123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- # 获取数据
- from LIB.BACKEND import DBManager
- import os
- import pandas as pd
- import numpy as np
- import datetime
- # import matplotlib.pyplot as plt
- #参数输入
- Capacity = 41
- PackFullChrgVolt=69.99
- CellFullChrgVolt=3.5
- CellVoltNums=17
- CellTempNums=4
- FullChrgSoc=98
- PeakSoc=57
- # #40Ah-OCV
- LookTab_SOC = [0, 3.534883489, 8.358178409, 13.18141871, 18.00471528, 22.82796155, 27.65123833, 32.47444668, 37.29772717, 42.12099502, 46.94423182, 51.76744813, 56.59070685, 61.4139927, 66.23719857, 71.0604667, 75.88373853, 80.70702266, 85.5302705, 90.35352009, 95.17676458, 100]
- LookTab_OCV = [3.3159, 3.4384, 3.4774, 3.5156, 3.5478, 3.5748, 3.6058, 3.6238, 3.638, 3.6535, 3.6715, 3.6951, 3.7279, 3.7757, 3.8126, 3.8529, 3.8969, 3.9446, 3.9946, 4.0491, 4.109, 4.183]
- # #55Ah-OCV
- # LookTab_SOC = [0.00, 2.40, 6.38, 10.37, 14.35, 18.33, 22.32, 26.30, 30.28, 35.26, 40.24, 45.22, 50.20, 54.19, 58.17, 60.16, 65.14, 70.12, 75.10, 80.08, 84.06, 88.05, 92.03, 96.02, 100.00]
- # LookTab_OCV = [2.7151, 3.0298, 3.1935, 3.2009, 3.2167, 3.2393, 3.2561, 3.2703, 3.2843, 3.2871, 3.2874, 3.2868, 3.2896, 3.2917, 3.2967, 3.3128, 3.3283, 3.3286, 3.3287, 3.3288, 3.3289, 3.3296, 3.3302, 3.3314, 3.3429]
- #参数初始化
- Soh3=[]
- Time3=[]
- Bms_Soh3=[]
- Soh_Err3=[]
- sn_list=[]
- #获取数据时间段
- now_time=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
- now_time=datetime.datetime.strptime(now_time,'%Y-%m-%d %H:%M:%S')
- start_time=now_time-datetime.timedelta(days=31)
- end_time=str(now_time)
- strat_time=str(start_time)
- #输入一个含有‘SN号’的xlsx
- SNdata = pd.read_excel('骑享资产梳理-20210621.xlsx', sheet_name='6040骑享')
- SNnums=SNdata['SN号']
- for k in range(len(SNnums)):
- SNnum=str(SNnums[k])
- sn = SNnum
- st = strat_time
- et = end_time
- dbManager = DBManager.DBManager()
- df_data = dbManager.get_data(sn=sn, start_time=st, end_time=et, data_groups=['bms'])
- data = df_data['bms']
- # print(data)
- packcrnt=data['总电流[A]']
- packvolt=data['总电压[V]']
- SOC=data['SOC[%]']
- SOH=data['SOH[%]']
- bmsstat=data['充电状态']
- time= pd.to_datetime(data['时间戳'], format='%Y-%m-%d %H:%M:%S')
- #第一步:筛选充电数据
- if len(packcrnt)>100:
- ChgStart=[]
- ChgEnd=[]
- for i in range(3, len(time) - 3):
- if i==3 and bmsstat[i]==2 and bmsstat[i+1]==2 and bmsstat[i+2]==2:
- ChgStart.append(i)
- elif bmsstat[i-2]!=2 and bmsstat[i-1]!=2 and bmsstat[i]==2:
- ChgStart.append(i)
- elif bmsstat[i-1]==2 and bmsstat[i]!=2 and bmsstat[i+1]!=2:
- ChgEnd.append(i-1)
- elif i == (len(time) - 4) and bmsstat[len(bmsstat)-1] == 2 and bmsstat[len(bmsstat)-2] == 2:
- ChgEnd.append(len(time)-2)
- #第二步:筛选充电起始Soc<45% & SOC>85%,电芯温度>5℃
- ChgStartValid1=[]
- ChgEndValid1=[]
- ChgStartValid2=[]
- ChgEndValid2=[]
- StandingNum=[]
- for i in range(min(len(ChgStart),len(ChgEnd))):
