123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- <<<<<<< HEAD
- <<<<<<< HEAD
- __author__ = 'lmstack'
- # 每日指标统计函数
- import CONFIGURE.PathSetting as PathSetting
- import sys
- sys.path.append(PathSetting.backend_path)
- sys.path.append(PathSetting.middle_path)
- import DBManager
- import Tools
- import DataPreProcess
- import IndexStaByPeriod
- import Log
- import IndexStaByPeriod
- import importlib
- import datetime
- import os
- import pandas as pd
- import time
- importlib.reload(IndexStaByPeriod)
- dbManager = DBManager.DBManager()
- dataPrePro = DataPreProcess.DataPreProcess()
- indexPerSta = IndexStaByPeriod.IndexStaByPeriod()
- # log 文件配置
- myLog = Log.Mylog('day_sta')
- myLog.set_file_hl(file_name=r'D:\Platform\platform\FRONTEND\day_sta\day_sta.log', log_level='info')
- myLog.set_stream_hl(log_level='info')
- logger = myLog.get_logger()
- logger.info(str(os.getpid()))
- # sn文件读取
- sn_list = list(pd.read_excel('D:\Platform\platform\苏州电池列表.xlsx')['sn'])
- sn_list.extend(list(pd.read_excel('D:\Platform\platform\骑享北京6040电池包统计更新20210407.xlsx')['SN号']))
- sn = sn_list[0]
- # 字段设置及结果文件生成
- columns = ['sn', 'time', 'sumDriveTime', 'sumDriveSoc', 'sumDriveAh', 'sumDriveEnergy']
- st = datetime.datetime.strptime('00:00:00', '%H:%M:%S')
- for i in range(96):
- et = st + datetime.timedelta(minutes=15)
- columns.append(st.strftime('%H:%M') + '-' + et.strftime('%H:%M'))
- st = et
- result_path = r'D:\Platform\platform\FRONTEND\day_sta\result.csv'
- df_res = pd.DataFrame(columns=columns)
- if not os.path.exists(result_path):
- df_res.to_csv(result_path, index=False)
-
- # 时间范围设置
- start_time = '{} 00:00:00'.format('2020-01-01')
- end_time = '{} 00:00:00'.format('2021-06-01')
- sta_days = (datetime.datetime.strptime(end_time, '%Y-%m-%d %H:%M:%S') - datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S')).days
- count= 0
- sn_result = {}
- for sn in sn_list[:]:
- count += 1
- logger.info('{} start, {}/{} '.format(sn, str(count), str(len(sn_list))))
- if sn[2:5] == '500':
- cap = 40
- elif sn[2:5] == '504':
- cap = 55
- else:
- logger.info('{} cap error'.format(sn))
- cap = None
- continue
-
- sn_result.update({'sn':sn})
- logger.info('{} :{} to {} start'.format(sn, str(start_time), str(end_time)))
-
- # 获取数据
- df_bms, df_gps = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, gps_switch=True, mode=0)
- if df_bms.empty:
- continue
- # 数据预处理
-
- # 时间完全相同的数据仅保留一行
- df_bms_pro, df_gps_pro = dataPrePro.time_filter(df_bms, df_gps)
-
- # bms数据按照电流和状态分段, 然后在状态分段内部,根据时间跳变继续分段(解决段内数据丢失)
- df_bms_pro = dataPrePro.data_split_by_status(df_bms_pro)
- df_bms_pro = dataPrePro.data_split_by_time(df_bms_pro)
- # bms数据将两次充电间的状态合并
- df_bms_pro = dataPrePro.combine_drive_stand(df_bms_pro)
- # bms 数据计算行车和充电开始前后的静置时间
- df_bms_pro = dataPrePro.cal_stand_time(df_bms_pro)
- # gps 数据可靠性判断, 并增加里程和速度至gps数据(根据未合并的数据段判断)
- df_bms_pro, df_gps_pro, res_record= dataPrePro.gps_data_judge(df_bms_pro, df_gps_pro)
- # gps 数据可靠性判断, 并增加里程和速度至gps数据(根据已合并的数据段判断)
- df_bms_pro, df_gps_pro, res_record= dataPrePro.data_gps_judge_after_combine(df_bms_pro, df_gps_pro)
-
- for sta_day in range(sta_days):
- try:
- st_ = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(days=sta_day)
- et_ =datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(days=sta_day+1)
- # 按天统计指标
- sn_result.update({'time':st_.strftime('%Y-%m-%d')})
- df_bms_period = df_bms_pro[(df_bms_pro['时间戳'] > st_.strftime('%Y-%m-%d %H:%M:%S')) & (df_bms_pro['时间戳'] <= et_.strftime('%Y-%m-%d %H:%M:%S'))]
- #df_gps_period = df_gps_pro[(df_gps_pro['时间戳'] > st_.strftime('%Y-%m-%d %H:%M:%S')) & (df_gps_pro['时间戳'] <= et_.strftime('%Y-%m-%d %H:%M:%S'))]
- sn_result.update({'sumDriveTime':[indexPerSta.drive_time_sta(df_bms_period)]})
