123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557 |
- import pandas as pd
- import numpy as np
- import datetime
- from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import BatParam
- class BatDiag:
- def __init__(self,sn,celltype,df_bms,df_soh,df_uniform,df_diag_Ram): #参数初始化
- self.sn=sn
- self.celltype=celltype
- self.param=BatParam.BatParam(celltype)
- self.df_bms=df_bms
- self.df_soh=df_soh
- self.df_uniform=df_uniform
- self.df_diag_ram=df_diag_Ram
- self.packcrnt=df_bms['总电流[A]']*self.param.PackCrntDec
- self.packvolt=df_bms['总电压[V]']
- self.bms_soc=df_bms['SOC[%]']
- self.bmstime= pd.to_datetime(df_bms['时间戳'], format='%Y-%m-%d %H:%M:%S')
- self.bmsfault1=self.df_bms['故障代码']
- # self.bmsfault2=self.df_bms['alarm2'].tolist()
- # self.bmsfault3=self.df_bms['alarm3'].tolist()
- # self.bmsfault4=self.df_bms['fault'].tolist()
- self.cellvolt_name=['单体电压'+str(x) for x in range(1,self.param.CellVoltNums+1)]
- self.celltemp_name=['单体温度'+str(x) for x in range(1,self.param.CellTempNums+1)]
-
- def diag(self):
- if self.celltype<=50:
- df_res=self._ncm_diag()
- return df_res
- else:
- df_res=self._ncm_diag()
- return df_res
-
- #定义滑动滤波函数.............................................................................................
- def _np_move_avg(self,a, n, mode="same"):
- return (np.convolve(a, np.ones((n,)) / n, mode=mode))
-
- #寻找当前行数据的所有温度值...................................................................................
- def _celltemp_get(self,num):
- celltemp = list(self.df_bms.loc[num,self.celltemp_name])
- return celltemp
- #获取当前行所有电压数据............................................................................................
- def _cellvolt_get(self,num):
- cellvolt = np.array(self.df_bms.loc[num,self.cellvolt_name]/1000)
- return cellvolt
- #..........................................三元电池诊断功能..................................................................
- def _ncm_diag(self):
- bmssoc_st=float(self.bms_soc[0]) #SOC卡滞初始参数
- ah_accum=0 #SOC卡滞初始参数
- as_chg=0 #过流诊断初始参数
- as_dis=0 #过流诊断初始参数
- time1=self.bmstime[0] #温升速率初始参数
- temp1=np.array(self._celltemp_get(0)) #温升速率初始参数
- temprate_cnt=0
-
- end_time='0000-00-00 00:00:00'
-
- for i in range(1,len(self.df_bms)):
-
- #温度诊断功能.............................................................................................................
- celltemp0=self._celltemp_get(i-1)
- celltemp1=self._celltemp_get(i)
- celltempmin0=min(celltemp0)
- celltempmin1=min(celltemp1)
- celltempmax0=max(celltemp0)
- celltempmax1=max(celltemp1)
- #温度有效性判断..........................................................................
- if celltempmax0>self.param.CellTempUpLmt or celltempmin0<self.param.CellTempLwLmt:
- celltempvalid=0
- else:
- celltempvalid=1
-
- if celltempvalid==1:
- #过温判断.............................................................................................................
- if not 4 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if celltempmax0>self.param.CellTempHighLv2 and celltempmax1>self.param.CellTempHighLv2: #二级高温进入
- time=self.bmstime[i]
- code=4
- faultlv=3
- faultinfo='温度{}高温二级'.format(celltemp1.index(celltempmax1)+1)
- faultadvice='技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else: #ram当前故障中有该故障,则判断是否退出该故障
- if celltempmax0<self.param.CellTempHighLv1-5 and celltempmax1<self.param.CellTempHighLv1-5: #二级高温恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==4].index, 'end_time'] = time
- else:
- pass
-
- #欠温判断.................................................................................................................
