CBMSBatInterShort.py 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. import pandas as pd
  2. import numpy as np
  3. import datetime
  4. import BatParam
  5. class BatInterShort():
  6. def __init__(self,sn,celltype,df_bms,df_soh,df_last,df_last1,df_last2,df_last3,df_lfp): #参数初始化
  7. if (not df_lfp.empty) and celltype>50:
  8. df_lfp.drop(['sn'],axis=1)
  9. df_bms=pd.concat([df_lfp, df_bms], ignore_index=True)
  10. else:
  11. pass
  12. self.sn=sn
  13. self.celltype=celltype
  14. self.param=BatParam.BatParam(celltype)
  15. self.packcrnt=df_bms['PackCrnt']*self.param.PackCrntDec
  16. self.packvolt=df_bms['PackVolt']
  17. self.bms_soc=df_bms['PackSOC']
  18. df_bms['time']=pd.to_datetime(df_bms['time'], format='%Y-%m-%d %H:%M:%S')
  19. self.bmstime= df_bms['time']
  20. self.df_bms=df_bms
  21. self.df_soh=df_soh
  22. self.df_last=df_last
  23. self.df_last1=df_last1
  24. self.df_last2=df_last2
  25. self.df_last3=df_last3
  26. self.df_lfp=df_lfp
  27. self.cellvolt_name=['CellVolt'+str(x) for x in range(1,self.param.CellVoltNums+1)]
  28. self.celltemp_name=['CellTemp'+str(x) for x in range(1,self.param.CellTempNums+1)]
  29. def intershort(self):
  30. if self.celltype<=50:
  31. df_res, df_ram_last, df_ram_last1, df_ram_last3=self._ncm_intershort()
  32. return df_res, df_ram_last, df_ram_last1,self.df_last2, df_ram_last3,self.df_lfp
  33. else:
  34. df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp=self._lfp_intershort()
  35. return df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp
  36. #定义滑动滤波函数....................................................................................
  37. def _np_move_avg(self,a, n, mode="same"):
  38. return (np.convolve(a, np.ones((n,)) / n, mode=mode))
  39. #寻找当前行数据的最小温度值.............................................................................
  40. def _celltemp_weight(self,num):
  41. celltemp = list(self.df_bms.loc[num,self.celltemp_name])
  42. celltemp=min(celltemp)
  43. self.celltemp=celltemp
  44. if self.celltype>50:
  45. if celltemp>=25:
  46. self.tempweight=1
  47. self.StandardStandingTime=4500
  48. elif celltemp>=15:
  49. self.tempweight=0.6
  50. self.StandardStandingTime=7200
  51. elif celltemp>=5:
  52. self.tempweight=0.2
  53. self.StandardStandingTime=10800
  54. else:
  55. self.tempweight=0.1
  56. self.StandardStandingTime=10800
  57. else:
  58. if celltemp>=25:
  59. self.tempweight=1
  60. self.StandardStandingTime=3600
  61. elif celltemp>=15:
  62. self.tempweight=0.8
  63. self.StandardStandingTime=5400
  64. elif celltemp>=5:
  65. self.tempweight=0.6
  66. self.StandardStandingTime=7200
  67. else:
  68. self.tempweight=0.2
  69. self.StandardStandingTime=10800
  70. #获取前5min每个电压的平均值........................................................................................
  71. def _avgvolt_get(self,num):
  72. time_now=self.df_bms.loc[num, 'time']
  73. time_last=time_now-datetime.timedelta(seconds=300)
  74. df_volt=self.df_bms[(self.df_bms['time']>=time_last) & (self.df_bms['time']<=time_now)]
  75. df_volt=df_volt[self.cellvolt_name]
  76. cellvolt_std=df_volt.std(axis=0)
  77. if len(df_volt)>2 and max(cellvolt_std)<1.5:
  78. cellvolt_sum=df_volt.sum(0)-df_volt.max(0)-df_volt.min(0)
  79. cellvolt_mean=cellvolt_sum/(len(df_volt)-2)
  80. cellvolt=cellvolt_mean
  81. elif len(df_volt)==2:
  82. # df_volt=pd.DataFrame(df_volt,dtype=np.float)
  83. if max(abs(df_volt.iloc[1]-df_volt.iloc[0]))<3:
  84. cellvolt=df_volt.mean(0)
  85. else:
  86. cellvolt=pd.DataFrame()
  87. else:
  88. cellvolt=pd.DataFrame()
  89. return cellvolt
  90. #获取当前行所有电压数据........................................................................................
