import pandas as pd import numpy as np import datetime import time import pymannkendall as mk import BatParam class SafetyWarning: def __init__(self,sn,celltype,df_short,df_uniform,OutLineVol_Rate,df_soh): #参数初始化 self.sn=sn self.celltype=celltype self.param=BatParam.BatParam(celltype) self.df_short=df_short self.df_uniform=df_uniform self.OutLineVol_Rate=OutLineVol_Rate self.df_soh=df_soh def diag(self): if self.celltype<=50: df_res=self._warning_diag() return df_res else: df_res=self._warning_diag() return df_res #电池热安全预警诊断功能................................................................................................. def _warning_diag(self): df_res=pd.DataFrame(columns=['time_st','time_sp','sn','faultcode','faultlv','faultinfo','faultadvice']) time_now=datetime.datetime.now() time_now=time_now.strftime('%Y-%m-%d %H:%M:%S') time_sp='0000-00-00 00:00:00' #参数初始化....................................... voltsigmafault=0 uniformfault=0 cellshortfault=0 volt_rate=[] R2_list=[] voltsigmafault_list=[] uniformfault_list=[] mk_trend_list=[] mk_p_list=[] mk_z_list=[] mk_Tau_list=[] mk_slope_list=[] mk_s_list=[] mk_svar_list=[] if not self.df_short.empty: short_current=self.df_short['short_current'] short_current=short_current.str.replace("[", '') short_current=short_current.str.replace("]", '') if not self.OutLineVol_Rate.empty: volt_column = ['CellVolt'+str(i) for i in range(1,self.param.CellVoltNums+1)] self.OutLineVol_Rate['VolChng_Uni']=self.OutLineVol_Rate['VolChng_Uni'].str.replace("[","") self.OutLineVol_Rate['VolChng_Uni']=self.OutLineVol_Rate['VolChng_Uni'].str.replace("]","") self.OutLineVol_Rate['VolOl_Uni']=self.OutLineVol_Rate['VolOl_Uni'].str.replace("[","") self.OutLineVol_Rate['VolOl_Uni']=self.OutLineVol_Rate['VolOl_Uni'].str.replace("]","") Volt_3Sigma=self.OutLineVol_Rate['VolOl_Uni'].str.split(',',expand=True) Volt_3Sigma.columns=volt_column #电压变化率 VoltChange=self.OutLineVol_Rate['VolChng_Uni'].str.split(',',expand=True) VoltChange.columns=volt_column VoltChange['time']=self.OutLineVol_Rate['time'] VoltChange = VoltChange.reset_index(drop=True) xtime1=VoltChange['time'] time0=time.mktime(VoltChange.loc[0,'time'].timetuple()) for i in range(0,len(VoltChange)): VoltChange.loc[i,'time']=(time.mktime(VoltChange.loc[i,'time'].timetuple())-time0)/36000 #计算漏电流离群度 if not self.df_short.empty: self.df_short['cellshort_sigma']=0 for i in range(len(self.df_short)): cellshort=eval(self.df_short.loc[i,'short_current']) cellshort_std=np.std(cellshort) cellshort_mean=np.mean(cellshort) self.df_short.loc[i,'cellshort_sigma']=str(list((cellshort-cellshort_mean)/cellshort_std)) if not self.df_uniform.empty: cellvolt_rank=self.df_uniform['cellvolt_rank'] cellvolt_rank=cellvolt_rank.str.replace("[", '') cellvolt_rank=cellvolt_rank.str.replace("]", '') # plt.figure() for i in range(self.param.CellVoltNums): #漏电流故障判断........................................................................... if not self.df_short.empty: self.df_short['cellshort'+str(i+1)]=short_current.map(lambda x:eval(x.split(',')[i])) cellshort=self.df_short['cellshort'+str(i+1)] index_list=cellshort[cellshort1: for j in range(1,len(index_list)): if index_list[j]-index_list[j-1]==1: cellshort_sigma1=eval(self.df_short.loc[index_list[j],'cellshort_sigma']) cellshort_sigma2=eval(self.df_short.loc[index_list[j-1],'cellshort_sigma']) if cellshort_sigma1[i]<-3 or cellshort_sigma2[i]<-3: cellshortfault=1 else: pass else: pass #电压变化率及电压离群度................................................................................. if not self.OutLineVol_Rate.empty and VoltChange.iloc[-1]['time']*36000>18*3600 and len(VoltChange)>5: volt3sigma=np.array(Volt_3Sigma[volt_column[i]].map(lambda x:eval(x))) volt3sigma_sum=np.sum(volt3sigma<-3) #电压变化率 VoltChange[volt_column[i]]=VoltChange[volt_column[i]].map(lambda x:eval(x)) y=VoltChange[volt_column[i]] a1,b1=np.polyfit(VoltChange['time'].tolist(),y.tolist(),1) y1=a1*VoltChange['time']+b1 y_mean=y.mean() R2=1-(np.sum((y1-y)**2))/(np.sum((y-y_mean)**2)) R2_list.append(R2) volt_rate.append(a1) # plt.plot(xtime1,y1,label=a1) # plt.scatter( xtime1,VoltChange[volt_column[i]],marker='o') # plt.legend(loc='best') # plt.title('CellVolt'+str(i+1)) # plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 # plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 # plt.show() if volt3sigma_sum>len(volt3sigma)/2: voltsigmafault=1 else: voltsigmafault=0 voltsigmafault_list.append(voltsigmafault) #mana-kendell趋势检验 mk_res=mk.regional_test(np.array(y)) mk_trend_list.append(mk_res.trend) mk_p_list.append(mk_res.p) mk_z_list.append(mk_res.z) mk_Tau_list.append(mk_res.Tau) mk_slope_list.append(mk_res.slope) mk_s_list.append(mk_res.s) mk_svar_list.append(mk_res.var_s) """ trend:趋势; h:有无趋势; p:趋势的显著水平,越小趋势越明显; z:检验统计量,正代表随时间增大趋势,负代表随时间减小趋势; Tau:反映两个序列的相关性,接近1的值表示强烈的正相关,接近-1的值表示强烈的负相关; s:如果S是一个正数,那么后一部分的观测值相比之前的观测值会趋向于变大;如果S是一个负数,那么后一部分的观测值相比之前的观测值会趋向于变小 slope:趋势斜率 """ # print('单体电压{}:\n'.format(i+1), mk_res) else: volt_rate.append(0) R2_list.append(0) voltsigmafault_list.append(0) mk_trend_list.append(0) mk_p_list.append(0) mk_z_list.append(0) mk_Tau_list.append(0) mk_slope_list.append(0) mk_s_list.append(0) mk_svar_list.append(0) #电芯SOC排名判断............................................................................. if not self.df_uniform.empty: self.df_uniform['cellvolt_rank'+str(i+1)]=cellvolt_rank.map(lambda x:eval(x.split(',')[i])) if max(self.df_uniform['cellvolt_rank'+str(i+1)])<5: uniformfault=1 else: uniformfault=0 else: uniformfault=0 uniformfault_list.append(uniformfault) #漏电流热失控预警确认........................................................ if cellshortfault==1: faultcode=110 faultlv=4 faultinfo='电芯{}发生热失控安全预警'.format(i+1) faultadvice='断开继电器,远离电池,并通知电池技术人员介入分析' df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice] break else: pass #电池电压变化率离群度计算............................................................................... volt_rate_std=np.std(volt_rate) volt_rate_mean=np.mean(volt_rate) volt_rate_3sigma=(np.array(volt_rate)-volt_rate_mean)/volt_rate_std #mk离群度计算 mk_slope_std=np.std(mk_slope_list) mk_slope_mean=np.mean(mk_slope_list) mk_slope_3sigma=(np.array(mk_slope_list)-mk_slope_mean)/mk_slope_std mk_z_std=np.std(mk_z_list) mk_z_mean=np.mean(mk_z_list) mk_z_3sigma=(np.array(mk_z_list)-mk_z_mean)/mk_z_std if not self.df_soh.empty and self.celltype<50: cellsoh=eval(self.df_soh.loc[0,'cellsoh']) cellsoh_std=np.std(cellsoh) cellsoh_mean=np.mean(cellsoh) cellsoh_3sigma=((np.array(cellsoh)-cellsoh_mean)/cellsoh_std) else: cellsoh_3sigma=[0]*self.param.CellVoltNums #电压/SOC变化率 # for i in range(len(volt_rate)): # if volt_rate[i]self.param.mk_svar and mk_slope_3sigma[i]<-3 and mk_slope_list[i]self.param.mk_svar and mk_slope_3sigma[i]<-3.5 and mk_slope_list[i]<-0.03 and volt_rate_3sigma[i]<-3: faultcode=110 faultlv=4 faultinfo='电芯{}发生热失控安全预警'.format(i+1) faultadvice='2联系用户远离电池,立刻召回电池' df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice] elif self.celltype>50 and mk_trend_list[i]=='decreasing' and mk_p_list[i]self.param.mk_svar and mk_slope_3sigma[i]<-3.5 and mk_slope_list[i]<-0.4 and volt_rate_3sigma[i]<-3: faultcode=110 faultlv=4 faultinfo='电芯{}发生热失控安全预警'.format(i+1) faultadvice='2联系用户远离电池,立刻召回电池' df_res.loc[0]=[time_now, time_sp, self.sn, faultcode, faultlv, faultinfo, faultadvice] else: pass # plt.show() return df_res