demo.py 4.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. # 获取数据
  2. CONF_PATH = 'D:\\Platform\\platform\\CONFIGURE\\'
  3. import sys
  4. sys.path.append(CONF_PATH)
  5. import PathSetting
  6. sys.path.append(PathSetting.backend_path)
  7. import DBManager
  8. dbManager = DBManager.DBManager()
  9. df_bms, df_gps = dbManager.get_data(sn='PK50201A000002005', start_time='2021-04-01 00:00:00',
  10. end_time='2021-04-05 00:00:00', gps_switch=True, mode=0)
  11. # 下载数据 7255
  12. CONF_PATH = 'D:\\Platform\\platform\\CONFIGURE\\'
  13. import sys
  14. sys.path.append(CONF_PATH)
  15. import PathSetting
  16. sys.path.append(PathSetting.backend_path)
  17. import Tools
  18. tools = Tools.Tools()
  19. write_path = r'D:\Platform\Users\CJH\Download\data'
  20. st = '2021-06-01 00:00:00'
  21. et = '2021-06-03 00:00:00'
  22. tools.data_download(write_path=write_path, sn='UD02030118B4C0010', start_time=st,
  23. end_time=et, mode=1)
  24. # 下载数据 非7255
  25. CONF_PATH = 'D:\\Platform\\platform\\CONFIGURE\\'
  26. import sys
  27. sys.path.append(CONF_PATH)
  28. import PathSetting
  29. sys.path.append(PathSetting.backend_path)
  30. import Tools
  31. tools = Tools.Tools()
  32. write_path = r'D:\Platform\Users\WLM\data_ana\Data_Files'
  33. tools.data_download(write_path=write_path, sn='PK504B00100004017', start_time='2021-04-01 00:00:00',
  34. end_time='2021-04-05 00:00:00', gps_switch=True, mode=0)
  35. # 数据预处理
  36. CONF_PATH = 'D:\\Platform\\platform\\CONFIGURE\\'
  37. import sys
  38. sys.path.append(CONF_PATH)
  39. import PathSetting
  40. sys.path.append(PathSetting.backend_path)
  41. import DataPreProcess
  42. importlib.reload(DataPreProcess)
  43. dataPrePro = DataPreProcess.DataPreProcess()
  44. # 时间完全相同的数据仅保留一行
  45. df_bms_pro, df_gps_pro = dataPrePro.time_filter(df_bms, df_gps)
  46. # bms数据按照电流和状态分段, 然后在状态分段内部,根据时间跳变继续分段(解决段内数据丢失)
  47. df_bms_pro = dataPrePro.data_split_by_status(df_bms_pro)
  48. df_bms_pro = dataPrePro.data_split_by_time(df_bms_pro)
  49. # bms数据将两次充电间的状态合并
  50. df_bms_pro = dataPrePro.combine_drive_stand(df_bms_pro)
  51. # bms 数据计算行车和充电开始前后的静置时间
  52. df_bms_pro = dataPrePro.cal_stand_time(df_bms_pro)
  53. # gps 数据可靠性判断, 并增加里程和速度至gps数据(根据未合并的数据段判断)
  54. df_bms_pro, df_gps_pro, res_record= dataPrePro.gps_data_judge(df_bms_pro, df_gps_pro)
  55. # gps 数据可靠性判断, 并增加里程和速度至gps数据(根据已合并的数据段判断)
  56. df_bms_pro, df_gps_pro, res_record= dataPrePro.data_gps_judge_after_combine(df_bms_pro, df_gps_pro)
  57. # 单cycle指标统计
  58. CONF_PATH = 'D:\\Platform\\platform\\CONFIGURE\\'
  59. import sys
  60. sys.path.append(CONF_PATH)
  61. import PathSetting
  62. sys.path.append(PathSetting.middle_path)
  63. #import IndexStaByOneCycle
  64. import importlib
  65. importlib.reload(IndexStaByOneCycle)
  66. indexSta = IndexStaByOneCycle.IndexStaByOneCycle()
  67. data_number_list = sorted(list(set(df_bms[(df_bms['data_status'].isin(['drive']))]['data_split_by_status'])))
  68. for data_number in data_number_list[:]:
  69. df_sel_bms = df_bms[df_bms['data_split_by_status'] == data_number]
  70. df_sel_bms = df_sel_bms.reset_index(drop=True)
  71. df_sel_gps = df_gps[(df_gps['时间戳']>df_sel_bms.loc[0,'时间戳']) & (df_gps['时间戳']<df_sel_bms.loc[len(df_sel_bms)-1,'时间戳'])]
  72. df_sel_gps = df_sel_gps.reset_index(drop=True)
  73. print(indexSta.odo_sta(np.array(df_sel_gps['odo'])))
  74. print(indexSta.capacity_sta(40, np.array(df_sel_bms['SOC[%]']), np.array(df_sel_bms['SOH[%]'])))
  75. print(indexSta.energy_sta(40, np.array(df_sel_bms['SOC[%]']), np.array(df_sel_bms['SOH[%]']),np.array(df_sel_bms['总电压[V]'])))
  76. print(indexSta.acc_time_sta(np.array(df_sel_bms['时间戳'])))
  77. print(indexSta.mean_temp_sta(np.array(df_sel_bms['单体温度1'])))
  78. print(indexSta.temp_change_rate_sta(np.array(df_sel_bms['时间戳']), np.array(df_sel_bms['单体温度1'])))
  79. print(indexSta.dischrg_max_pwr_sta(np.array(df_sel_bms['总电压[V]']), np.array(df_sel_bms['总电流[A]'])))
  80. print(indexSta.chrg_max_pwr_sta(np.array(df_sel_bms['总电压[V]']), np.array(df_sel_bms['总电流[A]'])))
  81. print(indexSta.speed_sta(indexSta.odo_sta(np.array(df_sel_gps['odo'])), indexSta.acc_time_sta(np.array(df_sel_gps['时间戳'])), np.array(df_sel_gps['speed'])))
  82. break