- if not 6 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if celltempmin0<self.param.CellTempLowLv2 and celltempmin1<self.param.CellTempLowLv2: #二级低温进入
- time=self.bmstime[i]
- code=6
- faultlv=3
- faultinfo='温度{}低温二级'.format(celltemp1.index(celltempmin1)+1)
- faultadvice='技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else: #ram当前故障中有该故障,则判断是否退出该故障
- if celltempmax0>self.param.CellTempLowLv1+2 and celltempmax1>self.param.CellTempLowLv1+2: #二级高温恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==6].index, 'end_time'] = time
- else:
- pass
-
- #温差判断.............................................................................................................................
- if not 8 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if (celltempmax0-celltempmin0)>self.param.CellTempDiffLv2 and (celltempmax1-celltempmin1)>self.param.CellTempDiffLv2: #二级温差进入
- time=self.bmstime[i]
- code=8
- faultlv=3
- faultinfo='温度{}和{}温差大二级'.format(celltemp1.index(celltempmax1)+1,celltemp1.index(celltempmin1)+1)
- faultadvice='技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else: #ram当前故障中有该故障,则判断是否退出该故障
- if (celltempmax0-celltempmin0)<self.param.CellTempDiffLv1-2 and (celltempmax1-celltempmax0)>self.param.CellTempDiffLv1-2: #二级温差恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==8].index, 'end_time'] = time
- else:
- pass
- #温升判断
- time2=self.bmstime[i]
- delttime=(time2-time1).total_seconds()
- if delttime>20:
- temp2=np.array(self._celltemp_get(i))
- celltemp_rate=(max(temp2-temp1)*60)/delttime #计算最大温升速率
- temp1=temp2 #更新初始温度
- time1=time2 #更新初始时间
- if celltemp_rate>self.param.CellTempRate:
- temprate_cnt=temprate_cnt+1
- if not 9 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if temprate_cnt>2: #温升故障进入
- time=self.bmstime[i]
- code=9
- faultlv=3
- faultinfo='温升速率过快:{}℃/min'.format(celltemp_rate)
- faultadvice='技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else: #ram当前故障中有该故障,则判断是否退出该故障
- if celltemp_rate<self.param.CellTempRate-1: #温升故障恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==9].index, 'end_time'] = time
- else:
- pass
- else:
- pass
-
- else:
- pass
-
- #电压诊断功能.................................................................................................
- cellvolt0=self._cellvolt_get(i-1)
- cellvolt1=self._cellvolt_get(i)
- cellvoltmin0=min(cellvolt0)
- cellvoltmax0=max(cellvolt0)
- cellvoltmin1=min(cellvolt1)
- cellvoltmax1=max(cellvolt1)
- #电压断线诊断...................................................................................................
- if (cellvoltmin0<2 and cellvoltmax0>4.5) or cellvoltmin0<0.1 or cellvoltmax0>5:
- cellvoltvalid=0
- else:
- cellvoltvalid=1
-
- if cellvoltvalid==1:
- #过压诊断.............................................................................................................
- if not 12 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if cellvoltmax0>self.param.CellOvLv2 and cellvoltmax1>self.param.CellOvLv2: #二级过压进入
- time=self.bmstime[i]
- code=12
- faultlv=4
- faultinfo='电芯{}过压二级'.format(cellvolt1.index(cellvoltmax1)+1)
- faultadvice='联系用户询问用车场景,技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else: #ram当前故障中有该故障,则判断是否退出该故障
- if cellvoltmax0<self.param.CellOvLv1-0.05 and cellvoltmax1<self.param.CellOvLv1-0.05: #二级过压故障恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==12].index, 'end_time'] = time
- else:
- pass
-
- #欠压诊断.................................................................................................................
