123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- #from test.spf.BatDiag import CBMSBatDiag, Log
- import CBMSBatDiag
- import QX_BatteryParam
- from SC_SamplingSafty import SamplingSafty
- import datetime
- import pandas as pd
- from LIB.BACKEND import DBManager, Log
- from sqlalchemy import create_engine
- import time, datetime
- from apscheduler.schedulers.blocking import BlockingScheduler
- from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import DBDownload
- from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import log
- from pandas.core.frame import DataFrame
- import datacompy
- import GetFeiShuData
- #...................................电池包电芯安全诊断函数......................................................................................................................
- def diag_cal():
- global SNnums
- global df_Diag_Ram
-
- start=time.time()
- end_time=datetime.datetime.now()
- start_time=end_time-datetime.timedelta(seconds=120)
- start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
- end_time=end_time.strftime('%Y-%m-%d %H:%M:%S')
- for sn in SNnums:
- if 'PK500' in sn:
- celltype=1 #6040三元电芯
- elif 'PK502' in sn:
- celltype=2 #4840三元电芯
- elif 'K504B' in sn:
- celltype=99 #60ah林磷酸铁锂电芯
- elif 'MGMLXN750' in sn:
- celltype=3 #力信50ah三元电芯
- elif 'MGMCLN750' or 'UD' in sn:
- celltype=4 #CATL 50ah三元电芯
- else:
- print('SN:{},未找到对应电池类型!!!'.format(sn))
- continue
- # sys.exit()
- param=QX_BatteryParam.BatteryInfo(celltype)
- # sn='PK50201A000002039'
- # celltype=2
- # start_time='2021-05-02 09:12:26'
- # end_time='2021-06-03 19:12:26'
- # # df_bms= pd.read_csv(r'D:\Platform\platform_python\data_analyze_platform\USER\01qixiang\98Download\\'+'BMS_'+sn+'.csv',encoding='GB18030')
- #读取原始数据库数据........................................................................................................................................................
- dbManager = DBManager.DBManager()
- df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
- df_bms = df_data['bms']
- df_bms.to_csv(r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\\''BMS_'+sn+'.csv',encoding='GB18030')
- #读取结果数据库数据........................................................................................................................................................
- host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port=3306
- db='qx_cas'
- user='qx_read'
- password='Qx@123456'
- mode=1
- tablename1='cellstateestimation_soh'
- tablename2='cellstateestimation_uniform_socvoltdiff'
- tablename3='cellstateestimation_soc'
- DBRead=DBDownload.DBDownload(host, port, db, user, password,mode)
- with DBRead as DBRead:
- df_soh=DBRead.getdata('time_st,sn,soh,cellsoh', tablename=tablename1, sn=sn, timename='time_sp', st=start_time, sp=end_time)
- df_uniform=DBRead.getdata('time,sn,cellsoc_diff,cellmin_num,cellmax_num', tablename=tablename2, sn=sn, timename='time', st=start_time, sp=end_time)
- # df_soc=DBRead.getdata('time','sn','packsoc', tablename=tablename3, sn=sn)
- #电池诊断................................................................................................................................................................
