import datetime
# import os
import pandas as pd
# import Tools
# import sys
# import xlutils
from xlrd import open_workbook
from xlutils.copy import copy

# import CONFIGURE.PathSetting as PathSetting
# sys.path.append(PathSetting.backend_path)
from LIB.BACKEND import DBManager
dbManager = DBManager.DBManager()

class SignalMonitor():
    def __init__(self):
        pass

    @staticmethod
    def _set_working_states(df_state):
        for i in range(0, len(df_state)):
            if abs(df_state.loc[i, 'current']) >= 0.45:
                df_state.loc[i, 'PackState'] = 0
            else:
                df_state.loc[i, 'PackState'] = 1
        # path = r'D:\daily_data_analysis_01.csv'
        # df_state.to_csv(path, index=True, encoding='GB2312')
        return df_state
    
    @staticmethod
    def _set_standby_states(df_state):
        index = 0
        set = 0
        while index < len(df_state)-1:
            index = index + 1
            if set == 0:
                if df_state.loc[index, 'PackState'] == 1 and df_state.loc[index-1, 'PackState'] == 0:
                    set = 1
                    start_time = df_state.loc[index-1, 'Timestamp']
                    timeDelta = datetime.timedelta(minutes=10)
                    end_time = start_time + timeDelta
                    df_state.loc[index, 'PackState'] = 0
            else:
                if df_state.loc[index, 'Timestamp'] <= end_time:
                    df_state.loc[index, 'PackState'] = 0
                    if abs(df_state.loc[index, 'current']) >= 0.45:
                        start_time = df_state.loc[index-1, 'Timestamp']
                        timeDelta = datetime.timedelta(minutes=10)
                        end_time = start_time + timeDelta
                else:
                    set = 0
        # path = r'D:\daily_data_analysis_02.csv'
        # df_state.to_csv(path, index=True, encoding='GB2312')
        return df_state
    
    @staticmethod
    def _set_lowpwr_states(df_state):
        index = 0
        set = 0
        while index < len(df_state)-1:
            index = index + 1
            if df_state.loc[index,'PackState'] == 1:
                if set ==0:
                    start_time = df_state.loc[index,'Timestamp']
                    timeDelta = datetime.timedelta(minutes=300)
                    end_time = start_time + timeDelta
                    set = 1
                else:
                    if df_state.loc[index,'Timestamp'] > end_time:
                        df_state.loc[index,'PackState'] = 2
            else:
                set = 0
        # path = r'D:\daily_data_analysis_03.csv'
        # df_state.to_csv(path, index=True, encoding='GB2312')
        return df_state
    
    @staticmethod
    def _judge_offline_state_between_messages(sn, PackState_new, PackState_old, Timestamp_new, Timestamp_old, lat, long, df_res, mode):
        delta_time = (Timestamp_new - Timestamp_old).total_seconds()
        max_state = max(PackState_new, PackState_old)
        if max_state == 0:
            if mode == 'BMS':
                thres1 = 60
                thres2 = 300
            elif mode == 'GPS':
                thres1 = 120
                thres2 = 600
        elif max_state == 1:
            if mode == 'BMS':
                thres1 = 1200
                thres2 = 2400
            elif mode == 'GPS':
                thres1 = 2400
                thres2 = 4800
        else:
            if mode == 'BMS':
                thres1 = 3600
                thres2 = 7200
            elif mode == 'GPS':
                thres1 = 7200
                thres2 = 14400
        
        if delta_time <= thres1:
            LineState = 0
        elif delta_time <= thres2:
            LineState = 1
        else:
            LineState = 2
        
        if LineState > 0:
            if mode == 'BMS':
                df_res = df_res.append({'sn':sn[0], 'PackState':PackState_new*16+PackState_old, 'LineState':LineState, 'StartTime':Timestamp_old, 
                        'EndTime':Timestamp_new, 'OfflineTime':delta_time}, ignore_index=True)
            elif mode == 'GPS':
                df_res = df_res.append({'sn':sn[0], 'PackState':PackState_new*16+PackState_old, 'LineState':LineState, 'StartTime':Timestamp_old, 
                    'EndTime':Timestamp_new, 'OfflineTime':delta_time, 'latitude':lat, 'longitude':long}, ignore_index=True)
        return LineState, df_res