- if not 14 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if cellvoltmin0<self.param.CellUvLv2 and cellvoltmin1<self.param.CellUvLv2: #二级欠压
- time=self.bmstime[i]
- code=14
- faultlv=3
- faultinfo='电芯{}欠压二级'.format(cellvolt1.index(cellvoltmin1)+1)
- faultadvice='联系用户询问用车场景,技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if cellvoltmin0>self.param.CellUvLv1+0.1 and cellvoltmin1>self.param.CellUvLv1+0.1:
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==14].index, 'end_time'] = time
- else:
- pass
-
- #电芯压差大.....................................................................................................................................................
- if not 16 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if (cellvoltmax0-cellvoltmin0)>self.param.CellVoltDiffLv2 and (cellvoltmax1-cellvoltmin1)>self.param.CellVoltDiffLv2: #二级电芯压差
- time=self.bmstime[i]
- code=16
- faultlv=3
- faultinfo='电芯{}和{}压差大二级'.format(cellvolt1.index(cellvoltmax1)+1,cellvolt1.index(cellvoltmin1)+1)
- faultadvice='技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if (cellvoltmax0-cellvoltmin0)<self.param.CellVoltDiffLv1-0.05 and (cellvoltmax1-cellvoltmin1)>self.param.CellVoltDiffLv1-0.05: #二级欠压恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==16].index, 'end_time'] = time
- else:
- pass
- else:
- pass
-
- #电池包诊断.....................................................................................................................................
- if not 18 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if self.packvolt[i-1]>self.param.PackVoltOvLv2 and self.packvolt[i]>self.param.PackVoltOvLv2: #电池包过压二级进入
- time=self.bmstime[i]
- code=18
- faultlv=4
- faultinfo='电池包过压二级'
- faultadvice='联系用户询问用车场景,技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if self.packvolt[i-1]<self.param.PackVoltOvLv1-0.05*self.param.CellVoltNums and self.packvolt[i]<self.param.PackVoltOvLv1-0.05*self.param.CellVoltNums: #电池包过压二级恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==18].index, 'end_time'] = time
- else:
- pass
-
- #电池包诊断.....................................................................................................................................
- if not 20 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if self.packvolt[i-1]<self.param.PackVoltUvLv2 and self.packvolt[i]<self.param.PackVoltUvLv2: #电池包二级欠压进入
- time=self.bmstime[i]
- code=20
- faultlv=3
- faultinfo='电池包欠压二级'
- faultadvice='联系用户询问用车场景,技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if self.packvolt[i-1]>self.param.PackVoltUvLv1+0.1*self.param.CellVoltNums and self.packvolt[i]>self.param.PackVoltUvLv1+0.1*self.param.CellVoltNums: #电池包二级欠压恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==20].index, 'end_time'] = time
- else:
- pass
-
- #电流过流诊断.......................................................................................................................
- step=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
- if step<120 and self.packcrnt[i]>self.param.PackDisOc:
- as_dis=as_dis+(self.packcrnt[i]-self.param.self.PackDisOc)*step #ah累计
- elif step<120 and self.packcrnt[i]<self.param.PackChgOc:
- as_chg=as_chg+(self.param.PackDisOc-self.packcrnt[i])*step #ah累计
- else:
- as_dis=0
- as_chg=0
-
- if not 22 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if as_dis>100:
- time=self.bmstime[i]
- code=22
- faultlv=3
- faultinfo='电池包放电过流'
- faultadvice='联系用户询问用车场景,技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if self.packcrnt[i-1]<self.param.PackDisOc-10 and self.packcrnt[i]<self.param.PackDisOc-10:
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==22].index, 'end_time'] = time
- else:
- pass
-
- if not 21 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if as_chg>100:
- time=self.bmstime[i]
- code=21
- faultlv=3
- faultinfo='电池包充电过流'
- faultadvice='联系用户询问用车场景,技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if self.packcrnt[i-1]>self.param.PackChgOc+10 and self.packcrnt[i]>self.param.PackChgOc+10:
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==22].index, 'end_time'] = time
- else:
- pass
- #SOC卡滞、跳变诊断................................................................................................
- step=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
- if step<120:
- ah_accum=ah_accum-self.packcrnt[i]*step/3600 #ah累计
- else:
- pass
- #SOC卡滞............................................................................................................