- #获取最小温度值
- celltemp = []
- for j in range(1, CellTempNums+1):
- s = str(j)
- temp = data['单体温度' + s]
- celltemp.append(temp[ChgEnd[i]])
-
- #去除电流0点
- for k in range(ChgStart[i],ChgEnd[i]):
- if packcrnt[k]<-0.5 and packcrnt[k+1]>-0.5 and packcrnt[k+2]>-0.5 and packcrnt[k+3]>-0.5:
- ChgEnd[i]=k
-
- #计算最大packvolt
- if len(packvolt[ChgStart[i]:ChgEnd[i]])>0:
- packvoltMAX=max(packvolt[ChgStart[i]:ChgEnd[i]])
- #筛选满足2点法计算的数据
- StandingTime=0
- StandingTime1=0
- StandingTime2=0
- if SOC[ChgEnd[i]]>85 and SOC[ChgStart[i]]<45 and min(celltemp)>5:
- for m in range(min(len(packcrnt)-ChgEnd[i]-2,ChgStart[i]-2)):
- if abs(packcrnt[ChgStart[i] - m - 1]) < 0.1:
- StandingTime = StandingTime + (time[ChgStart[i] - m] - time[ChgStart[i] - m - 1]).total_seconds()
- if abs(packcrnt[ChgEnd[i] + m + 1]) < 0.1:
- StandingTime1 = StandingTime1 + (time[ChgEnd[i] + m + 1] - time[ChgEnd[i] + m]).total_seconds()
- if StandingTime > 900 and StandingTime1>900 and ((time[ChgEnd[i]]-time[ChgStart[i]]).total_seconds())/(ChgEnd[i]-ChgStart[i])<60: #筛选静置时间>15min且慢充过程丢失数据少
- ChgStartValid1.append(ChgStart[i])
- ChgEndValid1.append(ChgEnd[i])
- StandingNum.append(m)
- break
- if abs(packcrnt[ChgStart[i] - m - 2])>0.5 and abs(packcrnt[ChgEnd[i] + m + 2])>0.5:
- break
- # 计算soh
- Soh1=[]
- Soh2=[]
- Time1=[]
- Bms_Soh1=[]
- Soh_Err1=[]
- sn_list1=[]
- #两点法计算Soh
- if len(ChgStartValid1)>0:
- for i in range(len(ChgStartValid1)):
- #计算Ah
- Ah=0
- for j in range(ChgStartValid1[i],ChgEndValid1[i]):
- Step=(time[j+1]-time[j]).total_seconds()
- Ah=Ah-packcrnt[j+1]*Step/3600
- #计算每个电芯的Soh
- for j in range(1, CellVoltNums+1):
- s = str(j)
- cellvolt = data['单体电压' + s]/1000
- OCVStart=cellvolt[ChgStartValid1[i]-2]
- OCVEnd=cellvolt[ChgEndValid1[i]+StandingNum[i]]
- #soh
- Ocv_Soc1=np.interp(OCVStart,LookTab_OCV,LookTab_SOC)
- Ocv_Soc2=np.interp(OCVEnd,LookTab_OCV,LookTab_SOC)
- Soh2.append(Ah*100/((Ocv_Soc2-Ocv_Soc1)*0.01*Capacity))
- Soh1.append(np.mean(Soh2))
- Bms_Soh1.append(SOH[ChgStartValid1[i]])
- Soh_Err1.append(Bms_Soh1[-1]-Soh1[-1])
- Time1.append(time[ChgStartValid1[i]])
- sn_list1.append(SNnum)
-
- # Soh3.append(np.mean(Soh1))
- # Bms_Soh3.append(np.mean(Bms_Soh1))
- # Soh_Err3.append(np.mean(Soh_Err1))
- # Time3.append(time[ChgStartValid1[-1]])
- # sn_list.append(SNnum)
- #第四步:将数据存入Excel
- result_soh2={'时间': Time1,
- 'SN号': sn_list1,
- 'BMS_SOH': Bms_Soh1,
- 'SOH': Soh1,
- 'SOH误差': Soh_Err1}
- Result_Soh2=pd.DataFrame(result_soh2)
- Result_Soh2.to_csv('BMS_SOH_'+SNnum+'.csv',encoding='GB18030')
- # result_soh1={'时间': Time3,
- # 'SN号':sn_list,
- # 'BMS_SOH': Bms_Soh3,
- # 'SOH': Soh3,
- # 'SOH误差': Soh_Err3}
- # Result_Soh1=pd.DataFrame(result_soh1)
- # print(Result_Soh1)
- # Result_Soh1.to_csv('BMS_SOH_'+'6040'+'.csv',encoding='GB18030')
|