- #BatDiag=CBMSBatDiag.BatDiag(sn,celltype,df_bms, df_soh, df_uniform)
- #df_res=BatDiag.diag()
- #df_Diag_Ram_old=df_Diag_Ram
- df_Diag_Ram_Update=DataFrame(columns=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice'])
- CellFltInfo=DataFrame(columns=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice'])
- if not df_bms.empty:
- CellFltInfo=df_Diag_Ram[df_Diag_Ram['product_id']==sn]
- df_Diag_Ram_Update=SamplingSafty.main(sn,param,df_bms,CellFltInfo)#学琦计算故障
- BatDiag=CBMSBatDiag.BatDiag(sn,celltype,df_bms, df_soh, df_uniform, CellFltInfo)#鹏飞计算
- df_res=BatDiag.diag()
- df_Diag_Ram_Update=df_Diag_Ram_Update.append(df_res)
- #------------------------------合并两者故障,并将同一sn号下的车辆故障放一起----------------------------------------------
- df_read_Yunw = GetFeiShuData.getFeiShuDATA()#运维表格数据
- set_diff_df = pd.concat([df_Diag_Ram_Update,df_read_Yunw,df_read_Yunw]).drop_duplicates(subset=['product_id'],keep=False)#新增故障的sn,报出故障减去原文档中的sn
- same_sn = df_read_Yunw[(df_read_Yunw['维修信息']== '需正常返仓') | (df_read_Yunw['维修信息']== '需紧急返仓')]#筛选待修改和需返回车辆
- set_same_df = df_Diag_Ram_Update.loc[df_Diag_Ram_Update['product_id'].isin(same_sn['product_id'])]#筛选待修改和需返回车辆
- df_temp = set_diff_df.append(set_same_df)#新增及待改进车辆
- set_same_df_else = pd.concat([df_Diag_Ram_Update,df_temp,df_temp]).drop_duplicates(subset=['product_id'],keep=False)#寻找旧sn中新增故障的sn
- #先取sn相同的车辆,然后对比时间,保留故障码时间晚于运营记录的信息
- set_same_df_oth = pd.DataFrame()
- for i in set_same_df_else['product_id']:
- if max(df_Diag_Ram_Update.loc[df_Diag_Ram_Update['product_id'] == i]['start_time']) > max(df_read_Yunw.loc[df_read_Yunw['product_id'] == i]['发生时间']):
- temp_df = df_Diag_Ram_Update.loc[[df_Diag_Ram_Update['product_id'] == i]['start_time'] > max(df_read_Yunw.loc[df_read_Yunw['product_id'] == i]['发生时间'])]#故障时间晚于运维记录时间的sn故障
- set_same_df_oth = set_same_df_oth.append(temp_df)
- else:
- pass
- df_diag_frame = pd.concat([set_diff_df,same_sn,set_same_df_oth])#筛选新增sn故障、维修信息依旧故障sn、旧sn中新增故障
- df_tempnum = df_diag_frame.groupby(["product_id"]).size()#获取每个sn的故障总数
- col1 = df_tempnum[df_tempnum>1].reset_index()[["product_id"]]#多故障sn号
- col2 = df_tempnum[df_tempnum==1].reset_index()[["product_id"]]#单故障sn号
- df_temp1 = pd.merge(col1,df_diag_frame,on=["product_id"])#多故障码数据筛选
- df_temp1.sort_values(by = "start_time", axis = 0, ascending=True,inplace=True)#对故障信息按照sn号进行排序
- df_temp2 = pd.merge(col2,df_diag_frame,on=["product_id"])#单故障码数据筛选
- df_temp3 = pd.concat([df_temp1,df_temp2], ignore_index=True)#多故障及单故障合并
- df_Diag_Ram_Update = df_temp3#计算故障信息
- #-------------------------------故障--------------------------------------------
- if not df_Diag_Ram_Update.empty:
- sn_index=df_Diag_Ram[df_Diag_Ram['product_id']==sn].index
- df_Diag_Ram=df_Diag_Ram.drop(index=sn_index)
- df_Diag_Ram=df_Diag_Ram.append(df_Diag_Ram_Update)
- df_Diag_Ram.reset_index(inplace=True,drop=True)
- Diag_Ram_Dif=datacompy.Compare(df_Diag_Ram_Update,CellFltInfo,join_columns=['product_id','end_time','code'])
- Diag_Ram_Dif=Diag_Ram_Dif.df1_unq_rows
- if len(Diag_Ram_Dif)>0:
- Diag_Ram_Dif_New=Diag_Ram_Dif[Diag_Ram_Dif['end_time']=='0000-00-00 00:00:00']
- Diag_Ram_Dif_Finish=df_Diag_Ram[df_Diag_Ram['end_time']!='0000-00-00 00:00:00']
- if len(Diag_Ram_Dif_New)>0:
- result=pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\result.csv',encoding='gbk')
- result=result.append(Diag_Ram_Dif_New)
- result.to_csv(r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\result.csv',index=False,encoding='GB18030')
- if len(Diag_Ram_Dif_Finish)>0:
- result=pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\result.csv',encoding='gbk')
- Diag_Ram_Dif_Finish=Diag_Ram_Dif_Finish.reset_index(drop=True)
- for i in range(0,len(Diag_Ram_Dif_Finish)):
- result.loc[result[result[result['product_id']==Diag_Ram_Dif_Finish.loc[i,'product_id']]['code']==Diag_Ram_Dif_Finish.loc[i,'code']].index,'end_time']=Diag_Ram_Dif_Finish.loc[i,'end_time']
- result.to_csv(r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\result.csv',index=False,encoding='GB18030')
- end=time.time()
- print(end-start)
- # print(df_soh)
-
- #...................................电池包电芯安全诊断函数......................................................................................................................