- sn_result.update({'sumDriveSoc':[indexPerSta.drive_soc_sta(df_bms_period)]})
- sn_result.update({'sumDriveAh':[indexPerSta.drive_capacity_sta(cap, df_bms_period)]})
- sn_result.update({'sumDriveEnergy':[indexPerSta.drive_energy_sta(cap, df_bms_period)]})
- # 每天间隔15分钟 统计一次
- for i in range(96):
- cur_result = []
- st__ = st_ + datetime.timedelta(minutes=15 * i)
- et__ = st_ + datetime.timedelta(minutes=15 * (i+1))
- df_bms_period = df_bms_pro[(df_bms_pro['时间戳'] > st__.strftime('%Y-%m-%d %H:%M:%S')) & (df_bms_pro['时间戳'] <= et__.strftime('%Y-%m-%d %H:%M:%S'))]
- #df_gps_period = df_gps_pro[(df_gps_pro['时间戳'] > st__.strftime('%Y-%m-%d %H:%M:%S')) & (df_gps_pro['时间戳'] <= et__.strftime('%Y-%m-%d %H:%M:%S'))]
- cur_result.append(indexPerSta.drive_time_sta(df_bms_period))
- cur_result.append(indexPerSta.drive_soc_sta(df_bms_period))
- cur_result.append(indexPerSta.drive_capacity_sta(cap, df_bms_period))
- cur_result.append(indexPerSta.drive_energy_sta(cap, df_bms_period))
- key = st__.strftime('%H:%M') + '-' + et__.strftime('%H:%M')
- sn_result.update({key:[cur_result]})
- df_cur_res = pd.DataFrame(sn_result)
- df_cur_res = df_cur_res[columns]
- # 防止写入结果时,结果文件被打开
- write_flag = False
- while not write_flag:
- try:
- df_cur_res.to_csv(result_path, mode='a+', index=False, header=False)
- except PermissionError as e:
- logger.info('{} error:{}'.format(sn, str(e)))
- time.sleep(10)
- continue
- else:
- write_flag = True
- except Exception as e:
- logger.info('{} {}_{} error: {}'.format(sn, st_.strftime('%Y-%m-%d %H:%M:%S'), et_.strftime('%Y-%m-%d %H:%M:%S'), str(e)))
- continue
- else:
- continue
- logger.info('{} done, {}/{} '.format(sn, str(count), str(len(sn_list))))
-
-
- =======
- __author__ = 'Wang Liming'
- =======
- __author__ = 'lmstack'
- >>>>>>> 0fdacae7667a378900d95748e2f53901ada95b8c
- # 每日指标统计函数
- # import CONFIGURE.PathSetting as PathSetting
- # import sys
- # sys.path.append(PathSetting.backend_path)
- # sys.path.append(PathSetting.middle_path)
- from LIB.BACKEND import DBManager, Log, DataPreProcess
- from LIB.MIDDLE import IndexStaByPeriod, IndexStaBOneCycle
- from LIB.BACKEND import DBManager
- from LIB.BACKEND import DBManager
- from LIB.BACKEND import DBManager
- from LIB.BACKEND import DBManager
- import importlib
- import datetime
- import os
- import pandas as pd
- import time
- importlib.reload(IndexStaByPeriod)
- dbManager = DBManager.DBManager()
- dataPrePro = DataPreProcess.DataPreProcess()
- indexPerSta = IndexStaByPeriod.IndexStaByPeriod()
- # log 文件配置
- myLog = Log.Mylog('day_sta')
- myLog.set_file_hl(file_name=r'D:\Platform\platform\FRONTEND\day_sta\day_sta.log', log_level='info')
- myLog.set_stream_hl(log_level='info')
- logger = myLog.get_logger()
- logger.info(str(os.getpid()))
- # sn文件读取
- sn_list = list(pd.read_excel('D:\Platform\platform\苏州电池列表.xlsx')['sn'])
- sn_list.extend(list(pd.read_excel('D:\Platform\platform\骑享北京6040电池包统计更新20210407.xlsx')['SN号']))
- sn = sn_list[0]
- # 字段设置及结果文件生成
- columns = ['sn', 'time', 'sumDriveTime', 'sumDriveSoc', 'sumDriveAh', 'sumDriveEnergy']
- st = datetime.datetime.strptime('00:00:00', '%H:%M:%S')
- for i in range(96):
- et = st + datetime.timedelta(minutes=15)
- columns.append(st.strftime('%H:%M') + '-' + et.strftime('%H:%M'))
- st = et
- result_path = r'D:\Platform\platform\FRONTEND\day_sta\result.csv'
- df_res = pd.DataFrame(columns=columns)
- if not os.path.exists(result_path):
- df_res.to_csv(result_path, index=False)
-
- # 时间范围设置
- start_time = '{} 00:00:00'.format('2020-01-01')
- end_time = '{} 00:00:00'.format('2021-06-01')
- sta_days = (datetime.datetime.strptime(end_time, '%Y-%m-%d %H:%M:%S') - datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S')).days
