123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- from os import defpath
- import pandas as pd
- import numpy as np
- import pdb
- from numba import jit
- from LIB.BACKEND import Tools
- class DataPreProcess:
- def __init__(self):
- self.tools = Tools.Tools()
- pass
- # def data_split(self, dfin, drive_interval_threshold=120, charge_interval_threshold=300,
- # drive_stand_threshold=120, charge_stand_threshold=300,
- # default_time_threshold = 300, drive_time_threshold=300, charge_time_threshold=300,
- # stand_time_threshold = 1800):
- # '''
- # 数据分段函数,会调用_data_split_by_status和_data_split_by_time函数。
- # 其中_data_split_by_status 将数据分为charge、drive、stand、和none段;
- # _data_split_by_time 将每个段内的数据,根据时间跳变继续分段。
- # '''
- def time_filter(self, df_bms, df_gps):
- df_bms.drop_duplicates(subset=['时间戳'], keep='first', inplace=True)
- df_gps.drop_duplicates(subset=['时间戳'], keep='first', inplace=True)
- df_bms = df_bms.reset_index(drop=True)
- df_gps = df_gps.reset_index(drop=True)
- return df_bms, df_gps
- def data_split_by_status(self, dfin, drive_interval_threshold=120, charge_interval_threshold=300,
- drive_stand_threshold=120, charge_stand_threshold=300):
- '''
- # 数据预处理分段, 将原始数据段分为 charge、drive、stand、none段
- # 状态判断
- # 1、drive:(状态为2或3 且 存在电流>0 ) 或 (电流持续为0 且 持续时间<阈值 且 上一段数据为行车)
- # 2、charge:(状态为2或3 且 不存在电流>0 ) 或 (电流持续为0 且 持续时间<阈值 且 上一段数据为充电)
- # 3、stand:(电流持续为0 且 是数据段的第一段) 或 (电流持续为0 且 持续时间>阈值)
- # 4、none: 其他
- --------------输入参数-------------:
- drive_interval_threshold: 行车段拼接阈值,如果两段行车的间隔时间小于该值,则两段行车合并。
- charge_interval_threshold: 充电段拼接阈值,如果两段充电的间隔时间小于该值,则两段充电合并。
- drive_stand_threshold: 静置段合并至行车段阈值,如果静置时间小于该值,则合并到上一段的行车中。
- charge_stand_threshold: 静置段合并至充电段阈值,如果静置时间小于该值,则合并到上一段的充电中。
- --------------输出-----------------:
- 在原始数据后面,增加data_split_by_crnt, data_split_by_status, data_status 三列
- data_split_by_crnt: 按电流分段的序号
- data_split_by_status:按电流和状态分段的序号
- data_status: 状态标识
- '''
- # 首先根据电流是否为0 ,将数据分段
- df = dfin.copy()
- df['时间戳'] = pd.to_datetime(df['时间戳'])
-
- crnt_zero_or_not = df['总电流[A]']==0
- last_crnt_flag = crnt_zero_or_not[0]
- temp = 1
- group_id = [temp]
- for cur_crnt_flag in crnt_zero_or_not[1:]:
- if last_crnt_flag ^ cur_crnt_flag:
- temp = temp + 1
- last_crnt_flag = cur_crnt_flag
- group_id.append(temp)
- df['data_split_by_crnt'] = group_id
- # 然后判断每个段内的 充电状态及电流=0持续时长,决定当前状态
- temp = 1
- last_status = ""
- status_id = []
- status_list = []
- data_number_list = sorted(list(set(df['data_split_by_crnt'])))
- for data_number in data_number_list:
- df_sel = df[df['data_split_by_crnt'] == data_number]
- origin_index = list(df_sel.index)
- df_sel = df_sel.reset_index(drop=True)
- temp_2 = 0
- # 如果当前数据段的电流非0,则可能分为charge、drive或none段
- if df_sel.loc[0,'总电流[A]'] != 0:
- # 电流 分段中可能存在状态变化的时刻, 内部根据状态进行分段.