- def shortdiag_cal():
- global SNnums
- global df_Diag_Ram
- start=time.time()
- end_time=datetime.datetime.now()
- start_time=end_time-datetime.timedelta(days=30)
- start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
- end_time=end_time.strftime('%Y-%m-%d %H:%M:%S')
- for sn in SNnums:
- if 'PK500' in sn:
- celltype=1 #6040三元电芯
- elif 'PK502' in sn:
- celltype=2 #4840三元电芯
- elif 'K504B' in sn:
- celltype=99 #60ah林磷酸铁锂电芯
- elif 'MGMLXN750' in sn:
- celltype=3 #力信50ah三元电芯
- elif 'MGMCLN750' or 'UD' in sn:
- celltype=4 #CATL 50ah三元电芯
- else:
- print('SN:{},未找到对应电池类型!!!'.format(sn))
- continue
- # sys.exit()
- #读取结果数据库数据........................................................................................................................................................
- host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port=3306
- db='qx_cas'
- user='qx_read'
- password='Qx@123456'
- mode=2
- tablename4='cellstateestimation_intershort'
- DBRead=DBDownload.DBDownload(host, port, db, user, password, mode) #mode==1取数据库最后一行数据
- with DBRead as DBRead:
- df_short=DBRead.getdata('time_sp,sn,short_current', tablename=tablename4, sn=sn, timename='time_sp', st=start_time, sp=end_time)
-
- #电池诊断................................................................................................................................................................
- ShortDiag=CBMSBatDiag.ShortDiag(sn,celltype, df_short)
- df_res=ShortDiag.shortdiag()
- df_res.to_csv(r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\\'+'CBMS_diag_'+sn+'.csv',encoding='GB18030')
-
- print(df_res)
- end=time.time()
- print(end-start)
- # print(df_soh)
-
- #...............................................主函数.......................................................................................................................
- if __name__ == "__main__":
-
- excelpath=r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\sn-20210903.xlsx'
- SNdata_6060 = pd.read_excel(excelpath, sheet_name='科易6060')
- SNdata_6040 = pd.read_excel(excelpath, sheet_name='科易6040')
- SNdata_4840 = pd.read_excel(excelpath, sheet_name='科易4840')
- SNdata_L7255 = pd.read_excel(excelpath, sheet_name='格林美-力信7255')
- SNdata_C7255 = pd.read_excel(excelpath, sheet_name='格林美-CATL7255')
- SNdata_U7255 = pd.read_excel(excelpath, sheet_name='优旦7255')
- SNnums_6060=SNdata_6060['SN号'].tolist()
- SNnums_6040=SNdata_6040['SN号'].tolist()
- SNnums_4840=SNdata_4840['SN号'].tolist()
- SNnums_L7255=SNdata_L7255['SN号'].tolist()
- SNnums_C7255=SNdata_C7255['SN号'].tolist()
- SNnums_U7255=SNdata_U7255['SN号'].tolist()
- # SNnums=SNnums_L7255 + SNnums_C7255 + SNnums_6040 + SNnums_4840 + SNnums_U7255+ SNnums_6060
- SNnums=['MGMCLN750N215I005','PK504B10100004341','PK504B00100004172','MGMLXN750N2189014']
- #SNnums = SNnums_6060
-
- mylog=log.Mylog('log_diag.txt','error')
- mylog.logcfg()
- #............................模块运行前,先读取数据库中所有结束时间为0的数据,需要从数据库中读取................
- result=pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\01智联运维故障显示\result.csv',encoding='gbk')
-
- df_Diag_Ram=result[result['end_time']=='0000-00-00 00:00:00']
- print('----------------输入--------')
- print(df_Diag_Ram)
- print('-------done-----------')
- #定时任务.......................................................................................................................................................................
- scheduler = BlockingScheduler()
- scheduler.add_job(diag_cal, 'interval', seconds=120, id='diag_job')
- scheduler.add_job(shortdiag_cal, 'interval', days=7, id='shortdiag_job')
- try:
- scheduler.start()
- except Exception as e:
- scheduler.shutdown()
- print(repr(e))
- mylog.logopt(e)
|