maincopy_v1.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. import CBMSBatDiag
  2. import QX_BatteryParam
  3. from SC_SamplingSafty import SamplingSafty
  4. import datetime
  5. import pandas as pd
  6. from LIB.BACKEND import DBManager, Log
  7. from sqlalchemy import create_engine
  8. import time, datetime
  9. from apscheduler.schedulers.blocking import BlockingScheduler
  10. from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import DBDownload
  11. from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import log
  12. from pandas.core.frame import DataFrame
  13. import datacompy
  14. import FeiShuData
  15. #...................................电池包电芯安全诊断函数......................................................................................................................
  16. def diag_cal():
  17. global SNnums
  18. global df_Diag_Ram
  19. start=time.time()
  20. end_time=datetime.datetime.now()
  21. start_time=end_time-datetime.timedelta(seconds=130)
  22. start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
  23. end_time=end_time.strftime('%Y-%m-%d %H:%M:%S')
  24. df_read_Yunw = FeiShuData.getFeiShuDATA()#运维表格数据
  25. df_read_Yunw.rename(columns={'电池编码':'product_id'},inplace=True)
  26. df_read_Yunw.rename(columns={'内容描述':'info'},inplace=True)
  27. df_read_Yunw.rename(columns={'发生时间':'start_time'},inplace=True)
  28. df_read_Yunw.rename(columns={'维修信息':'advice'},inplace=True)
  29. for sn in SNnums:
  30. print(sn)
  31. if 'PK500' in sn:
  32. celltype=1 #6040三元电芯
  33. elif 'PK502' in sn:
  34. celltype=2 #4840三元电芯
  35. elif 'K504B' in sn:
  36. celltype=99 #60ah林磷酸铁锂电芯
  37. elif 'MGMLXN750' in sn:
  38. celltype=3 #力信50ah三元电芯
  39. elif 'MGMCLN750' or 'UD' in sn:
  40. celltype=4 #CATL 50ah三元电芯
  41. else:
  42. print('SN:{},未找到对应电池类型!!!'.format(sn))
  43. continue
  44. # sys.exit()
  45. param=QX_BatteryParam.BatteryInfo(celltype)
  46. print(sn)
  47. #读取原始数据库数据........................................................................................................................................................
  48. dbManager = DBManager.DBManager()
  49. df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
  50. df_bms = df_data['bms']
  51. #读取结果数据库数据........................................................................................................................................................
  52. host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
  53. port=3306
  54. db='qx_cas'
  55. user='qx_read'
  56. password='Qx@123456'
  57. mode=1
  58. tablename1='cellstateestimation_soh'
  59. tablename2='cellstateestimation_uniform_socvoltdiff'
  60. #电池诊断................................................................................................................................................................
  61. DBRead=DBDownload.DBDownload(host, port, db, user, password,mode)
  62. with DBRead as DBRead:
  63. df_soh=DBRead.getdata('time_st,sn,soh,cellsoh', tablename=tablename1, sn=sn, timename='time_sp', st=start_time, sp=end_time)
  64. df_uniform=DBRead.getdata('time,sn,cellsoc_diff,cellmin_num,cellmax_num', tablename=tablename2, sn=sn, timename='time', st=start_time, sp=end_time)
  65. #电池诊断................................................................................................................................................................