- if abs(ah_accum)>self.param.Capacity*0.05:
- bmssoc_now=float(self.bms_soc[i])
- if not 27 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if abs(bmssoc_now-bmssoc_st)<self.param.SocClamp: #SOC卡滞故障进入
- time=self.bmstime[i]
- code=27
- faultlv=1
- faultinfo='电池SOC卡滞'
- faultadvice='技术介入诊断,检修电池BMS软件'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if abs(bmssoc_now-bmssoc_st)>self.param.SocClamp: #SOC卡滞故障退出
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==27].index, 'end_time'] = time
- else:
- pass
- bmssoc_st=bmssoc_now
- ah_accum=0
- else:
- pass
- #SOC跳变....................................................................................................................
- if step<30:
- bmssoc_last=float(self.bms_soc[i-1])
- bmssoc_now=float(self.bms_soc[i])
- if not 28 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if abs(bmssoc_now-bmssoc_last)>self.param.SocJump: #SOC跳变进入
- time=self.bmstime[i]
- code=28
- faultlv=1
- faultinfo='电池SOC跳变'
- faultadvice='技术介入诊断,检修电池BMS软件'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if abs(bmssoc_now-bmssoc_st)<self.param.SocJump: #SOC跳变故障退出
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==28].index, 'end_time'] = time
- else:
- pass
- else:
- pass
- #SOC过低故障报警............................................................................................................
- if not 26 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if self.bms_soc[i-1]<self.param.SocLow and self.bms_soc[i]<self.param.SocLow: #SOC过低故障进入
- time=self.bmstime[0]
- code=26
- faultlv=1
- faultinfo='电池包电量过低'
- faultadvice='联系用户,请立刻充电'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if self.bms_soc[i-1]>self.param.SocLow and self.bms_soc[i]>self.param.SocLow: #SOC过低故障退出
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==26].index, 'end_time'] = time
- else:
- pass
- #BMS故障报警........................................................................................................
- if not 1 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if self.bmsfault1[i-1] is None or self.bmsfault1[i] is None:
- self.bmsfault1[i-1]=0
- self.bmsfault1[i]=0
- if self.bmsfault1[i-1]>0 or self.bmsfault1[i]>0: #BMS故障进入
- time=self.bmstime[0]
- code=1
- faultlv=2
- faultinfo='BMS故障报警:{}'.format(self.bmsfault1[i-1])
- faultadvice='技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if self.bmsfault1[i-1]==0 and self.bmsfault1[i]==0: #BMS故恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==1].index, 'end_time'] = time
-
-
- #SOC一致性故障报警..........................................................................................................
- if not self.df_uniform.empty:
- cellsoc_diff=self.df_uniform.loc[0,'cellsoc_diff']
- if not 25 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if cellsoc_diff>self.param.SocDiff: #SOC一致性差故障进入
- time=self.bmstime[0]
- code=25
- faultlv=1
- faultinfo='电芯{}和{}SOC差过大:{}'.format(self.df_uniform.loc[0,'cellmin_num'],self.df_uniform.loc[0,'cellmax_num']),cellsoc_diff
- faultadvice='技术介入诊断'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if cellsoc_diff<self.param.SocDiff: #SOC一致性差故障恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==25].index, 'end_time'] = time
- else:
- cellsoc_diff=3
- #容量过低和一致性故障报警................................................................................................
