IndexStaByPeriod.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. '''
  2. 基于某个周期(一天,一周...)的指标统计库
  3. '''
  4. __author__ = 'wlm'
  5. CONF_PATH = 'D:\\Platform\\platform\\CONFIGURE\\'
  6. import sys
  7. sys.path.append(CONF_PATH)
  8. import PathSetting
  9. sys.path.append(PathSetting.backend_path)
  10. sys.path.append(PathSetting.middle_path)
  11. import datetime
  12. import Tools
  13. import pandas as pd
  14. import numpy as np
  15. import IndexStaByOneCycle
  16. class IndexStaByPeriod():
  17. def __init__(self):
  18. self.indexStaByOneCycle = IndexStaByOneCycle.IndexStaByOneCycle()
  19. pass
  20. def drive_odo_sta(self, df_bms, df_gps):
  21. '''
  22. 计算周期内行车累积行驶里程
  23. ---------输入参数------------
  24. df_bms : 一段周期内的预处理后的bms数据
  25. df_gps : 一段周期内的预处理后的gps数据
  26. ---------输出参数------------
  27. sum_odo : 累积里程, 如果该周期内gps均无效,则返回None
  28. invalid_rate : 该周期内gps无效的bms数据行所占比例
  29. '''
  30. invalid_count = 0
  31. total_count = 0
  32. sum_odo = 0
  33. data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status_after_combine'])))
  34. if len(data_number_list) == 0:
  35. return {'sum_odo':0, 'invalid_rate':0}
  36. for data_number in data_number_list[:]:
  37. df_sel_bms = df_bms[df_bms['data_split_by_status_after_combine'] == data_number]
  38. df_sel_bms = df_sel_bms.reset_index(drop=True)
  39. total_count += len(df_sel_bms)
  40. if df_sel_bms.loc[0, 'gps_rely'] != 1:
  41. invalid_count += len(df_sel_bms)
  42. continue
  43. else:
  44. df_sel_gps = df_gps[(df_gps['时间戳']>df_sel_bms.loc[0,'时间戳']) & (df_gps['时间戳']<df_sel_bms.loc[len(df_sel_bms)-1,'时间戳'])]
  45. df_sel_gps = df_sel_gps.reset_index(drop=True)
  46. odo = self.indexStaByOneCycle.odo_sta(np.array(df_sel_gps['odo']))
  47. if not pd.isnull(odo):
  48. sum_odo += odo
  49. invalid_rate = invalid_count/total_count
  50. return {'sum_odo':sum_odo, 'invalid_rate':invalid_rate}
  51. #该函数未完成, TODO!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  52. def _energy_consump_sta(self, cap, df_bms, df_gps):
  53. '''
  54. 计算周期内百公里能耗
  55. ---------输入参数------------
  56. df_bms : 本周期内的bms数据
  57. df_gps : 本周期内的gps数据
  58. ---------输出参数------------
  59. 本周期内的百公里能耗
  60. '''
  61. if not df_bms.empty and not df_gps.empty:
  62. # 计算能耗
  63. energy_sum = 0
  64. data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status_time'])))
  65. for data_number in data_number_list[:]:
  66. df_sel_bms = df_bms[df_bms['data_split_by_status_time'] == data_number]
  67. df_sel_bms = df_sel_bms.reset_index(drop=True)
  68. soc_array = np.array(df_sel_bms['SOC[%]'])
  69. soh_array = np.array(df_sel_bms['SOH[%]'])
  70. volt_array = np.array(df_sel_bms['总电压[V]'])
  71. energy = self.indexStaByOneCycle.energy_sta(cap, soc_array, soh_array, volt_array)
  72. if not pd.isnull(energy):
  73. energy_sum += energy
  74. # 计算里程
  75. pass # TODO!!!!!!!!!!!!!!!!!!!!!