  91. def _cellvolt_get(self,num):
  92. cellvolt = np.array(self.df_bms.loc[num,self.cellvolt_name])
  93. return cellvolt
  94. #获取当前行所有soc差...........................................................................................
  95. def _celldeltsoc_get(self,cellvolt_list,dict_baltime,capacity):
  96. cellsoc=[]
  97. celldeltsoc=[]
  98. for j in range(1, self.param.CellVoltNums+1): #获取每个电芯电压对应的SOC值
  99. cellvolt=cellvolt_list[j-1]
  100. ocv_soc=np.interp(cellvolt,self.param.LookTab_OCV,self.param.LookTab_SOC)
  101. if j in dict_baltime.keys():
  102. ocv_soc=ocv_soc+dict_baltime[j]*self.param.BalCurrent/(capacity*3600) #补偿均衡电流
  103. else:
  104. pass
  105. cellsoc.append(ocv_soc)
  106. cellsocmean=(sum(cellsoc)-max(cellsoc)-min(cellsoc))/(len(cellsoc)-2)
  107. for j in range(len(cellsoc)): #计算每个电芯的soc差
  108. celldeltsoc.append(cellsoc[j]-cellsocmean)
  109. return np.array(celldeltsoc), np.array(cellsoc)
  110. #获取所有电芯的As差
  111. def _cellDeltAs_get(self,chrg_st,chrg_end,dict_baltime):
  112. cellAs=[]
  113. celldeltAs=[]
  114. for j in range(1, self.param.CellVoltNums+1): #获取每个电芯电压>峰值电压的充入As数
  115. if j in dict_baltime.keys(): #补偿均衡电流
  116. As=-self.param.BalCurrent*dict_baltime[j]
  117. else:
  118. As=0
  119. As_tatol=0
  120. symbol=0
  121. for m in range(chrg_st+1,chrg_end):
  122. As=As-self.packcrnt[m]*(self.bmstime[m]-self.bmstime[m-1]).total_seconds()
  123. if symbol<5:
  124. if self.df_bms.loc[m,'CellVolt'+str(j)]>self.param.PeakCellVolt[symbol]:
  125. As_tatol=As_tatol+As
  126. symbol=symbol+1
  127. else:
  128. continue
  129. else:
  130. cellAs.append(As_tatol/5)
  131. break
  132. cellAsmean=(sum(cellAs)-max(cellAs)-min(cellAs))/(len(cellAs)-2)
  133. for j in range(len(cellAs)): #计算每个电芯的soc差
  134. celldeltAs.append(cellAs[j]-cellAsmean)
  135. return np.array(celldeltAs)
  136. #计算每个电芯的均衡时长..........................................................................................................................
  137. def _bal_time(self,dict_bal):
  138. dict_baltime={}
  139. dict_baltime1={}
  140. for key in dict_bal:
  141. count=1
  142. x=eval(key)
  143. while x>0:
  144. if x & 1==1: #判断最后一位是否为1
  145. if count in dict_baltime.keys():
  146. dict_baltime[count] = dict_baltime[count] + dict_bal[key]
  147. else:
  148. dict_baltime[count] = dict_bal[key]
  149. else:
  150. pass
  151. count += 1
  152. x >>= 1 #右移一位
  153. dict_baltime=dict(sorted(dict_baltime.items(),key=lambda dict_baltime:dict_baltime[0]))
  154. for key in dict_baltime: #解析均衡的电芯编号
  155. if self.celltype==1: #科易6040
  156. if key<14:
  157. dict_baltime1[key]=dict_baltime[key]
  158. elif key<18:
  159. dict_baltime1[key-1]=dict_baltime[key]
  160. else:
  161. dict_baltime1[key-3]=dict_baltime[key]
  162. elif self.celltype==1: #科易4840
  163. if key<4:
  164. dict_baltime1[key-1]=dict_baltime[key]
  165. elif key<8:
  166. dict_baltime1[key-1]=dict_baltime[key]
  167. elif key<14:
  168. dict_baltime1[key-3]=dict_baltime[key]
  169. elif key<18:
  170. dict_baltime1[key-4]=dict_baltime[key]
  171. else:
  172. dict_baltime1[key-6]=dict_baltime[key]
  173. else:
  174. dict_baltime1=dict_baltime
  175. return dict_baltime1
  176. #三元电池的内短路电流计算...........................................................................................................................................................