- if not self.df_soh.empty:
- soh=self.df_soh.loc[0,'soh']
- cellsoh=eval(self.df_soh.loc[0,'cellsoh'])
- cellsoh=np.array(cellsoh)
- cellsoh_lowindex=np.argwhere(cellsoh<self.param.SohLow)
- cellsoh_lowindex=cellsoh_lowindex+1
- if self.celltype==1 or self.celltype==2 or self.celltype==3 or self.celltype==4:
- cellsoh_diff=max(cellsoh)-min(cellsoh)
- if not 23 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if soh<self.param.SohLow: #soh过低故障进入
- time=self.bmstime[0]
- code=23
- faultlv=1
- faultinfo='电池包容量过低:电芯{}'.format(cellsoh_lowindex)
- faultadvice='检修电池,更换容量过低的电芯或模组'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if soh>self.param.SohLow+2: #soh过低故障恢复
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==23].index, 'end_time'] = time
- else:
- pass
- if not 24 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if cellsoh_diff>self.param.SohDiff:
- time=self.bmstime[0]
- code=24
- faultlv=1
- faultinfo='电池包容量一致性差:电芯{}'.format(cellsoh_lowindex)
- faultadvice='检修电池,更换容量过低的电芯或模组'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if cellsoh_diff<self.param.SohDiff-2:
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==24].index, 'end_time'] = time
- else:
- pass
- else:
- pass
- else:
- cellsoh_diff=5
-
- # #电池健康度评分.....................................................................................................
- # health_state=soh*0.6+(100-cellsoh_diff)*0.2+(100-cellsoc_diff)*0.2
- # if health_state>100:
- # health_state=100
- # elif health_state<0:
- # health_state=0
- # else:
- # pass
- # health_state=eval(format(health_state,'.1f'))
- #返回诊断结果...........................................................................................................
- df_res=self.df_diag_ram
- if not df_res.empty:
- return df_res
- else:
- return pd.DataFrame()
- #............................................................内短路故障诊断.............................................................................
- class ShortDiag():
- def __init__(self,sn,celltype,df_short): #参数初始化
- self.sn=sn
- self.celltype=celltype
- self.param=BatParam.BatParam(celltype)
- self.df_short=df_short
- def shortdiag(self):
- if len(self.df_short)>1:
- df_res=self._short_diag()
- return df_res
- else:
- return pd.DataFrame()
- #内短路故障检测...................................................................................................................................
- def _short_diag(self):
- column_name=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice']
- df_res=pd.DataFrame(columns=column_name)
- time=datetime.datetime.now()
- end_time=datetime.datetime.strftime('0000-00-00 00:00:00')
- end_time=datetime.datetime.strptime(end_time,'%Y-%m-%d %H:%M:%S')
- # if self.df_diag.empty:
- # health_state=100
- # else:
- # health_state=self.df_diag.loc[0,'health_state']
- for i in range(self.param.CellVoltNums):
- #将字符串分割为多列
- short_current=self.df_short['short_current']
- short_current=short_current.str.replace("[", '')
- short_current=short_current.str.replace("]", '')
- self.df_short['cellshort'+str(i+1)]=short_current.map(lambda x:x.split(',')[i])
- self.df_short['cellshort'+str(i+1)]=self.df_short['cellshort'+str(i+1)].map(lambda x:eval(x))
- #漏电流故障判断
- cellshort=np.array(self.df_short['cellshort'+str(i+1)])
- shortlv3=np.sum(cellshort>self.param.LeakCurrentLv3)
- shortlv2=np.sum(cellshort>self.param.LeakCurrentLv2)-shortlv3
- shortlv1=np.sum(cellshort>self.param.LeakCurrentLv1)-shortlv2-shortlv3
- shortlv=shortlv3*3 + shortlv2*2 + shortlv1
- if not 31 in list(self.df_diag_ram['code']): #当前故障中没有该故障,则判断是否发生该故障
- if shortlv>=5:
- time=self.bmstime[0]
- code=31
- faultlv=3
- faultinfo='电芯{}发生严重内短路'.format(i+1)
- faultadvice='禁止充放电,检修电池'
- self.df_diag_ram.loc[len(self.df_diag_ram)]=[time, end_time, self.sn, code, faultlv, faultinfo, faultadvice]
- else:
- pass
- else:
- if shortlv<3:
- time=self.bmstime[i]
- self.df_diag_ram[self.df_diag_ram[self.df_diag_ram['code']==31].index, 'end_time'] = time
-
- if not df_res.empty:
- return df_res
- else:
- return pd.DataFrame()
|