device_id,bat_model,position,current,soc,celltemp,cellvolt_2,cellvolt_3,cellvolt_4,cellvolt_5,cellvolt_6,cellvolt_7,cellvolt_8,cellvolt_9' mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db) cursor = mysql.cursor() sql = "select %s from %s where device_id='%s'" %(param,tablename,sn) cursor.execute(sql) res = cursor.fetchall() df_bms= pd.DataFrame(res,columns=param.split(',')) cursor.close() mysql.close() #电压排序................................................................................................................................................................ df_temp_crnt = df_bms[df_bms['current']>1]#筛选充电数据 df_temp = df_temp_crnt[df_temp_crnt['position']==2]#筛选充电数据 df_chrgr = df_temp.reset_index(drop=True) df_chrgr_cellvolt = df_chrgr[['cellvolt_2','cellvolt_3','cellvolt_4','cellvolt_5','cellvolt_6','cellvolt_7','cellvolt_8','cellvolt_9']] df_chrgr_cellvolt_change = np.array(df_chrgr_cellvolt)#转数组 df_chrgr_cellvolt_sort = np.argsort(df_chrgr_cellvolt_change)#取排序号 df_cellvolt_sort_dif = np.diff(df_chrgr_cellvolt_sort,axis=0)#一次微分 df_cellvolt_sort_dif_confir = np.nonzero(df_cellvolt_sort_dif)#取非0值 Cell_num = set(df_cellvolt_sort_dif_confir[1])#寻找哪号电芯序号异常np.unique X_col=np.size(df_chrgr_cellvolt,0) #计算 X 的列数 #df_cellvolt_sort_difdif = np.diff(df_cellvolt_sort_dif)#二次微分 problem_data = pd.DataFrame() temp_list = [] for item in Cell_num: temp_list.append(np.sum(df_cellvolt_sort_dif_confir[1]==item) > X_col/20) if any(temp_list):#序号变化的电芯 data_temp = pd.DataFrame(df_chrgr_cellvolt_sort) #problem_data = pd.concat([df_chrgr,data_temp], axis = 1) problem_data = data_temp sn=sn.replace('/','') if not problem_data.empty: problem_data.to_csv(r'D:\Work\Code_write\data_analyze_platform\test\lzx\01Qixiang\01电压排序\01算法\DBDownload\\'+'CBMS_diag_'+sn+'.csv',encoding='gbk') #print(problem_data) # ax=problem_data.plot(marker='*',markersize=15, figsize=(16,9)) # plt.xlabel('时间', fontsize=20) # plt.ylabel('排序变化', fontsize=20) # plt.xticks(fontsize=15) # plt.yticks(fontsize=15) # # plt.ylim(-30,30) # plt.title(str(sn),fontsize=25) # plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 # plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 # plt.legend(bbox_to_anchor=(1, 0), loc=3, fontsize=14) # plt.show() # fig = ax.get_figure() # fig.savefig(r'D:\Work\Code_write\data_analyze_platform\test\lzx\01Qixiang\01电压排序\01算法\DBDownload\\'+str(sn)+'电压排序.png') end=time.time() print('--------------计算时间:------------') print(end-start) # print(df_soh)