import pandas as pd import numpy as np import datetime import BatParam class BatInterShort(): def __init__(self,sn,celltype,df_bms,df_soh,df_last,df_last1,df_last2,df_last3,df_lfp): #参数初始化 if (not df_lfp.empty) and celltype>50: df_bms=pd.concat([df_lfp, df_bms], ignore_index=True) df_bms.reset_index(inplace=True,drop=True) else: pass self.sn=sn self.celltype=celltype self.param=BatParam.BatParam(celltype) self.packcrnt=df_bms['PackCrnt']*self.param.PackCrntDec self.packvolt=df_bms['PackVolt'] self.bms_soc=df_bms['PackSOC'] df_bms['time']=pd.to_datetime(df_bms['time'], format='%Y-%m-%d %H:%M:%S') self.bmstime= df_bms['time'] self.df_bms=df_bms self.df_soh=df_soh self.df_last=df_last self.df_last1=df_last1 self.df_last2=df_last2 self.df_last3=df_last3 self.df_lfp=df_lfp self.cellvolt_name=['CellVolt'+str(x) for x in range(1,self.param.CellVoltNums+1)] self.celltemp_name=['CellTemp'+str(x) for x in range(1,self.param.CellTempNums+1)] def intershort(self): if self.celltype<=50: df_res, df_ram_last, df_ram_last1, df_ram_last3=self._ncm_intershort() return df_res, df_ram_last, df_ram_last1,self.df_last2, df_ram_last3,self.df_lfp else: df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp=self._lfp_intershort() return df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp #定义滑动滤波函数.................................................................................... def _np_move_avg(self,a, n, mode="same"): return (np.convolve(a, np.ones((n,)) / n, mode=mode)) #寻找当前行数据的最小温度值............................................................................. def _celltemp_weight(self,num): celltemp = list(self.df_bms.loc[num,self.celltemp_name]) celltemp=min(celltemp) self.celltemp=celltemp if self.celltype>50: if celltemp>=25: self.tempweight=1 self.StandardStandingTime=4500 elif celltemp>=15: self.tempweight=0.6 self.StandardStandingTime=7200 elif celltemp>=5: self.tempweight=0.2 self.StandardStandingTime=10800 else: self.tempweight=0.1 self.StandardStandingTime=10800 else: if celltemp>=25: self.tempweight=1 self.StandardStandingTime=3600 elif celltemp>=15: self.tempweight=0.8 self.StandardStandingTime=5400 elif celltemp>=5: self.tempweight=0.6 self.StandardStandingTime=7200 else: self.tempweight=0.2 self.StandardStandingTime=10800 #获取前5min每个电压的平均值........................................................................................ def _avgvolt_get(self,num): time_now=self.df_bms.loc[num, 'time'] time_last=time_now-datetime.timedelta(seconds=300) df_volt=self.df_bms[(self.df_bms['time']>=time_last) & (self.df_bms['time']<=time_now)] df_volt=df_volt[self.cellvolt_name] df_volt=df_volt[(df_volt>2) & (df_volt<4.5)] df_volt=df_volt.dropna() cellvolt_std=df_volt.std(axis=0) if len(df_volt)>2 and max(cellvolt_std)<0.005: cellvolt_sum=df_volt.sum(0)-df_volt.max(0)-df_volt.min(0) cellvolt_mean=cellvolt_sum/(len(df_volt)-2) cellvolt=cellvolt_mean elif len(df_volt)==2: # df_volt=pd.DataFrame(df_volt,dtype=np.float) if max(abs(df_volt.iloc[1]-df_volt.iloc[0]))<0.003: cellvolt=df_volt.mean(0) else: cellvolt=pd.DataFrame() elif len(df_volt)==1: cellvolt=df_volt.iloc[0] else: cellvolt=pd.DataFrame() return cellvolt #获取当前行所有电压数据........................................................................................ def _cellvolt_get(self,num): cellvolt = np.array(self.df_bms.loc[num,self.cellvolt_name]) return cellvolt #获取当前行所有soc差........................................................................................... def _celldeltsoc_get(self,cellvolt_list,dict_baltime,capacity): cellsoc=[] celldeltsoc=[] for j in range(1, self.param.CellVoltNums+1): #获取每个电芯电压对应的SOC值 cellvolt=cellvolt_list[j-1] ocv_soc=np.interp(cellvolt,self.param.LookTab_OCV,self.param.LookTab_SOC) if j in dict_baltime.keys(): ocv_soc=ocv_soc+dict_baltime[j]*self.param.BalCurrent/(capacity*3600) #补偿均衡电流 else: pass cellsoc.append(ocv_soc) cellsocmean=(sum(cellsoc)-max(cellsoc)-min(cellsoc))/(len(cellsoc)-2) for j in range(len(cellsoc)): #计算每个电芯的soc差 celldeltsoc.append(cellsoc[j]-cellsocmean) return np.array(celldeltsoc), np.array(cellsoc) #获取所有电芯的As差 def _cellDeltAs_get(self,chrg_st,chrg_end,dict_baltime): cellAs=[] celldeltAs=[] for j in range(1, self.param.CellVoltNums+1): #获取每个电芯电压>峰值电压的充入As数 if j in dict_baltime.keys(): #补偿均衡电流 As=-self.param.BalCurrent*dict_baltime[j] else: As=0 As_tatol=0 symbol=0 for m in range(chrg_st+1,chrg_end): As=As-self.packcrnt[m]*(self.bmstime[m]-self.bmstime[m-1]).total_seconds() if symbol<5: if self.df_bms.loc[m,'CellVolt'+str(j)]>self.param.PeakCellVolt[symbol]: As_tatol=As_tatol+As symbol=symbol+1 else: continue else: cellAs.append(As_tatol/5) break cellAsmean=(sum(cellAs)-max(cellAs)-min(cellAs))/(len(cellAs)-2) for j in range(len(cellAs)): #计算每个电芯的soc差 celldeltAs.append(cellAs[j]-cellAsmean) return np.array(celldeltAs) #计算每个电芯的均衡时长.......................................................................................................................... def _bal_time(self,dict_bal): dict_baltime={} dict_baltime1={} for key in dict_bal: count=1 x=eval(key) while x>0: if x & 1==1: #判断最后一位是否为1 if count in dict_baltime.keys(): dict_baltime[count] = dict_baltime[count] + dict_bal[key] else: dict_baltime[count] = dict_bal[key] else: pass count += 1 x >>= 1 #右移一位 dict_baltime=dict(sorted(dict_baltime.items(),key=lambda dict_baltime:dict_baltime[0])) for key in dict_baltime: #解析均衡的电芯编号 if self.celltype==1: #科易6040 if key<14: dict_baltime1[key]=dict_baltime[key] elif key<18: dict_baltime1[key-1]=dict_baltime[key] else: dict_baltime1[key-3]=dict_baltime[key] elif self.celltype==1: #科易4840 if key<4: dict_baltime1[key-1]=dict_baltime[key] elif key<8: dict_baltime1[key-1]=dict_baltime[key] elif key<14: dict_baltime1[key-3]=dict_baltime[key] elif key<18: dict_baltime1[key-4]=dict_baltime[key] else: dict_baltime1[key-6]=dict_baltime[key] else: dict_baltime1=dict_baltime return dict_baltime1 #三元电池的内短路电流计算........................................................................................................................................................... def _ncm_intershort(self): df_res=pd.DataFrame(columns=['time_st', 'time_sp', 'sn', 'method','short_current','baltime']) df_ram_last=self.df_last df_ram_last1=self.df_last1 df_ram_last3=self.df_last3 #容量初始化 if self.df_soh.empty: batsoh=self.df_bms.loc[0,'PackSOH'] capacity=self.param.Capacity*batsoh/100 else: batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh'] capacity=self.param.Capacity*batsoh/100 #参数初始化 if df_ram_last.empty: firsttime=1 dict_bal={} else: deltsoc_last=df_ram_last.loc[0,'deltsoc'] cellsoc_last=df_ram_last.loc[0,'cellsoc'] time_last=df_ram_last.loc[0,'time'] firsttime=0 dict_bal={} if df_ram_last1.empty: firsttime1=1 dict_bal1={} else: deltsoc_last1=df_ram_last1.loc[0,'deltsoc1'] time_last1=df_ram_last1.loc[0,'time1'] firsttime1=0 dict_bal1={} if df_ram_last3.empty: standingtime=0 standingtime1=0 standingtime2=0 else: standingtime=df_ram_last3.loc[0,'standingtime'] standingtime1=df_ram_last3.loc[0,'standingtime1'] standingtime2=df_ram_last3.loc[0,'standingtime2'] dict_bal1={} if abs(self.packcrnt[0])<0.01 