- # 该数据段内部,根据bms状态信号进行二次分段
- status_drive_or_not = df_sel['充电状态']==3
- last_status_flag = status_drive_or_not[0]
- temp_2 = 0
- group_id_2 = [temp_2]
- for cur_status_flag in status_drive_or_not[1:]:
- if last_status_flag ^ cur_status_flag:
- temp_2 = temp_2 + 1
- last_status_flag = cur_status_flag
- group_id_2.append(temp_2)
-
- # 遍历二次状态分段
- temp_2 = 0
- last_status_2 = last_status
- df_sel['index'] = group_id_2
- data_number_list_2 = sorted(list(set(group_id_2)))
- for data_number_2 in data_number_list_2:
-
- df_sel_2 = df_sel[df_sel['index'] == data_number_2]
- df_sel_2 = df_sel_2.reset_index(drop=True)
-
- # 根据bms状态 及 电流符号决定是charge还是drive
- # 如果状态为2或3, 且电流均>=0 则记为充电
- if df_sel_2.loc[0, '充电状态'] in [2, 3] and len(df_sel_2[df_sel_2['总电流[A]'] < 0]) == 0:
- cur_status = 'charge'
- # 如果状态为2或3,且存在电流<0 则记为行车
- elif df_sel_2.loc[0, '充电状态'] in [2, 3] and len(df_sel_2[df_sel_2['总电流[A]'] < 0]) > 0:
- cur_status = 'drive'
- # 否则 记为none
- else:
- cur_status = 'none'
- status_list.extend([cur_status] * len(df_sel_2))
-
- # 状态id号与前面电流为0的相同状态进行合并, 均判断应不应该与上一段合并
- if origin_index[0] == 0: # 如果是所有数据的起始段数据,则直接赋值id号
- status_id.extend([temp + temp_2]*len(df_sel_2))
-
- else: # 判断是否与上一段数据合并
- deltaT = (df.loc[origin_index[0], '时间戳'] - df.loc[origin_index[0]-1, '时间戳']).total_seconds()
- # 如果 状态一致, 且 间隔时间小于阈值,则合并
- if last_status_2 == 'drive' and cur_status == last_status_2 and deltaT < drive_interval_threshold:
- temp_2 = temp_2 - 1
- status_id.extend([temp + temp_2]*len(df_sel_2))
- # 如果状态一致, 且 间隔时间小于阈值,则合并
- elif last_status_2 == 'charge' and cur_status == last_status_2 and deltaT < charge_interval_threshold:
- temp_2 = temp_2 - 1
- status_id.extend([temp + temp_2]*len(df_sel_2))
- else:
- status_id.extend([temp + temp_2]*len(df_sel_2))
- temp_2 = temp_2 + 1
- last_status_2 = status_list[-1]
- temp_2 = temp_2 - 1
- else:
- # 如果当前数据段的电流为0,则可能分为stand,charge、drive或none段
- if origin_index[0] == 0: # 如果是数据的起始,则无论长短,都认为是stand
- status_id.extend([temp]*len(df_sel))
- status_list.extend(['stand'] * len(df_sel))
- else: # 不是数据的起始
- cur_deltaT = (df.loc[origin_index[-1], '时间戳'] - df.loc[origin_index[0], '时间戳']).total_seconds()
- if last_status == 'charge': # 如果上一个状态为充电
- if cur_deltaT < charge_stand_threshold: # 如果本次电流为0的持续时间小于 阈值,则合并
- status_list.extend(['charge'] * len(df_sel))
- temp = temp - 1
- status_id.extend([temp]*len(df_sel))
- else: # 否则超过了阈值,记为stand
- status_id.extend([temp]*len(df_sel))
- status_list.extend(['stand'] * len(df_sel))
- elif last_status == 'drive': # 如果上一个状态为行车
- if cur_deltaT < drive_stand_threshold: # 如果本次电流为0的持续时间小于 阈值,则合并
- status_list.extend(['drive'] * len(df_sel))
- temp = temp - 1
- status_id.extend([temp]*len(df_sel))
- else: # 否则超过了阈值,记为stand
- status_id.extend([temp]*len(df_sel))
- status_list.extend(['stand'] * len(df_sel))
- elif last_status == 'none': # 如果上一个状态未知
- status_id.extend([temp] * len(df_sel))
- status_list.extend(['stand'] * len(df_sel))
- temp = temp + temp_2 + 1
- last_status = status_list[-1] # 上一组状态
- df['data_split_by_status'] = status_id
- df['data_status'] = status_list
- return df
- def data_split_by_time(self, dfin, default_time_threshold = 300, drive_time_threshold=300, charge_time_threshold=300,
- stand_time_threshold = 1800):
- '''
- # 该函数用来解决数据丢失问题导致的分段序号异常,
- # 将经过data_split_by_status分段后的数据,每个段内两行数据的时间跳变如果超过阈值,则继续分为两段