    @staticmethod
    def _get_offline_info(sn, df_state, df_last_state, df_res, mode):
        index = 0
        if len(df_last_state) == 0:
            df_state.loc[0,'LineState'] = 0
            while index < len(df_state)-1:
                index = index + 1
                if mode == 'BMS':
                    LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], 
                    df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], None, None,
                    df_res, mode=mode)
                elif mode == 'GPS':
                    LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], 
                    df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], df_state.loc[index-1, 'latitude'], df_state.loc[index-1, 'longitude'],
                    df_res, mode=mode)
                df_state.loc[index, 'LineState'] = LineState
        else:
            df_last_info = df_last_state.loc[len(df_last_state) - 1]
            if mode == 'BMS':
                df_state.loc[0,'LineState'], df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[0, 'PackState'], df_last_info['PackState'], 
                    df_state.loc[0, 'Timestamp'], df_last_info['Timestamp'], None, None,
                    df_res, mode=mode)
            elif mode == 'GPS':
                df_state.loc[0,'LineState'], df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[0, 'PackState'], df_last_info['PackState'], 
                    df_state.loc[0, 'Timestamp'], df_last_info['Timestamp'], df_state.loc[0, 'latitude'], df_state.loc[0, 'longitude'],
                    df_res, mode=mode)
            while index < len(df_state)-1:
                index = index + 1
                if mode == 'BMS':
                    LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], 
                    df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], None, None,
                    df_res, mode=mode)
                elif mode == 'GPS':
                    LineState, df_res = SignalMonitor._judge_offline_state_between_messages(sn, df_state.loc[index, 'PackState'], df_state.loc[index-1, 'PackState'], 
                    df_state.loc[index, 'Timestamp'], df_state.loc[index-1, 'Timestamp'], df_state.loc[index-1, 'latitude'], df_state.loc[index-1, 'longitude'],
                    df_res, mode=mode)
                df_state.loc[index, 'LineState'] = LineState
        # SignalMonitor._file_write(r'D:\result_03.xls', df_state)
        return df_res
    
    @staticmethod
    def _set_gps_working_states(df_state, df_state_gps):
        for i in range(0, len(df_state_gps)):
            if df_state_gps.loc[i, 'Timestamp'] <= df_state.loc[0, 'Timestamp']:
                df_state_gps.loc[i, 'PackState'] = df_state.loc[0, 'PackState']
            elif df_state_gps.loc[i, 'Timestamp'] >= df_state.loc[len(df_state)-1, 'Timestamp']:
                df_state_gps.loc[i:len(df_state_gps)-1, 'PackState'] = df_state.loc[len(df_state)-1, 'PackState']
                break
            else:
                index0 = max(df_state[df_state['Timestamp'] <= df_state_gps.loc[i, 'Timestamp']].index)
                index1 = min(df_state[df_state['Timestamp'] >= df_state_gps.loc[i, 'Timestamp']].index)
                front = (df_state_gps.loc[i, 'Timestamp'] - df_state.loc[index0, 'Timestamp']).total_seconds()
                back = (df_state.loc[index1, 'Timestamp'] - df_state_gps.loc[i, 'Timestamp']).total_seconds()
                if front > back:
                    df_state_gps.loc[i, 'PackState'] = df_state.loc[index1, 'PackState']
                elif front == back:
                    df_state_gps.loc[i, 'PackState'] = max(df_state.loc[index1, 'PackState'], df_state.loc[index0, 'PackState'])
                else:
                    df_state_gps.loc[i, 'PackState'] = df_state.loc[index0, 'PackState']
        return df_state_gps
    
    @staticmethod
    def _file_write(path, df_res):
        r_xls = open_workbook(path) # 读取excel文件
        sheet = len(r_xls.sheets())
        row = r_xls.sheets()[sheet-1].nrows # 获取已有的行数
        excel = copy(r_xls) # 将xlrd的对象转化为xlwt的对象
        table = excel.get_sheet(sheet-1) # 获取要操作的sheet
        #对excel表追加一行内容
        # print(row)
        current_row = row
        num = len(df_res.columns)
        for i in range(0, len(df_res)):
            for j in range(0, num):
                table.write(current_row, j, df_res.iloc[i][j]) #括号内分别为行数、列数、内容
            current_row = current_row + 1
            if current_row == 65500:
                table = r_xls.add_sheet('sheet'+ str(sheet))
                sheet = sheet + 1
                current_row = 0
        excel.save(path) # 保存并覆盖文件
    