  177. def _ncm_intershort(self):
  178. df_res=pd.DataFrame(columns=['time_st', 'time_sp', 'sn', 'method','short_current','baltime'])
  179. df_ram_last=self.df_last
  180. df_ram_last1=self.df_last1
  181. df_ram_last3=self.df_last3
  182. #容量初始化
  183. if self.df_soh.empty:
  184. batsoh=self.df_bms.loc[0,'PackSOH']
  185. capacity=self.param.Capacity*batsoh/100
  186. else:
  187. batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh']
  188. capacity=self.param.Capacity*batsoh/100
  189. #参数初始化
  190. if df_ram_last.empty:
  191. firsttime=1
  192. dict_bal={}
  193. else:
  194. deltsoc_last=df_ram_last.loc[0,'deltsoc']
  195. cellsoc_last=df_ram_last.loc[0,'cellsoc']
  196. time_last=df_ram_last.loc[0,'time']
  197. firsttime=0
  198. dict_bal={}
  199. if df_ram_last1.empty:
  200. firsttime1=1
  201. dict_bal1={}
  202. else:
  203. deltsoc_last1=df_ram_last1.loc[0,'deltsoc1']
  204. time_last1=df_ram_last1.loc[0,'time1']
  205. firsttime1=0
  206. dict_bal1={}
  207. if df_ram_last3.empty:
  208. standingtime=0
  209. standingtime1=0
  210. standingtime2=0
  211. else:
  212. standingtime=df_ram_last3.loc[0,'standingtime']
  213. standingtime1=df_ram_last3.loc[0,'standingtime1']
  214. standingtime2=df_ram_last3.loc[0,'standingtime2']
  215. dict_bal1={}
  216. if abs(self.packcrnt[0])<0.01 and standingtime>1 and standingtime1>1:
  217. standingtime=standingtime+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
  218. standingtime1=standingtime1+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
  219. else:
  220. pass
  221. for i in range(1,len(self.df_bms)-1):
  222. if firsttime1==0: #满电静置算法--计算均衡状态对应的均衡时间
  223. try:
  224. balstat=int(self.df_bms.loc[i,'单体均衡状态'])
  225. if balstat>0.5:
  226. bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
  227. bal_step=int(bal_step)
  228. if str(balstat) in dict_bal1.keys():
  229. dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step
  230. else:
  231. dict_bal1[str(balstat)]=bal_step
  232. else:
  233. pass
  234. except:
  235. dict_bal1={}
  236. else:
  237. pass
  238. if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1 and abs(self.packcrnt[i+1]) < 0.1:
  239. delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
  240. standingtime=standingtime+delttime
  241. standingtime1=standingtime1+delttime
  242. self._celltemp_weight(i)
  243. #长时间静置法计算内短路-开始.....................................................................................................................................
  244. if firsttime==1:
  245. if standingtime>self.StandardStandingTime*2: #静置时间满足要求
  246. standingtime=0
  247. cellvolt_now=self._avgvolt_get(i)
  248. if not cellvolt_now.empty:
  249. cellvolt_min=min(cellvolt_now)
  250. cellvolt_max=max(cellvolt_now)
  251. # cellvolt_last=self._avgvolt_get(i-1)
  252. # deltvolt=max(abs(cellvolt_now-cellvolt_last))
  253. cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC)
  254. cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC)
  255. if 2<cellvolt_min<4.5 and 2<cellvolt_max<4.5 and (45<cellsoc_max or cellsoc_max<30) and (45<cellsoc_min or cellsoc_min<30):
  256. dict_baltime={} #获取每个电芯的均衡时间
  257. deltsoc_last, cellsoc_last=self._celldeltsoc_get(cellvolt_now,dict_baltime,capacity)
  258. time_last=self.bmstime[i]
  259. firsttime=0
  260. df_ram_last.loc[0]=[self.sn,time_last,deltsoc_last,cellsoc_last] #更新RAM信息
  261. else:
  262. pass
  263. elif standingtime>3600*12:
  264. standingtime=0