- --------------输入参数-------------:
- dfin: 调用data_split_by_status之后的函数
- default_time_threshold: 默认时间阈值,如果状态内部时间跳变大于该值,则划分为两段
- drive_time_threshold: 行车时间阈值,如果行车状态内部时间跳变大于该值,则划分为两段
- charge_time_threshold: 充电时间阈值,如果充电状态内部时间跳变大于该值,则划分为两段
- stand_time_threshold:静置时间阈值,如果静置状态内部时间跳变大于该值,则划分为两段
- --------------输出-----------------:
- 在输入数据后面,增加data_split_by_status_time 一列
- data_split_by_status_time: 按照状态和时间分段后的序号
- '''
- data_id = []
- temp = 1
- data_number_list = sorted(list(set(dfin['data_split_by_status'])))
- for data_number in data_number_list:
- # if data_number == 1203:
- # pdb.set_trace()
- status = list(dfin[dfin['data_split_by_status']==data_number]['data_status'])[0]
- cur_indexes = dfin[dfin['data_split_by_status']==data_number].index
-
- time_array = np.array(dfin[dfin['data_split_by_status']==data_number]['时间戳'])
- time_diff = np.diff(time_array)
- time_diff = time_diff.astype(np.int64)
- time_interval = default_time_threshold
- if status == 'drive':
- time_interval = drive_time_threshold
- elif status == 'charge':
- time_interval = charge_time_threshold
- elif status == 'stand':
- time_interval = stand_time_threshold
- time_diff_index = (np.argwhere(((time_diff/1e9) > time_interval)==True))[:,0]
- time_diff_origin_index = cur_indexes[time_diff_index]+1
- if len(time_diff_index) == 0:
- data_id.extend([temp] * len(cur_indexes))
- temp += 1
- else:
- last_index = cur_indexes[0]
- for index, cur_index in enumerate(time_diff_origin_index):
- if index == len(time_diff_origin_index)-1: # 如果是最后一个index,则
- data_id.extend([temp]* (cur_index-last_index))
- last_index = cur_index
- temp += 1
- data_id.extend([temp]* (cur_indexes[-1]-last_index+1))
- else:
- data_id.extend([temp]* (cur_index-last_index))
- last_index = cur_index
- temp += 1
- dfin['data_split_by_status_time'] = data_id
- return dfin
- def combine_drive_stand(self, dfin):
- '''
- 合并放电和静置段:将两次充电之间的所有数据段合并为一段, 状态分为 charge 和not charge
- ---------------输入----------
- dfin: 调用data_split_by_status()后输出的bms数据
- ---------------输出----------
- 在输入数据后面,增加data_split_by_status_after_combine, data_status_after_combine 两列
- data_split_by_status_after_combine: 将两次充电间的数据合并后的段序号
- data_status_after_combine: 每段数据的状态标识
- '''
- df = dfin.copy()
- data_split_by_status_1 = []
- data_status_1 = []
- number = 1
- first_flag = True
- data_number_list = sorted(list(set(df['data_split_by_status_time'])))
- for data_number in data_number_list:
- status = list(df[df['data_split_by_status_time']==data_number]['data_status'])
- cur_status = status[0]
- if first_flag:
- first_flag = False
- elif (last_status not in ['charge'] and cur_status in ['charge']) or (last_status in ['charge'] and cur_status not in ['charge']):
- number += 1
- data_split_by_status_1.extend([number]*len(status))
- if cur_status in ['charge']:
- data_status_1.extend(['charge']*len(status))
- else:
- data_status_1.extend(['not charge']*len(status))
- last_status = cur_status
- df['data_split_by_status_after_combine'] = data_split_by_status_1
- df['data_status_after_combine'] = data_status_1
- return df
- def cal_stand_time(self, dfin):
- '''
- # 计算静置时间
- # 将每次行车或充电的前后静置时间,赋值给stand_time 列, 单位为分钟
- ----------------输入参数---------
- dfin: 调用data_split_by_status()后输出的bms数据
- ----------------输出参数----------
- 在输入数据后面,增加stand_time列