and standingtime>1 and standingtime1>1: standingtime=standingtime+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds() standingtime1=standingtime1+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds() else: pass for i in range(1,len(self.df_bms)-1): if firsttime1==0: #满电静置算法--计算均衡状态对应的均衡时间 try: balstat=int(self.df_bms.loc[i,'单体均衡状态']) if balstat>0.5: bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长 bal_step=int(bal_step) if str(balstat) in dict_bal1.keys(): dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step else: dict_bal1[str(balstat)]=bal_step else: pass except: dict_bal1={} else: pass if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1 and abs(self.packcrnt[i+1]) < 0.1: delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds() standingtime=standingtime+delttime standingtime1=standingtime1+delttime self._celltemp_weight(i) #长时间静置法计算内短路-开始..................................................................................................................................... if firsttime==1: if standingtime>self.StandardStandingTime*2: #静置时间满足要求 standingtime=0 cellvolt_now=self._avgvolt_get(i) if not cellvolt_now.empty: cellvolt_min=min(cellvolt_now) cellvolt_max=max(cellvolt_now) # cellvolt_last=self._avgvolt_get(i-1) # deltvolt=max(abs(cellvolt_now-cellvolt_last)) cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC) cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC) if 23600*12: standingtime=0 cellvolt_now=self._avgvolt_get(i) if not cellvolt_now.empty: cellvolt_min=min(cellvolt_now) cellvolt_max=max(cellvolt_now) # cellvolt_last=self._avgvolt_get(i-1) # deltvolt=max(abs(cellvolt_now-cellvolt_last)) cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC) cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC) if 20.5: bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长 bal_step=int(bal_step) if str(balstat) in dict_bal.keys(): dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step else: dict_bal[str(balstat)]=bal_step else: pass except: dict_bal={} #满电静置法计算内短路-开始..................................................................................................................................................... if self.StandardStandingTimeself.param.FullChrgSoc-10 and 23600*20: deltsoc_now1, cellsoc_now1=self._celldeltsoc_get(cellvolt_now1,dict_baltime1,capacity) df_ram_last1.loc[0]=[self.sn,time_now1,deltsoc_now1] #更新RAM信息 list_sub1=deltsoc_now1-deltsoc_last1 list_pud1=(0.01*capacity*3600*1000)/(time_now1-time_last1).total_seconds() leak_current1=list_sub1*list_pud1 # leak_current1=np.array(leak_current1) leak_current1=np.round(leak_current1,3) leak_current1=list(leak_current1) df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)] #计算结果存入Dataframe time_last1=time_now1 #更新时间 deltsoc_last1=deltsoc_now1 #更新soc差 dict_bal1={} else: pass else: pass else: pass else: df_ram_last=pd.DataFrame(columns=['sn','time','deltsoc','cellsoc']) #电流>0,清空上次静置的SOC差 dict_bal={} firsttime=1 standingtime=0 standingtime1=0 pass #更新RAM的standingtime df_ram_last3.loc[0]=[self.sn,self.bmstime[len(self.bmstime)-1],standingtime,standingtime1,standingtime2] #返回计算结果 if df_res.empty: return pd.DataFrame(), df_ram_last, df_ram_last1, df_ram_last3 else: return df_res, df_ram_last, df_ram_last1, df_ram_last3 #磷酸铁锂电池内短路计算程序............................................................................................................................. def _lfp_intershort(self): column_name=['time_st', 'time_sp', 'sn', 