123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- from LIB.MIDDLE.FaultDetection.V1_0_2.aelstm import *
- import pymysql
- import datetime
- import pandas as pd
- from LIB.BACKEND import DBManager
- dbManager = DBManager.DBManager()
- from sqlalchemy import create_engine
- from urllib import parse
- import datetime, time
- from apscheduler.schedulers.blocking import BlockingScheduler
- import traceback
- import pickle
- from keras.models import load_model
- import logging
- import logging.handlers
- import os
- import re
- #...................................故障检测函数......................................................................................................................
- def diag_cal():
- global SNnums
- global scaler_dict, scaler2_dict, model_dict, model2_dict
- start=time.time()
- now_time=datetime.datetime.now()
- start_time=now_time-datetime.timedelta(hours=3)
- start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
- end_time=now_time.strftime('%Y-%m-%d %H:%M:%S')
- #数据库配置
- host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port=3306
- db='safety_platform'
- user='qx_read'
- password='Qx@123456'
- #读取结果库数据......................................................
- param='product_id,start_time,end_time,diff_min,SOC,AnoScoreV_sum_max,AnoScoreV_max_max,AnoScoreT_sum_max,AnoScoreT_max_max'
- tablename='fault_detection'
- mysql = pymysql.connect (host=host, user=user, password=password, port=port, database=db)
- cursor = mysql.cursor()
- sql = "select {} from {} where end_time='0000-00-00 00:00:00'".format(param,tablename)
- cursor.execute(sql)
- res = cursor.fetchall()
- df_diag_ram= pd.DataFrame(res,columns=param.split(','))
-
- db_res_engine = create_engine(
- "mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
- user, parse.quote_plus(password), host, port, db
- ))
- #调用主函数................................................................................................................................................................
- for sn in SNnums:
- try:
- group=sn[:5]
- df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
- data_bms = df_data['bms']
- data_bms['sn']=sn
- if len(data_bms)>0:
- logger.info("SN: {} 数据开始预处理".format(sn))
- data_stand=data_groups(data_bms,sn,start_time,end_time)
- df_stand=split(data_stand)
- res=pd.DataFrame()
- if len(df_stand)>0:
- #读取训练产出的缩放指标:均值&方差
- logger.info("SN: {} 数据开始模型预测".format(sn))
- scaler = scaler_dict[group]
- scaler2 = scaler2_dict[group]
- #读取训练产出的模型状态空间:电压模型&温度模型
- model = model_dict[group]
- model2 = model2_dict[group]
- res=prediction(df_stand,scaler,scaler2,model,model2)
- if len(res)>0:
- df_res2,diff=threshold(res,group,end_time)
- df_diag_ram_sn=df_diag_ram[df_diag_ram['product_id']==sn]
- if not df_diag_ram_sn.empty: #该sn相关结果非空
- new_res,update_res=arrange(df_res2,df_diag_ram_sn,start_time,diff)
- if len(update_res)>0:
- cursor.execute("DELETE FROM fault_detection WHERE end_time = '0000-00-00 00:00:00' and product_id='{}'".format(sn))
- mysql.commit()
- update_res.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
- #新增结果存入结果库................................................................
- if len(new_res)>0:
- new_res.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
- else:
- df_res2.to_sql("fault_detection",con=db_res_engine, if_exists="append",index=False)
- # end=time.time()
- # print(end-start)
-
- except Exception as e:
- logger.error(str(e))
- logger.error(traceback.format_exc())
- cursor.close()
- mysql.close()
- #...............................................主函数起定时作用.......................................................................................................................
- if __name__ == "__main__":
-
- # 日志
- log_path = 'log/'
- if not os.path.exists(log_path):
- os.makedirs(log_path)
- logger = logging.getLogger("main")
- logger.setLevel(logging.DEBUG)
-
- # 根据日期滚动(每天产生1个文件)
- fh = logging.handlers.TimedRotatingFileHandler(filename='{}/main_info.log'.format(log_path), when="D", interval=1, backupCount=30,
- encoding="utf-8")
- formatter = logging.Formatter("%(asctime)s - %(name)s-%(levelname)s %(message)s")
- fh.suffix = "%Y-%m-%d_%H-%M-%S"
- fh.extMatch = re.compile(r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}")
- fh.setFormatter(formatter)
- fh.setLevel(logging.INFO)
- logger.addHandler(fh)
- fh = logging.handlers.TimedRotatingFileHandler(filename='{}/main_error.log'.format(log_path), when="D", interval=1, backupCount=30,
- encoding="utf-8")
- formatter = logging.Formatter("%(asctime)s - %(name)s-%(levelname)s %(message)s")
- fh.suffix = "%Y-%m-%d_%H-%M-%S"
- fh.extMatch = re.compile(r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}")
- fh.setFormatter(formatter)
- fh.setLevel(logging.ERROR)
- logger.addHandler(fh)
- logger.info("pid is {}".format(os.getpid()))
-
- # # 更新sn列表
- host='rm-bp10j10qy42bzy0q7.mysql.rds.aliyuncs.com'
- port=3306
- db='qixiang_oss'
- user='qixiang_oss'
- password='Qixiang2021'
- conn = pymysql.connect(host=host, port=port, user=user, password=password, database=db)
- cursor = conn.cursor()
- cursor.execute("select sn, imei, add_time from app_device where status in (1,2,3)")
- res = cursor.fetchall()
- df_sn = pd.DataFrame(res, columns=['sn', 'imei', 'add_time'])
- df_sn = df_sn.reset_index(drop=True)
- conn.close();
-
- SNnums = list(df_sn['sn'])
-
- scaler_list=[]
- scaler2_list=[]
- model_list=[]
- model2_list=[]
- for group in ['MGMLX','PK504','PK502','PK500','MGMCL']:
- scaler = pickle.load(open('D:/deploy/python_platform/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerV_'+group+'_10.pkl', 'rb'))
- scaler2 = pickle.load(open('D:/deploy/python_platform/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/scalerT_'+group+'_10.pkl', 'rb'))
- model = load_model('D:/deploy/python_platform/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/modelV_'+group+'_10.h5')
- model2 = load_model('D:/deploy/python_platform/data_analyze_platform/LIB/MIDDLE/FaultDetection/V1_0_2/train_out/modelT_'+group+'_10.h5')
- scaler_list.append(scaler)
- scaler2_list.append(scaler2)
- model_list.append(model)
- model2_list.append(model2)
- scaler_dict={'MGMLX':scaler_list[0],'PK504':scaler_list[1],'PK502':scaler_list[2],'PK500':scaler_list[3],'MGMCL':scaler_list[4]}
- scaler2_dict={'MGMLX':scaler2_list[0],'PK504':scaler2_list[1],'PK502':scaler2_list[2],'PK500':scaler2_list[3],'MGMCL':scaler2_list[4]}
- model_dict={'MGMLX':model_list[0],'PK504':model_list[1],'PK502':model_list[2],'PK500':model_list[3],'MGMCL':model_list[4]}
- model2_dict={'MGMLX':model2_list[0],'PK504':model2_list[1],'PK502':model2_list[2],'PK500':model2_list[3],'MGMCL':model2_list[4]}
- logger.info("模型加载完成")
- diag_cal()
- #定时任务.......................................................................................................................................................................
- scheduler = BlockingScheduler()
- scheduler.add_job(diag_cal, 'interval', hours=3)
- try:
- scheduler.start()
- except Exception as e:
- scheduler.shutdown()
- logger.error(str(e))
- logger.error(traceback.format_exc())
|