- stand_time : 在行车段或充电段的起止两个位置处,表明开始前和结束后的静置时长,单位为分钟
- '''
- df = dfin.copy()
- stand_time = []
- first_flag = True
- data_number_list = sorted(list(set(df['data_split_by_status_time'])))
- for index, data_number in enumerate(data_number_list):
- status = list(df[df['data_split_by_status_time']==data_number]['data_status'])
- time = list(df[df['data_split_by_status_time']==data_number]['时间戳'])
- cur_status = status[0]
- cur_delta_time = (time[-1]-time[0]).total_seconds() / 60.0 # 分钟
- if len(status) >= 2:
- if first_flag:
- first_flag = False
- if index < len(data_number_list)-1:
- if cur_status in ['charge', 'drive']:
- next_status = list(df[df['data_split_by_status_time']==data_number_list[index+1]]['data_status'])[0]
- stand_time.extend([None]*(len(status)-1))
- if next_status == 'stand':
- next_time = list(df[df['data_split_by_status_time']==data_number_list[index+1]]['时间戳'])
- stand_time.extend([(next_time[-1]-next_time[0]).total_seconds() / 60.0])
- else:
- stand_time.extend([0])
- else:
- stand_time.extend([None]*len(status))
- else:
- stand_time.extend([None]*len(status))
- else:
- if cur_status in ['charge', 'drive']:
- if last_status == 'stand':
- stand_time.extend([last_delta_time])
- else:
- stand_time.extend([0])
- stand_time.extend([None]*(len(status)-2))
- if index < len(data_number_list)-1:
- next_status = list(df[df['data_split_by_status_time']==data_number_list[index+1]]['data_status'])[0]
- if next_status == 'stand':
- next_time = list(df[df['data_split_by_status_time']==data_number_list[index+1]]['时间戳'])
- stand_time.extend([(next_time[-1]-next_time[0]).total_seconds() / 60.0])
- else:
- stand_time.extend([0])
- else:
- stand_time.extend([None])
- else:
- stand_time.extend([None]*len(status))
-
- else:
- stand_time.extend([None])
- last_status = cur_status
- last_delta_time = cur_delta_time
- df['stand_time'] = stand_time
- return df
- # 输入GPS数据,返回本段数据的累积里程,及平均时速(如果两点之间)
- @jit
- def _cal_odo_speed(self, lat_list, long_list, time_list):
- '''
- 输入:经度列表, 纬度列表, 时间列表;
- 输出:每两个经纬度坐标之间的距离,以及速度 的数组
- '''
- dis_array = []
- speed_array = []
-
- for i in range(len(lat_list)-1):
- dis = self.tools.cal_distance(lat_list[i],long_list[i], lat_list[i+1],long_list[i+1])
- dis_array.append(dis)
- deltaT = abs(time_list[i] - time_list[i+1]).total_seconds()
- speed_array.append(dis * 3600.0/deltaT)
- return np.array(dis_array), np.array(speed_array)
- def gps_data_judge(self, df_bms, df_gps, time_diff_thre=300, odo_sum_thre=200, drive_spd_thre=80, parking_spd_thre=2):
- '''
- GPS数据可靠性判断函数(基于combine前的分段)
- GPS数据出现以下情况时,判定为不可靠:
- 1)如果该段对应的地理位置数据 少于2 个,则认为不可靠
- 2)如果截取的GPS数据的起止时间,与BMS数据段的起止时间相差超过阈值,则认为不可靠
- 3)如果行车段 累积里程超过阈值,车速超过阈值
- 4) 如果非行车段 车速超过阈值
- --------------输入参数--------------:
- time_diff_thre: 时间差阈值
- odo_sum_thre: 累积里程阈值
- drive_spd_thre: 行车车速阈值
- parking_spd_thre: 非行车状态车速阈值
- --------------输出参数--------------:
- df_bms 增加一列gps_rely, 表明对应的GPS数据是否可靠。
- 1:可靠
- <0: 表示不可靠的原因
- df_gps 增加两列odo, speed, 分别表示前后两点间的距离和速度
- '''
- df_gps['时间戳'] = pd.to_datetime(df_gps['时间戳'])
- res_record = {'drive':0, 'charge':0, 'stand':0, 'none':0, 'total':0}
- rely_list = []
- df_gps['odo'] = [None] * len(df_gps)
- df_gps['speed'] = [None] * len(df_gps)
- data_number_list = sorted(list(set(df_bms['data_split_by_status_time'])))
- for data_number in data_number_list[:]:
- df_sel = df_bms[df_bms['data_split_by_status_time'] == data_number]
- df_sel = df_sel.reset_index(drop=True)
- df_sel_gps = df_gps[(df_gps['时间戳']>=df_sel.loc[0,'时间戳']) & (df_gps['时间戳']<=df_sel.loc[len(df_sel)-1,'时间戳'])]
- origin_index = list(df_sel_gps.index)
- df_sel_gps = df_sel_gps.reset_index(drop=True)
- # 如果当前段数据对应的地理位置数据少于2个
- if len(df_sel_gps) <= 1:
- rely_list.extend([-1]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status'])] = res_record[str(df_sel.loc[0, 'data_status'])] + 1
- continue
- # 如果GPS 起止时间段和BMS数据相差超过阈值
- if abs(df_sel_gps.loc[0, '时间戳'] - df_sel.loc[0,'时间戳']).total_seconds() > time_diff_thre or \
- abs(df_sel_gps.loc[len(df_sel_gps)-1, '时间戳'] - df_sel.loc[len(df_sel)-1,'时间戳']).total_seconds() > time_diff_thre:
- rely_list.extend([-2]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status'])] = res_record[str(df_sel.loc[0, 'data_status'])] + 1
- continue
- # 计算该段数据每两点之间的里程以及速度
- dis_array, speed_array = self._cal_odo_speed(df_sel_gps['纬度'], df_sel_gps['经度'], df_sel_gps['时间戳'])
- # 如果 累积里程异常 或 平均车速异常 或两点间车速异常
- avg_speed = np.sum(dis_array) *3600.0 / abs(df_sel_gps.loc[0, '时间戳'] - df_sel_gps.loc[len(df_sel_gps)-1, '时间戳']).total_seconds()
- if np.sum(dis_array) > odo_sum_thre or avg_speed > drive_spd_thre or (speed_array > drive_spd_thre).any():
- rely_list.extend([-3]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status'])] = res_record[str(df_sel.loc[0, 'data_status'])] + 1
- continue
-
- # 如果停车,且 平均时速超过阈值,则不可靠
- if (str(df_sel.loc[0, 'data_status']) == 'charge' or str(df_sel.loc[0, 'data_status']) == 'stand') and avg_speed > parking_spd_thre :
- rely_list.extend([-4]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status'])] = res_record[str(df_sel.loc[0, 'data_status'])] + 1
- continue
- # 剩下的记录为可靠
- rely_list.extend([1]*len(df_sel))
- df_gps.loc[origin_index[1:], 'odo'] = dis_array
- df_gps.loc[origin_index[1:], 'speed'] = speed_array
- df_bms['gps_rely'] = rely_list
- res_record['total'] = (res_record['drive'] + res_record['charge'] + res_record['stand'] + res_record['none'] )/df_bms['data_split_by_status_time'].max()
- if len(set(df_bms[df_bms['data_status']=='drive']['data_split_by_status_time'])) > 0:
- res_record['drive'] = (res_record['drive'])/len(set(df_bms[df_bms['data_status']=='drive']['data_split_by_status_time']))
- if len(set(df_bms[df_bms['data_status']=='charge']['data_split_by_status_time'])) > 0:
- res_record['charge'] = (res_record['charge'])/len(set(df_bms[df_bms['data_status']=='charge']['data_split_by_status_time']))
- if len(set(df_bms[df_bms['data_status']=='stand']['data_split_by_status_time'])) > 0:
- res_record['stand'] = (res_record['stand'])/len(set(df_bms[df_bms['data_status']=='stand']['data_split_by_status_time']))
- if len(set(df_bms[df_bms['data_status']=='none']['data_split_by_status_time'])) > 0:
- res_record['none'] = (res_record['none'])/len(set(df_bms[df_bms['data_status']=='none']['data_split_by_status_time']))
- return df_bms, df_gps, res_record
- def data_gps_judge_after_combine(self, df_bms, df_gps, time_diff_thre=600, odo_sum_thre=200, drive_spd_thre=80, parking_spd_thre=2):
- '''
- GPS数据可靠性判断函数2 (基于combine后的分段) 判别方式同data_gps_judge
- '''
- df_gps['时间戳'] = pd.to_datetime(df_gps['时间戳'])
- res_record = {'not charge':0, 'charge':0, 'total':0} # 不可靠的比例