  66. CellFltInfo=DataFrame(columns=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice'])
  67. df_Diag_Ram_sn = df_Diag_Ram.loc[df_Diag_Ram['product_id']==sn]#历史故障
  68. df_Diag_Ram_sn_else = pd.concat([df_Diag_Ram,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['product_id','code','start_time','Batpos','info'],keep=False)#sn之外的故障
  69. CellFltInfo = df_Diag_Ram_sn.drop('Batpos',axis=1)
  70. df_Diag_Ram_fix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 1]
  71. df_Diag_Ram_unfix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 0]
  72. if not df_bms.empty:
  73. df_Diag_Batdiag_update_xq=SamplingSafty.main(sn,param,df_bms,CellFltInfo)#学琦计算故障
  74. BatDiag=CBMSBatDiag.BatDiag(sn,celltype,df_bms, df_soh, df_uniform, CellFltInfo)#鹏飞计算
  75. df_Diag_Batdiag_update=BatDiag.diag()
  76. df_Diag_Cal_Update_add = pd.concat([CellFltInfo,df_Diag_Batdiag_update_xq,df_Diag_Batdiag_update])#重新计算的该SN下的故障
  77. df_Diag_Cal_Update_temp = df_Diag_Cal_Update_add.drop_duplicates(subset=['product_id','start_time','end_time','code','info'], keep='first', inplace=False, ignore_index=False)#去除相同故障
  78. df_Diag_cal_early_unfix = pd.DataFrame()
  79. df_sn_car_fix = pd.DataFrame()
  80. df_Diag_Cal_finish = pd.DataFrame()
  81. df_Diag_cal_early_fix = pd.DataFrame()
  82. if not df_Diag_Cal_Update_temp.empty:
  83. #------------------------------合并两者故障,并将同一sn号下的车辆故障放一起----------------------------------------------
  84. df_Diag_Cal_Update = df_Diag_Cal_Update_temp#替换上一行
  85. df_Diag_Cal_finish = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] != '0000-00-00 00:00:00']
  86. df_Diag_Cal_new = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] == '0000-00-00 00:00:00']
  87. df_Diag_Cal_finish['Batpos'] = 1
  88. df_Diag_Cal_new['Batpos'] = 0
  89. df_feishu_sta = df_read_Yunw.loc[(df_read_Yunw['product_id'] == sn)]#飞书中该sn车辆状态
  90. if df_feishu_sta.empty:
  91. df_Diag_cal_early_unfix = df_Diag_Cal_new#如果为新出故障,则直接记录在df_diag_frame中
  92. else:
  93. df_Diag_cal_later = df_Diag_Cal_new.loc[df_Diag_Cal_new['start_time'] > max(df_feishu_sta['start_time'])]#故障表中故障时间晚于飞书记录时间
  94. df_Diag_cal_early = pd.concat([df_Diag_Cal_new,df_Diag_cal_later,df_Diag_cal_later]).drop_duplicates(subset=['product_id','code','start_time'],keep=False)#故障表中故障时间早于飞书记录时间
  95. df_feishu_sta_latest = df_feishu_sta.loc[df_feishu_sta['start_time'] == max(df_feishu_sta['start_time'])]#飞书中该SN下的最新故障
  96. df_feishu_diag_unfix = (df_feishu_sta_latest['advice'] == '需正常返仓') | (df_feishu_sta_latest['advice'] == '需紧急返仓')
  97. df_sn_car_unfix = pd.DataFrame()
  98. if any(df_feishu_diag_unfix):
  99. df_Diag_cal_early_unfix = df_Diag_Cal_new
  100. else:
  101. df_Diag_cal_early_fix = df_Diag_cal_early
  102. df_Diag_cal_early_unfix = df_Diag_cal_later
  103. if not df_Diag_cal_early_fix.empty:
  104. df_Diag_cal_early_fix['Batpos'] = 1
  105. df_Diag_Ram_Update = pd.concat([df_Diag_cal_early_unfix,df_Diag_cal_early_fix,df_Diag_Cal_finish])
  106. df_Diag_Ram_Update.sort_values(by = ['start_time'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
  107. df_temp5 = pd.concat([df_Diag_Ram_Update,df_Diag_Ram_sn_else])
  108. df_Diag_Ram_sum = df_temp5.drop_duplicates(subset=['product_id','start_time','end_time','code','info'], keep='first', inplace=False, ignore_index=False)#去除相同故障
  109. df_tempnum = df_Diag_Ram_sum.groupby(['product_id']).size()#获取每个sn的故障总数
  110. col1 = df_tempnum[df_tempnum>1].reset_index()[['product_id']]#多故障sn号