  76. return 0
  77. else:
  78. return None
  79. def drive_soc_sta(self, df_bms):
  80. '''
  81. 计算周期内行车净累积soc
  82. ---------输入参数------------
  83. cap : 标称容量
  84. df_bms : 一段周期内的预处理后的bms数据
  85. df_gps : 一段周期内的预处理后的gps数据
  86. ---------输出参数------------
  87. sum_ah : 本周期的净累积soc
  88. '''
  89. sum_soc = 0
  90. data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status_time'])))
  91. if len(data_number_list) == 0:
  92. return sum_soc
  93. for data_number in data_number_list[:]:
  94. df_sel_bms = df_bms[df_bms['data_split_by_status_time'] == data_number]
  95. df_sel_bms = df_sel_bms.reset_index(drop=True)
  96. sum_soc += abs(df_sel_bms.loc[0, 'SOC[%]'] - df_sel_bms.loc[len(df_sel_bms)-1, 'SOC[%]'])
  97. return sum_soc
  98. def drive_time_sta(self, df_bms):
  99. '''
  100. 计算周期内累计行车时长/h
  101. ---------输入参数------------
  102. cap : 标称容量
  103. df_bms : 一段周期内的预处理后的bms数据
  104. df_gps : 一段周期内的预处理后的gps数据
  105. ---------输出参数------------
  106. sum_ah : 本周期的累计行车时长
  107. '''
  108. sum_time = 0
  109. data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status_time'])))
  110. if len(data_number_list) == 0:
  111. return sum_time
  112. for data_number in data_number_list[:]:
  113. df_sel_bms = df_bms[df_bms['data_split_by_status_time'] == data_number]
  114. df_sel_bms = df_sel_bms.reset_index(drop=True)
  115. sum_time += (df_sel_bms.loc[len(df_sel_bms)-1, '时间戳'] - df_sel_bms.loc[0, '时间戳']).total_seconds()
  116. return sum_time / 3600.0
  117. def drive_capacity_sta(self, cap, df_bms):
  118. '''
  119. 计算周期内行车净累积ah
  120. ---------输入参数------------
  121. cap : 标称容量
  122. df_bms : 一段周期内的预处理后的bms数据
  123. df_gps : 一段周期内的预处理后的gps数据
  124. ---------输出参数------------
  125. sum_ah : 本周期的净累积ah
  126. '''
  127. sum_ah = 0
  128. data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status_time'])))
  129. if len(data_number_list) == 0:
  130. return sum_ah
  131. for data_number in data_number_list[:]:
  132. df_sel_bms = df_bms[df_bms['data_split_by_status_time'] == data_number]
  133. df_sel_bms = df_sel_bms.reset_index(drop=True)
  134. soc_array = np.array(df_sel_bms['SOC[%]'])
  135. soh_array = np.array(df_sel_bms['SOH[%]'])
  136. sum_ah += self.indexStaByOneCycle.capacity_sta(cap, soc_array, soh_array)
  137. return sum_ah
  138. def drive_energy_sta(self, cap, df_bms):
  139. '''
  140. 计算周期内行车净累积能量
  141. ---------输入参数------------
  142. cap : 标称容量
  143. df_bms : 一段周期内的预处理后的bms数据
  144. df_gps : 一段周期内的预处理后的gps数据
  145. ---------输出参数------------
  146. sum_ah : 本周期的净累积能量
  147. '''
  148. sum_energy = 0
  149. data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status_time'])))
  150. if len(data_number_list) == 0:
  151. return sum_energy
  152. for data_number in data_number_list[:]:
  153. df_sel_bms = df_bms[df_bms['data_split_by_status_time'] == data_number]
  154. df_sel_bms = df_sel_bms.reset_index(drop=True)
  155. soc_array = np.array(df_sel_bms['SOC[%]'])
  156. soh_array = np.array(df_sel_bms['SOH[%]'])
  157. volt_array = np.array(df_sel_bms['总电压[V]'])
  158. sum_energy += self.indexStaByOneCycle.energy_sta(cap, soc_array, soh_array, volt_array)
  159. return sum_energy