- count= 0
- sn_result = {}
- for sn in sn_list[:]:
- count += 1
- logger.info('{} start, {}/{} '.format(sn, str(count), str(len(sn_list))))
- if sn[2:5] == '500':
- cap = 40
- elif sn[2:5] == '504':
- cap = 55
- else:
- logger.info('{} cap error'.format(sn))
- cap = None
- continue
-
- sn_result.update({'sn':sn})
- logger.info('{} :{} to {} start'.format(sn, str(start_time), str(end_time)))
-
- # 获取数据
- df_bms, df_gps = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, gps_switch=True, mode=0)
- if df_bms.empty:
- continue
- # 数据预处理
-
- # 时间完全相同的数据仅保留一行
- df_bms_pro, df_gps_pro = dataPrePro.time_filter(df_bms, df_gps)
-
- # bms数据按照电流和状态分段, 然后在状态分段内部,根据时间跳变继续分段(解决段内数据丢失)
- df_bms_pro = dataPrePro.data_split_by_status(df_bms_pro)
- df_bms_pro = dataPrePro.data_split_by_time(df_bms_pro)
- # bms数据将两次充电间的状态合并
- df_bms_pro = dataPrePro.combine_drive_stand(df_bms_pro)
- # bms 数据计算行车和充电开始前后的静置时间
- df_bms_pro = dataPrePro.cal_stand_time(df_bms_pro)
- # gps 数据可靠性判断, 并增加里程和速度至gps数据(根据未合并的数据段判断)
- df_bms_pro, df_gps_pro, res_record= dataPrePro.gps_data_judge(df_bms_pro, df_gps_pro)
- # gps 数据可靠性判断, 并增加里程和速度至gps数据(根据已合并的数据段判断)
- df_bms_pro, df_gps_pro, res_record= dataPrePro.data_gps_judge_after_combine(df_bms_pro, df_gps_pro)
-
- for sta_day in range(sta_days):
- try:
- st_ = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(days=sta_day)
- et_ =datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(days=sta_day+1)
- # 按天统计指标
- sn_result.update({'time':st_.strftime('%Y-%m-%d')})
- df_bms_period = df_bms_pro[(df_bms_pro['时间戳'] > st_.strftime('%Y-%m-%d %H:%M:%S')) & (df_bms_pro['时间戳'] <= et_.strftime('%Y-%m-%d %H:%M:%S'))]
- #df_gps_period = df_gps_pro[(df_gps_pro['时间戳'] > st_.strftime('%Y-%m-%d %H:%M:%S')) & (df_gps_pro['时间戳'] <= et_.strftime('%Y-%m-%d %H:%M:%S'))]
- sn_result.update({'sumDriveTime':[indexPerSta.drive_time_sta(df_bms_period)]})
- sn_result.update({'sumDriveSoc':[indexPerSta.drive_soc_sta(df_bms_period)]})
- sn_result.update({'sumDriveAh':[indexPerSta.drive_capacity_sta(cap, df_bms_period)]})
- sn_result.update({'sumDriveEnergy':[indexPerSta.drive_energy_sta(cap, df_bms_period)]})
- # 每天间隔15分钟 统计一次
- for i in range(96):
- cur_result = []
- st__ = st_ + datetime.timedelta(minutes=15 * i)
- et__ = st_ + datetime.timedelta(minutes=15 * (i+1))
- df_bms_period = df_bms_pro[(df_bms_pro['时间戳'] > st__.strftime('%Y-%m-%d %H:%M:%S')) & (df_bms_pro['时间戳'] <= et__.strftime('%Y-%m-%d %H:%M:%S'))]
- #df_gps_period = df_gps_pro[(df_gps_pro['时间戳'] > st__.strftime('%Y-%m-%d %H:%M:%S')) & (df_gps_pro['时间戳'] <= et__.strftime('%Y-%m-%d %H:%M:%S'))]
- cur_result.append(indexPerSta.drive_time_sta(df_bms_period))
- cur_result.append(indexPerSta.drive_soc_sta(df_bms_period))
- cur_result.append(indexPerSta.drive_capacity_sta(cap, df_bms_period))
- cur_result.append(indexPerSta.drive_energy_sta(cap, df_bms_period))
- key = st__.strftime('%H:%M') + '-' + et__.strftime('%H:%M')
- sn_result.update({key:[cur_result]})
- df_cur_res = pd.DataFrame(sn_result)
- df_cur_res = df_cur_res[columns]
- # 防止写入结果时,结果文件被打开
- write_flag = False
- while not write_flag:
- try:
- df_cur_res.to_csv(result_path, mode='a+', index=False, header=False)
- except PermissionError as e:
- logger.info('{} error:{}'.format(sn, str(e)))
- time.sleep(10)
- continue
- else:
- write_flag = True
- except Exception as e:
- logger.info('{} {}_{} error: {}'.format(sn, st_.strftime('%Y-%m-%d %H:%M:%S'), et_.strftime('%Y-%m-%d %H:%M:%S'), str(e)))
- continue
- else:
- continue
- logger.info('{} done, {}/{} '.format(sn, str(count), str(len(sn_list))))
-
-
- >>>>>>> 65a87ae16013552e359df047df19f46fc4e6eb08
|