  111. col2 = df_tempnum[df_tempnum==1].reset_index()[['product_id']]#单故障sn号
  112. df_temp1 = pd.DataFrame()
  113. if not col1.empty:
  114. for item in col1['product_id']:
  115. temp_data = df_Diag_Ram_sum.loc[df_Diag_Ram_sum['product_id'] == item]
  116. temp_data.sort_values(by = ['start_time'], axis = 0, ascending=True,inplace=True)#对故障信息按照时间进行排序
  117. df_temp1 = df_temp1.append(temp_data)
  118. df_temp2 = pd.merge(col2,df_Diag_Ram_sum,on=["product_id"])#单故障码数据筛选
  119. df_temp3 = pd.concat([df_temp1,df_temp2])#多故障及单故障合并
  120. df_temp4 = df_temp3.reset_index(drop=True)
  121. df_Diag_Ram = df_temp4
  122. df_Diag_Ram_fix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 1]
  123. df_Diag_Ram_unfix = df_Diag_Ram.loc[df_Diag_Ram['Batpos'] == 0]
  124. if len(df_Diag_Ram) > 0:
  125. df_Diag_Ram.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result.csv',index=False,encoding='GB18030')
  126. if len(df_Diag_Ram_fix) > 0:
  127. df_Diag_Ram_fix.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result_fix.csv',index=False,encoding='GB18030')
  128. if len(df_Diag_Ram_unfix) > 0:
  129. df_Diag_Ram_unfix.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problemm\result_unfix.csv',index=False,encoding='GB18030')
  130. end=time.time()
  131. print(end-start)
  132. #...............................................主函数.......................................................................................................................
  133. if __name__ == "__main__":
  134. global SNnums
  135. excelpath=r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\sn-20210903.xlsx'
  136. SNdata_6060 = pd.read_excel(excelpath, sheet_name='科易6060')
  137. SNdata_6040 = pd.read_excel(excelpath, sheet_name='科易6040')
  138. SNdata_4840 = pd.read_excel(excelpath, sheet_name='科易4840')
  139. SNdata_L7255 = pd.read_excel(excelpath, sheet_name='格林美-力信7255')
  140. SNdata_C7255 = pd.read_excel(excelpath, sheet_name='格林美-CATL7255')
  141. SNdata_U7255 = pd.read_excel(excelpath, sheet_name='优旦7255')
  142. SNnums_6060=SNdata_6060['SN号'].tolist()
  143. SNnums_6040=SNdata_6040['SN号'].tolist()
  144. SNnums_4840=SNdata_4840['SN号'].tolist()
  145. SNnums_L7255=SNdata_L7255['SN号'].tolist()
  146. SNnums_C7255=SNdata_C7255['SN号'].tolist()
  147. SNnums_U7255=SNdata_U7255['SN号'].tolist()
  148. #SNnums=SNnums_L7255 + SNnums_C7255 + SNnums_6040 + SNnums_4840 + SNnums_U7255+ SNnums_6060
  149. # SNnums=['MGMCLN750N215I005','PK504B10100004341','PK504B00100004172','MGMLXN750N2189014']
  150. SNnums = ['MGMLXN750N21B5004'] #SNnums_6040
  151. mylog=log.Mylog('log_diag.txt','error')
  152. mylog.logcfg()
  153. #............................模块运行前,先读取数据库中所有结束时间为0的数据,需要从数据库中读取................
  154. result=pd.read_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result.csv',encoding='gbk')
  155. # df_Diag_Ram=result[result['end_time']=='0000-00-00 00:00:00']
  156. df_Diag_Ram=result#[result['Batpos'] == 0]#将故障依然存在的赋值
  157. print('----------------输入--------')
  158. print(df_Diag_Ram)
  159. print('-------计算中-----------')
  160. #定时任务.......................................................................................................................................................................
  161. scheduler = BlockingScheduler()
  162. scheduler.add_job(diag_cal, 'interval', seconds=120, id='diag_job')
  163. try:
  164. scheduler.start()
  165. except Exception as e:
  166. scheduler.shutdown()
  167. print(repr(e))
  168. mylog.logopt(e)