'method','short_current','baltime'] df_res=pd.DataFrame(columns=column_name) df_ram_last=self.df_last df_ram_last1=self.df_last1 df_ram_last2=self.df_last2 df_ram_last3=self.df_last3 df_ram_lfp=pd.DataFrame(columns=self.df_bms.columns.tolist()) #容量初始化 if self.df_soh.empty: batsoh=self.df_bms.loc[0,'PackSOH'] capacity=self.param.Capacity*batsoh/100 else: batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh'] capacity=self.param.Capacity*batsoh/100 #参数初始化 if df_ram_last.empty: firsttime=1 dict_bal={} else: deltsoc_last=df_ram_last.loc[0,'deltsoc'] cellsoc_last=df_ram_last.loc[0,'cellsoc'] time_last=df_ram_last.loc[0,'time'] firsttime=0 dict_bal={} if df_ram_last1.empty: firsttime1=1 dict_bal1={} else: deltsoc_last1=df_ram_last1.loc[0,'deltsoc1'] time_last1=df_ram_last1.loc[0,'time1'] firsttime1=0 dict_bal1={} if df_ram_last2.empty: firsttime2=1 charging=0 dict_bal2={} else: deltAs_last2=df_ram_last2.loc[0,'deltAs2'] time_last2=df_ram_last2.loc[0,'time2'] firsttime2=0 charging=0 dict_bal2={} if df_ram_last3.empty: standingtime=0 standingtime1=0 standingtime2=0 else: standingtime=df_ram_last3.loc[0,'standingtime'] standingtime1=df_ram_last3.loc[0,'standingtime1'] standingtime2=df_ram_last3.loc[0,'standingtime2'] dict_bal1={} if abs(self.packcrnt[0])<0.01 and standingtime>1 and standingtime1>1: standingtime=standingtime+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds() standingtime1=standingtime1+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds() else: pass for i in range(1,len(self.df_bms)-1): #静置法计算内短路.......................................................................................................................... if firsttime1==0: #满电静置算法--计算均衡状态对应的均衡时间 try: balstat=int(self.df_bms.loc[i,'单体均衡状态']) if balstat>0.5: bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长 bal_step=int(bal_step) if str(balstat) in dict_bal1.keys(): dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step else: dict_bal1[str(balstat)]=bal_step else: pass except: dict_bal1={} else: pass if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1: delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds() standingtime=standingtime+delttime standingtime1=standingtime1+delttime self._celltemp_weight(i) #长时间静置法计算内短路-开始..................................................................................................................................... if firsttime==1: if standingtime>self.StandardStandingTime: #静置时间满足要求 cellvolt_now=self._avgvolt_get(i) if not cellvolt_now.empty: standingtime=0 cellvolt_min=min(cellvolt_now) cellvolt_max=max(cellvolt_now) # cellvolt_last=self._avgvolt_get(i-1) # deltvolt=max(abs(cellvolt_now-cellvolt_last)) cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC) cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC) if cellsoc_max3600*12: cellvolt_now=np.array(self._avgvolt_get(i)) if not cellvolt_now.empty: standingtime=0 cellvolt_min=min(cellvolt_now) cellvolt_max=max(cellvolt_now) # cellvolt_last=np.array(self._avgvolt_get(i-1)) # deltvolt=max(abs(cellvolt_now-cellvolt_last)) cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC) cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC) if cellsoc_max0.5: bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长 bal_step=int(bal_step) if str(balstat) in dict_bal.keys(): dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step else: dict_bal[str(balstat)]=bal_step else: pass except: dict_bal={} #非平台区间静置法计算内短路-开始..................................................................................................................................................... if