- rely_list = []
- df_gps['odo_after_combine'] = [None] * len(df_gps)
- df_gps['speed_after_combine'] = [None] * len(df_gps)
-
- data_number_list = sorted(list(set(df_bms['data_split_by_status_after_combine'])))
- for data_number in data_number_list[:]:
- df_sel = df_bms[df_bms['data_split_by_status_after_combine'] == data_number]
- df_sel = df_sel.reset_index(drop=True)
- # 尝试采用drive段的开始和结束时间选择GPS数据,因为stand时GPS数据可能存在丢失,影响里程的计算
- df_sel_drive = df_sel[df_sel['data_status']=='drive'] #
- df_sel_drive = df_sel_drive.reset_index(drop=True)
- if df_sel_drive.empty:
- df_sel_1 = df_sel
- else:
- df_sel_1 = df_sel_drive
- df_sel_gps = df_gps[(df_gps['时间戳']>=df_sel_1.loc[0,'时间戳']) & (df_gps['时间戳']<=df_sel_1.loc[len(df_sel_1)-1,'时间戳'])]
- origin_index = list(df_sel_gps.index)
- df_sel_gps = df_sel_gps.reset_index(drop=True)
- # 如果当前段数据对应的地理位置数据少于2个
- if len(df_sel_gps) <= 1:
- rely_list.extend([-1]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status_after_combine'])] = res_record[str(df_sel.loc[0, 'data_status_after_combine'])] + 1
- continue
- # 如果GPS 起止时间段和BMS数据相差超过阈值
- if abs(df_sel_gps.loc[0, '时间戳'] - df_sel_1.loc[0,'时间戳']).total_seconds() > time_diff_thre or \
- abs(df_sel_gps.loc[len(df_sel_gps)-1, '时间戳'] - df_sel_1.loc[len(df_sel_1)-1,'时间戳']).total_seconds() > time_diff_thre:
- rely_list.extend([-2]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status_after_combine'])] = res_record[str(df_sel.loc[0, 'data_status_after_combine'])] + 1
- continue
- # 计算该段数据每两点之间的里程以及速度
- dis_array, speed_array = self._cal_odo_speed(df_sel_gps['纬度'], df_sel_gps['经度'], df_sel_gps['时间戳'])
- # 如果 累积里程异常 或 平均车速异常 或两点间车速异常
- avg_speed = np.sum(dis_array) *3600.0 / abs(df_sel_gps.loc[0, '时间戳'] - df_sel_gps.loc[len(df_sel_gps)-1, '时间戳']).total_seconds()
- if np.sum(dis_array) > odo_sum_thre or avg_speed > drive_spd_thre or (speed_array > drive_spd_thre).any():
- rely_list.extend([-3]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status_after_combine'])] = res_record[str(df_sel.loc[0, 'data_status_after_combine'])] + 1
- continue
-
- # 如果充电,且 平均时速超过阈值,则不可靠
- if str(df_sel.loc[0, 'data_status_after_combine']) == 'charge' and avg_speed > parking_spd_thre:
- rely_list.extend([-4]*len(df_sel))
- res_record[str(df_sel.loc[0, 'data_status_after_combine'])] = res_record[str(df_sel.loc[0, 'data_status_after_combine'])] + 1
- continue
- # 剩下的记录为可靠
- rely_list.extend([1]*len(df_sel))
- df_gps.loc[origin_index[1:], 'odo_after_combine'] = dis_array
- df_gps.loc[origin_index[1:], 'speed_after_combine'] = speed_array
- df_bms['gps_rely_after_combine'] = rely_list
- res_record['total'] = (res_record['not charge'] + res_record['charge'])/df_bms['data_split_by_status_after_combine'].max()
- if len(set(df_bms[df_bms['data_status_after_combine']=='not charge']['data_split_by_status_after_combine'])) > 0:
- res_record['not charge'] = (res_record['not charge'])/len(set(df_bms[df_bms['data_status_after_combine']=='not charge']['data_split_by_status_after_combine']))
- if len(set(df_bms[df_bms['data_status_after_combine']=='charge']['data_split_by_status_after_combine'])) > 0 :
- res_record['charge'] = (res_record['charge'])/len(set(df_bms[df_bms['data_status_after_combine']=='charge']['data_split_by_status_after_combine']))
- return df_bms, df_gps, res_record
-
|