    def get_bms_offline_stat(self, sn, st, et, df_res, df_last_state, cal_Period=24):    # 计算一段时间内BMS信号统计数据
        df_state = pd.DataFrame(columns=['sn', 'current', 'Timestamp', 'PackState', 'LineState'])
        # print("start_time is {}, limit_time is {}".format(st, limit_time))
        relative_delta_time = datetime.timedelta(hours=6)    # 将时间往前推nh,以便更准确计算BMS状态
        end_time = st + datetime.timedelta(hours=cal_Period)    # 结束时间
        relative_time = st - relative_delta_time
        relative_time = relative_time.strftime('%Y-%m-%d %H:%M:%S')
        end_time_str = end_time.strftime('%Y-%m-%d %H:%M:%S')
        df_data = dbManager.get_data(sn=sn[0], start_time=relative_time, end_time=end_time_str, data_groups=['bms'])
        df_bms = df_data['bms']
        df_bms = df_bms.drop_duplicates(['时间戳'])
        df_bms = df_bms.reset_index(drop=True)
        df_bms['时间戳'] = pd.to_datetime(df_bms['时间戳'])
        print('{} BMS data read Well Done!'.format(sn[0]))

        df_state['current'] = df_bms['总电流[A]']
        df_state['Timestamp'] = df_bms['时间戳']
        df_state['sn'] = sn[0]

        if len(df_state[df_state['Timestamp'] >= st]) > 0:     # 无数据则不计算
            df_state = SignalMonitor._set_working_states(df_state)    # 根据电流初步定义BMS状态
            if len(df_state) > 1:
                df_state = SignalMonitor._set_standby_states(df_state)    # 根据静置时间修正standby状态
                df_state = SignalMonitor._set_lowpwr_states(df_state)    # 根据静置持续时间设置lowpwr状态
            df_state_spec = df_state[df_state['Timestamp'] >= st]
            df_state_spec = df_state_spec.reset_index(drop=True)    # 去除为准确计算BMS状态而多获取的数据
            df_res = SignalMonitor._get_offline_info(sn, df_state_spec, df_last_state, df_res, 'BMS')    # 计算设定时间段内信号质量数据
            df_last_info = df_state_spec.loc[len(df_state_spec) - 1]
            df_last_state = df_last_state.append(df_last_info)    # 记录该段时间内最后数据
            df_last_state = df_last_state.reset_index(drop=True)
        return df_res,df_state, df_last_state
    
    def get_gps_offline_stat(self,sn, st, et, df_state, df_res_gps, df_last_state_gps, cal_Period=24):    # 计算一段时间内GPS信号统计数据
        df_state_gps = pd.DataFrame(columns=['sn', 'Timestamp', 'PackState', 'LineState', 'latitude', 'longitude'])
        # print("start_time is {}, limit_time is {}".format(st, limit_time))
        end_time = st + datetime.timedelta(hours=cal_Period)    # 结束时间
        start_time_str = st.strftime('%Y-%m-%d %H:%M:%S')
        end_time_str = end_time.strftime('%Y-%m-%d %H:%M:%S')
        df_data = dbManager.get_data(sn=sn[0], start_time=start_time_str, end_time=end_time_str, data_groups=['gps'])
        df_gps = df_data['gps']
        df_gps = df_gps.drop_duplicates(['时间戳'])
        df_gps = df_gps.reset_index(drop=True)
        df_gps['时间戳'] = pd.to_datetime(df_gps['时间戳'])
        print('{} GPS data read Well Done!'.format(sn[0]))

        df_state_gps['Timestamp'] = df_gps['时间戳']
        df_state_gps['sn'] = sn[0]
        df_state_gps['latitude'] = df_gps['纬度']
        df_state_gps['longitude'] = df_gps['经度']


        if len(df_state_gps) > 0:    # 无数据则不计算    
            df_state_gps = SignalMonitor._set_gps_working_states(df_state, df_state_gps)    # 根据同时间段内BMS状态计算GPS数据对应的BMS状态
            df_res_gps = SignalMonitor._get_offline_info(sn, df_state_gps, df_last_state_gps, df_res_gps, 'GPS')    # 计算设定时间段内信号质量数据
            df_last_info = df_state_gps.loc[len(df_state_gps) - 1]
            df_last_state_gps = df_last_state_gps.append(df_last_info)    # 记录该段时间内最后数据
            df_last_state_gps = df_last_state_gps.reset_index(drop=True)
        return df_res_gps, df_last_state_gps