# 获å–数æ®
import sys
from LIB.BACKEND import DBManager
sn = "PK10001A326000123"
st = '2021-07-06 00:00:00'
et = '2021-07-07 20:00:00'
dbManager = DBManager.DBManager()
df_data = dbManager.get_data(sn=sn, start_time=st, end_time=et, data_groups=['bms', 'gps', 'accum', 'system'])
#
df_bms = df_data['bms']
df_gps = df_data['gps']
df_accum = df_data['accum']
df_system = df_data['system']
### start to get data PK10001A326000123 from 2021-07-06 00:00:00 to 2021-07-07 20:00:00 # get data from 2021-07-06 00:00:00 to 2021-07-07 00:00:00......... Server Error, retry 1...... # get data from 2021-07-07 00:00:00 to 2021-07-07 20:00:00......... all data-getting done, bms_count is 0, gps_count is 0, system_count is 0, accum_count is 0
# 下载数æ®
import sys
from LIB.BACKEND import Tools
tools = Tools.Tools()
write_path = r''
sn = "PK50001A100000680"
st = '2021-07-06 00:00:00'
et = '2021-07-07 20:00:00'
tools.data_download(write_path=write_path, sn=sn, start_time=st, end_time=et, data_groups=['bms'])
# æ•°æ®预处çÂâ€
import sys
from LIB.BACKEND import DataPreProcess
dataPrePro = DataPreProcess.DataPreProcess()
# 时间完全相åŒ的数æ®仅ä¿Â留一行
df_bms_pro, df_gps_pro = dataPrePro.time_filter(df_bms, df_gps)
# bmsæ•°æ®按照çâ€ÂµÃ¦ÂµÂ和状æ€Â分段, 然åŽ在状æ€Â分段内部,根æ®时间跳å˜继ç»Â分段(解决段内数æ®丢失)
df_bms_pro = dataPrePro.data_split_by_status(df_bms_pro)
df_bms_pro = dataPrePro.data_split_by_time(df_bms_pro)
# bmsæ•°æ®将两次充çâ€ÂµÃ©â€”´çš„状æ€Âåˆ并
df_bms_pro = dataPrePro.combine_drive_stand(df_bms_pro)
# bms æ•°æ®计算行车和充çâ€ÂµÃ¥Â¼â‚¬Ã¥Â§â€¹Ã¥â€°ÂåŽ的é™置时间
df_bms_pro = dataPrePro.cal_stand_time(df_bms_pro)
# gps æ•°æ®å¯é 性判æ–Â, 并增加里程和速度至gpsæ•°æ®(æ ¹æ®未åˆ并的数æ®段判æ–Â)
df_bms_pro, df_gps_pro, res_record= dataPrePro.gps_data_judge(df_bms_pro, df_gps_pro)
# gps æ•°æ®å¯é 性判æ–Â, 并增加里程和速度至gpsæ•°æ®(æ ¹æ®已åˆ并的数æ®段判æ–Â)
df_bms_pro, df_gps_pro, res_record= dataPrePro.data_gps_judge_after_combine(df_bms_pro, df_gps_pro)
# å•cycle指标统计
import sys
from LIB.BACKEND import IndexStaByOneCycle
indexSta = IndexStaByOneCycle.IndexStaByOneCycle()
data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status'])))
for data_number in data_number_list[:]:
df_sel_bms = df_bms[df_bms['data_split_by_status'] == data_number]
df_sel_bms = df_sel_bms.reset_index(drop=True)
df_sel_gps = df_gps[(df_gps['时间戳']>df_sel_bms.loc[0,'时间戳']) & (df_gps['时间戳']<df_sel_bms.loc[len(df_sel_bms)-1,'时间戳'])]
df_sel_gps = df_sel_gps.reset_index(drop=True)
print(indexSta.odo_sta(np.array(df_sel_gps['odo'])))
print(indexSta.capacity_sta(40, np.array(df_sel_bms['SOC[%]']), np.array(df_sel_bms['SOH[%]'])))
print(indexSta.energy_sta(40, np.array(df_sel_bms['SOC[%]']), np.array(df_sel_bms['SOH[%]']),np.array(df_sel_bms['总çâ€ÂµÃ¥Å½â€¹[V]'])))
print(indexSta.acc_time_sta(np.array(df_sel_bms['时间戳'])))
print(indexSta.mean_temp_sta(np.array(df_sel_bms['å•体温度1'])))
print(indexSta.temp_change_rate_sta(np.array(df_sel_bms['时间戳']), np.array(df_sel_bms['å•体温度1'])))
print(indexSta.dischrg_max_pwr_sta(np.array(df_sel_bms['总çâ€ÂµÃ¥Å½â€¹[V]']), np.array(df_sel_bms['总çâ€ÂµÃ¦ÂµÂ[A]'])))
print(indexSta.chrg_max_pwr_sta(np.array(df_sel_bms['总çâ€ÂµÃ¥Å½â€¹[V]']), np.array(df_sel_bms['总çâ€ÂµÃ¦ÂµÂ[A]'])))
print(indexSta.speed_sta(indexSta.odo_sta(np.array(df_sel_gps['odo'])), indexSta.acc_time_sta(np.array(df_sel_gps['时间戳'])), np.array(df_sel_gps['speed'])))
break
# çâ€Å¸Ã¦Ë†Âpydoc 说明文档
!python -m pydoc -w LIB\BACKEND\DataPreProcess.py
problem in LIB\BACKEND\DataPreProcess.py - ModuleNotFoundError: No module named 'DBManager'