standingtime1>self.StandardStandingTime: cellvolt_now1=self._avgvolt_get(i) if not cellvolt_now1.empty: standingtime1=0 cellvolt_max1=max(cellvolt_now1) cellvolt_min1=min(cellvolt_now1) # cellvolt_last1=self._avgvolt_get(i-1) # deltvolt1=max(abs(cellvolt_now1-cellvolt_last1)) cellsoc_max1=np.interp(cellvolt_max1,self.param.LookTab_OCV,self.param.LookTab_SOC) cellsoc_min1=np.interp(cellvolt_min1,self.param.LookTab_OCV,self.param.LookTab_SOC) if cellsoc_max13600*24: list_sub1=deltsoc_now1-deltsoc_last1 list_pud1=(0.01*capacity*3600*1000)/(time_now1-time_last1).total_seconds() leak_current1=list_sub1*list_pud1 # leak_current1=np.array(leak_current1) leak_current1=np.round(leak_current1,3) leak_current1=list(leak_current1) df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)] #计算结果存入Dataframe time_last1=time_now1 #更新时间 deltsoc_last1=deltsoc_now1 #更新soc差 dict_bal1={} else: pass else: pass else: pass else: df_ram_last=pd.DataFrame(columns=['sn','time','deltsoc','cellsoc']) #电流>0,清空上次静置的SOC差 dict_bal={} firsttime=1 standingtime=0 standingtime1=0 pass if i==len(self.df_bms)-2 and abs(self.packcrnt[i+1]) < 0.1: #数据中断后仍在静置,将最后一条数据写入RAM df_ram_lfp.loc[0]=self.df_bms.iloc[-1] else: pass #获取充电数据——开始.............................................................................................................. try: balstat=int(self.df_bms.loc[i,'单体均衡状态']) #统计均衡状态 if balstat>0.5: bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长 bal_step=int(bal_step) if str(balstat) in dict_bal2.keys(): dict_bal2[str(balstat)]=dict_bal2[str(balstat)]+bal_step else: dict_bal2[str(balstat)]=bal_step else: pass except: dict_bal2={} #判断充电状态 if charging==0: if self.packcrnt[i]<=-1 and self.packcrnt[i+1]<=-1 and self.packcrnt[i-1]<=-1: if self.bms_soc[i]<40: cellvolt_now=self._cellvolt_get(i) if min(cellvolt_now)180 or (self.packcrnt[i]>-0.1 and self.packcrnt[i-1]>-0.1) or (self.packcrnt[i]<-self.param.Capacity and self.packcrnt[i+1]<-self.param.Capacity): #如果充电过程中时间间隔>180s,则舍弃该次充电 charging=0 continue elif min(cellvolt_now)>self.param.CellFullChrgVolt-0.1: self._celltemp_weight(i) if i-chrg_start>10 and self.celltemp>20: chrg_end=i+1 charging=0 #计算漏电流值................................................................... if firsttime2==1: dict_baltime={} deltAs_last2=self._cellDeltAs_get(chrg_start,chrg_end,dict_baltime) time_last2=self.bmstime[chrg_end] df_ram_last2.loc[0]=[self.sn,time_last2,deltAs_last2] #更新RAM信息 else: dict_baltime=self._bal_time(dict_bal2) #获取每个电芯的均衡时间 deltAs_now2=self._cellDeltAs_get(chrg_start,chrg_end,dict_baltime) #获取每个电芯的As差 time_now2=self.bmstime[chrg_end] df_ram_last2.loc[0]=[self.sn,time_now2,deltAs_now2] #更新RAM信息 list_sub2=deltAs_now2-deltAs_last2 list_pud2=-1000/(time_now2-time_last2).total_seconds() leak_current2=list_sub2*list_pud2 # leak_current=np.array(leak_current) leak_current2=np.round(leak_current2,3) leak_current2=list(leak_current2) df_res.loc[len(df_res)]=[time_last2,time_now2,self.sn,3,str(leak_current2),str(dict_baltime)] #计算结果存入Dataframe deltAs_last2=deltAs_now2 time_last2=time_now2 dict_bal2={} else: charging=0 continue elif i==len(self.df_bms)-2: #数据中断后仍在充电,将前段充电数据写入RAM df_ram_lfp=self.df_bms.iloc[chrg_start:] df_ram_lfp['sn']=self.sn else: pass #更新RAM df_ram_last3.loc[0]=[self.sn,self.bmstime[len(self.bmstime)-1],standingtime,standingtime1,standingtime2] #返回结果 if df_res.empty: return pd.DataFrame(), df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3,df_ram_lfp else: return df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp