123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- from sklearn.preprocessing import StandardScaler
- import keras
- import os
- import pandas as pd
- import numpy as np
- from LIB.BACKEND import DataPreProcess
- import datetime
- #数据预处理
- #删除采样异常点
- def delete(data_bms):
- listV=[s for s in list(data_bms) if '单体电压' in s]
- listT=[s for s in list(data_bms) if '单体温度' in s]
- listT2=[s for s in list(data_bms) if '其他温度' in s]
- #data_bms2=data_bms.copy()
- for i in range(1,len(listV)+1):
- data_bms=data_bms[(data_bms['单体电压'+str(i)]>1000) & (data_bms['单体电压'+str(i)]<6000)]
- for i in range(1,len(listT)+1):
- data_bms=data_bms[(data_bms['单体温度'+str(i)]>-20) & (data_bms['单体温度'+str(i)]<100)]
- #for i in range(1,len(listT2)+1):
- #data_bms=data_bms[(data_bms['其他温度'+str(1)]>-20) & (data_bms['其他温度'+str(1)]<100)]
- #data_outliers=data_bms2.iloc[list(set(list(data_bms2.index)).difference(set(list(data_bms.index))))]
- data_bms=data_bms.reset_index(drop=True)
- return data_bms
-
- #构建时间序列&选取静置状态
- def data_groups(data_bms,sn,start_time,end_time):
- data_bms=data_bms.drop(['GSM信号','外电压','开关状态','故障等级','故障代码','绝缘电阻','上锁状态','加热状态','单体均衡状态','总输出状态'],axis=1,errors='ignore')
- data_set=pd.DataFrame()
- start_time=start_time[:17]+'00'
- end_time=end_time[:17]+'00'
- data_set['时间戳'] = pd.date_range(start=start_time, end=end_time, freq='T') #每分钟一条记录
- #给数据重建新特征:充放电状态,序列
- if len(data_bms['总电流[A]']==0)>0:
- if sn[:4] in ['MGMC','UD02']:
- #data_bms=rest_stscs_v1.cell_statistic.rest_sta(data_bms)
- data_bms=DataPreProcess.DataPreProcess.data_split_by_status_forMGMCUD02(DataPreProcess, data_bms, drive_interval_threshold=120, charge_interval_threshold=300,drive_stand_threshold=120, charge_stand_threshold=300)
- else:
- data_bms=DataPreProcess.DataPreProcess.data_split_by_status(DataPreProcess, data_bms, drive_interval_threshold=120, charge_interval_threshold=300,drive_stand_threshold=120, charge_stand_threshold=300)
- else:
- data_bms['data_split_by_status']=1
- data_bms['data_status']='work'
- #构建等差时间序列
- data_bms['时间戳']=pd.to_datetime(data_bms['时间戳'])
- for i in range(len(data_bms)):
- data_bms.loc[i,'时间戳'] = data_bms.loc[i,'时间戳'].replace(second=0)
- data_bms.drop_duplicates(subset='时间戳',keep='last',inplace=False)
- data_bms2=pd.merge(data_set,data_bms,on='时间戳',how='left')
- data_bms2=data_bms2.fillna(method='ffill')
- data_bms2=data_bms2.fillna(method='bfill')
- data_bms2.drop_duplicates(subset='时间戳',keep='last',inplace=True)
- data_bms2=data_bms2.reset_index()
- #删除无用特征
- data_bms2=data_bms2.drop(['Unnamed: 0','level_0','index','Unnamed: 0.1','充电状态','data_split_by_crnt'],axis=1,errors='ignore')
- #按状态分表
- data_stand=data_bms2[data_bms2['data_status']=='stand']
- return data_stand
- #标记时段
- def split(data0):
- data0=data0.reset_index(drop=True)
- data0=data0.drop(['Unnamed: 0','Unnamed: 0.1'],axis=1,errors='ignore')
- data0['n_split']=np.nan
- data1=data0.copy()
- data1.drop_duplicates(subset=['data_split_by_status'],keep='first',inplace=True)
- data1['n_split']=range(1,len(data1)+1)
- data0.loc[data1.index,'n_split']=list(data1['n_split'])
- data0['n_split']=list(data0['n_split'].fillna(method='ffill'))
- time=list(map(lambda x: str(x),list(data0['时间戳'])))
- data0['时间戳']=time
- return data0
- ####################################################################################################################
- #每10min一条记录:平均
- def create_dataset(data_set): #X为dataframe,y为serie
- data_set=data_set.drop(['总电流[A]','SOH[%]','data_status','data_split_by_status'],axis=1,errors='ignore')
- time=list(map(lambda x: x[:15]+'0'+x[16:],list(data_set['时间戳'])))
- data_set['时间戳']=time
- List_n_split=sorted(list(set(data_set['n_split'])))
- data_set2=pd.DataFrame()
- for k in List_n_split:
- dataset=data_set[data_set['n_split']==k]
- if len(dataset)>10:
- dataset=dataset.reset_index(drop=True)
- sn=list(dataset['sn'].values)[0]
- dataset=dataset.drop(['sn','n_split'],axis=1)
- dataset2=dataset.groupby(dataset['时间戳']).mean()
- dataset2=dataset2.reset_index()
- dataset2['sn']=sn
- dataset2['n_split']=k
- data_set2=data_set2.append(dataset2)
- return data_set2
- # 计算各单体电压下降量
- def cal_dataset(df_stand): #X为dataframe,y为serie
- List_n_split=sorted(list(set(df_stand['n_split'])))
- listV=[s for s in list(df_stand) if '单体电压' in s]
- listT=[s for s in list(df_stand) if '温度' in s]
- newdataset=pd.DataFrame()
- for k in List_n_split:
- dataset=df_stand[df_stand['n_split']==k]
- dataset=dataset.reset_index(drop=True)
- dataset2=dataset[listV]
- dataset3=dataset2.diff() #periods=1, axis=0
- dataset3['最大电压下降']=dataset3[listV].min(axis=1)
- dataset3['平均电压下降']=dataset3[listV].mean(axis=1)
- dataset3['电压下降低偏']=dataset3[listV].mean(axis=1)-dataset3[listV].min(axis=1)
- dataset3=dataset3.drop(listV+['平均电压下降'],axis=1)
- dataset4=dataset.drop(listT+listV+['总电压[V]'],axis=1)
- dataset5=pd.merge(dataset4,dataset3,left_index=True,right_index=True)
- dataset5=dataset5.dropna(axis=0)
- newdataset=newdataset.append(dataset5)
- return newdataset
- #每1hour一条记录:总和
- def timeserie(data_set): #X为dataframe,y为serie
- List_n_split=sorted(list(set(data_set['n_split'])))
- time=list(map(lambda x: x[:14]+'00'+x[16:],list(data_set['时间戳'])))
- data_set['时间戳']=time
- data_set2=pd.DataFrame()
- for k in List_n_split:
- dataset=data_set[data_set['n_split']==k]
- if len(dataset)>10:
- dataset=dataset.reset_index(drop=True)
- sn=list(dataset['sn'].values)[0]
- soc=list(dataset['SOC[%]'].values)[0]
- dataset=dataset.drop(['sn','n_split'],axis=1)
- dataset2=dataset.groupby(dataset['时间戳']).sum()
- dataset2=dataset2.reset_index()
- dataset2['sn']=sn
- dataset2['n_split']=k
- dataset2['SOC[%]']=soc
- data_set2=data_set2.append(dataset2)
- return data_set2
- def makescaler_test(scaler,data_test):
- data_test=data_test.reset_index(drop=True)
- data_test_pro=data_test.drop(['n_split','时间戳','sn','SOC[%]'],axis=1)
- test_sc=scaler.transform(np.array(data_test_pro))
- test_sc=pd.DataFrame(test_sc)
- test_sc['n_split']=data_test['n_split'].values
- return test_sc
- #滑窗
- def create_win(data_set,data_train,time_steps=5): #X为dataframe,y为serie
- a,b=[],[]
- index=pd.DataFrame()
- List_n_split=sorted(list(set(data_set['n_split'])))
- for k in List_n_split:
- dataset=data_set[data_set['n_split']==k]
- datatrain=data_train[data_train['n_split']==k]
- if len(dataset)>time_steps:
- dataset2=dataset.reset_index(drop=True)
- dataset=dataset.drop(['n_split'],axis=1)
- dataX, dataY = [], []
- index_step=[]
- for i in range(len(dataset)-time_steps):
- v1 = dataset.iloc[i:(i+time_steps)].values
- v2 = dataset.iloc[i+time_steps]
- dataX.append(v1)
- dataY.append(v2)
- index_step.append(i)
- dataset3=dataset2.iloc[:len(dataset2)-time_steps]
- newdatatrain=datatrain[:len(dataset3)]
- newdatatrain2=newdatatrain.copy()
- newdatatrain2['window_step']=index_step
- dataX2=np.array(dataX)
- dataY2=np.array(dataY)
- a.append(dataX2)
- b.append(dataY2)
- index=index.append(newdatatrain2)
- aa=np.vstack(a)
- bb=np.vstack(b)
- return aa,bb,index
- def pred(Test,model):
- test_pred = model.predict(Test)
- test_loss = np.mean(np.abs(test_pred - Test), axis=1)
- return test_loss
- def ref(test_loss,new_test):
- test_loss_sum=test_loss.sum(axis=1)
- test_loss_max=test_loss.max(axis=1)
- ref_test=new_test.reset_index(drop=True)
- ref_test['test_loss_sum']=test_loss_sum
- ref_test['test_loss_max']=test_loss_max
- ref_test['test_loss压差']=test_loss[:,0]
- ref_test['test_loss降幅']=test_loss[:,1]
- ref_test['test_loss降差']=test_loss[:,2]
- return ref_test
- def difftime(delta):
- seconds = delta.total_seconds()
- minutes = seconds/60
- return minutes
- def diffmin(res):
- start=list(res['start_time'])
- end=list(res['end_time'])
- start=list(map(lambda x: datetime.datetime.strptime(str(x),'%Y-%m-%d %H:%M:%S'),start))
- end=list(map(lambda x: datetime.datetime.strptime(str(x),'%Y-%m-%d %H:%M:%S'),end))
- diff=np.array(end)-np.array(start)
- diff_min=list(map(lambda x: difftime(x),diff))
- return diff_min
- def res_output(TestOrg,scaler,model,group,end_time):
- df_res=pd.DataFrame(columns=['product_id', 'start_time', 'end_time', 'diff_min','soc','loss_sum','loss_max','diffV','downV','diffdownV','window_step'])
- diff=0
- test2=create_dataset(TestOrg)
- test3=cal_dataset(test2)
- newtest=timeserie(test3)
- if len(newtest)>0:
- test_sc=makescaler_test(scaler,newtest)
- Test,y_test,win_test=create_win(test_sc,newtest,time_steps=3)
- test_loss=pred(Test,model)
- ref_test=ref(test_loss,win_test)
- ref_test['test_loss_diff']=list(map(lambda x: x[0]-x[1], zip(list(ref_test['test_loss_sum']), list(ref_test['test_loss_max']))))
- if group=='MGMCL':
- res=ref_test[(ref_test['test_loss_max']>0.04) & (ref_test['SOC[%]']>15) & (ref_test['test_loss_sum']>0.06) & (ref_test['window_step']>0) & (ref_test['最大电压下降']<-3)]
- elif group=='PK504':
- res=ref_test[(ref_test['test_loss_diff']>0.03) & (ref_test['test_loss_max']>0.03) & (ref_test['SOC[%]']>15) & (ref_test['window_step']>0) & (ref_test['最大电压下降']<-3) &((ref_test['test_loss_sum']>3) | (ref_test['SOC[%]']<90))]
- else:
- res=ref_test[(ref_test['test_loss_diff']>0.6) & (ref_test['test_loss_max']>0.6) & (ref_test['SOC[%]']>15) & (ref_test['window_step']>0) & (ref_test['电压下降低偏']>3.5) &((ref_test['test_loss_sum']>3) | (ref_test['SOC[%]']<90))]
-
- if len(res)>0:
- res=res.reset_index()
- for k in range(len(res)):
- if res.loc[k,'最大电压下降']<-130:
- sn=res.loc[k,'sn']
- win=res.loc[k,'window_step']
- index = res[(res["sn"]== sn)&(res["window_step"]== win)].index.tolist()[0]
- res=res.drop([index-2,index-1,index],errors='ignore')
-
- if len(res)>0:
- maxsum=list(res['test_loss_sum'].groupby(res['n_split']).max())
- maxmax=list(res['test_loss_max'].groupby(res['n_split']).max())
- res_start=res.drop_duplicates(subset=['n_split'],keep='first',inplace=False)
- res_end=res.drop_duplicates(subset=['n_split'],keep='last',inplace=False)
- start=list(map(lambda x:str(x),list(res_start['时间戳'].values)))
- end=list(map(lambda x:str(x),list(res_end['时间戳'].values)))
- product_id=list(res_start['sn'].values)
- df_res['product_id']=product_id
- df_res['start_time']=start
- df_res['end_time']=end
- df_res['loss_sum']=list(map(lambda x:round(x,3),maxsum))
- df_res['loss_max']=list(map(lambda x:round(x,3),maxmax))
- soc=list(res_start['SOC[%]'].values)
- df_res['SOC']=soc
- df_res['diffV']=list(res_start['单体压差'].values)
- df_res['downV']=list(res_start['最大电压下降'].values)
- df_res['diffdownV']=list(res_start['电压下降低偏'].values)
- #df_res['window_step']=list(res_start['window_step'].values)
- diff_min=diffmin(df_res)
- df_res['diff_min']=diff_min
- df_res.reset_index(drop=True,inplace=True)
- end=datetime.datetime.strptime(str(df_res.loc[len(df_res)-1,'end_time']),'%Y-%m-%d %H:%M:%S')
- end_time=datetime.datetime.strptime(str(end_time),'%Y-%m-%d %H:%M:%S')
- diff=(end_time-end).total_seconds()
- if diff<600:
- df_res.loc[len(df_res)-1,'end_time']='0000-00-00 00:00:00'
- return df_res,diff
- ##################################################################################################################
- def arrange(result,result_final,start_time,diff):
- result=result.reset_index(drop=True)
- start=datetime.datetime.strptime(str(result.loc[0,'start_time']),'%Y-%m-%d %H:%M:%S')
- start_time=datetime.datetime.strptime(str(start_time),'%Y-%m-%d %H:%M:%S')
- diff_time=(start-start_time).total_seconds()
- if diff_time<600:
- result_final['end_time']=result.loc[0,'end_time']
- diff_min_org=result_final['diff_min']
- diff_min_new=result.loc[0,'diff_min']
- result_final['diff_min']=diff_min_org+(diff_time+diff)/60+diff_min_new
- result=result.drop(0)
- return result,result_final
|