  265. cellvolt_now=self._avgvolt_get(i)
  266. if not cellvolt_now.empty:
  267. cellvolt_min=min(cellvolt_now)
  268. cellvolt_max=max(cellvolt_now)
  269. # cellvolt_last=self._avgvolt_get(i-1)
  270. # deltvolt=max(abs(cellvolt_now-cellvolt_last))
  271. cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC)
  272. cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC)
  273. if 2<cellvolt_min<4.5 and 2<cellvolt_max<4.5 and (45<cellsoc_max or cellsoc_max<30) and (45<cellsoc_min or cellsoc_min<30):
  274. dict_baltime=self._bal_time(dict_bal) #获取每个电芯的均衡时间
  275. deltsoc_now, cellsoc_now=self._celldeltsoc_get(cellvolt_now,dict_baltime,capacity)
  276. time_now=self.bmstime[i]
  277. if -5<max(cellsoc_now-cellsoc_last)<5:
  278. df_ram_last.loc[0]=[self.sn,time_now,deltsoc_now,cellsoc_now] #更新RAM信息
  279. list_sub=deltsoc_now-deltsoc_last
  280. list_pud=(0.01*capacity*3600*1000)/(time_now-time_last).total_seconds()
  281. leak_current=list_sub*list_pud
  282. # leak_current=np.array(leak_current)
  283. leak_current=np.round(leak_current,3)
  284. leak_current=list(leak_current)
  285. df_res.loc[len(df_res)]=[time_last,time_now,self.sn,1,str(leak_current),str(dict_baltime)] #计算结果存入Dataframe
  286. time_last=time_now #更新时间
  287. deltsoc_last=deltsoc_now #更新soc差
  288. dict_bal={}
  289. else:
  290. firsttime=1
  291. else:
  292. try:
  293. balstat=int(self.df_bms.loc[i,'单体均衡状态'])
  294. if balstat>0.5:
  295. bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
  296. bal_step=int(bal_step)
  297. if str(balstat) in dict_bal.keys():
  298. dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step
  299. else:
  300. dict_bal[str(balstat)]=bal_step
  301. else:
  302. pass
  303. except:
  304. dict_bal={}
  305. #满电静置法计算内短路-开始.....................................................................................................................................................
  306. if self.StandardStandingTime<standingtime1:
  307. standingtime1=0
  308. cellvolt_now1=self._avgvolt_get(i)
  309. if not cellvolt_now1.empty:
  310. cellvolt_max1=max(cellvolt_now1)
  311. cellvolt_min1=min(cellvolt_now1)
  312. # cellvolt_last1=self._avgvolt_get(i-1)
  313. # deltvolt1=max(abs(cellvolt_now1-cellvolt_last1))
  314. cellsoc_now1=np.interp(cellvolt_max1,self.param.LookTab_OCV,self.param.LookTab_SOC)
  315. if cellsoc_now1>self.param.FullChrgSoc-10 and 2<cellvolt_min1<4.5 and 2<cellvolt_max1<4.5:
  316. if firsttime1==1:
  317. dict_baltime1={} #获取每个电芯的均衡时间
  318. deltsoc_last1, cellsoc_last1=self._celldeltsoc_get(cellvolt_now1,dict_baltime1,capacity)
  319. time_last1=self.bmstime[i]
  320. firsttime1=0
  321. df_ram_last1.loc[0]=[self.sn,time_last1,deltsoc_last1] #更新RAM信息
  322. else:
  323. dict_baltime1=self._bal_time(dict_bal1) #获取每个电芯的均衡时间
  324. time_now1=self.bmstime[i]
  325. if (time_now1-time_last1).total_seconds()>3600*20:
  326. deltsoc_now1, cellsoc_now1=self._celldeltsoc_get(cellvolt_now1,dict_baltime1,capacity)
  327. df_ram_last1.loc[0]=[self.sn,time_now1,deltsoc_now1] #更新RAM信息
  328. list_sub1=deltsoc_now1-deltsoc_last1
  329. list_pud1=(0.01*capacity*3600*1000)/(time_now1-time_last1).total_seconds()
  330. leak_current1=list_sub1*list_pud1
  331. # leak_current1=np.array(leak_current1)
  332. leak_current1=np.round(leak_current1,3)
  333. leak_current1=list(leak_current1)
  334. df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)] #计算结果存入Dataframe
  335. time_last1=time_now1 #更新时间
  336. deltsoc_last1=deltsoc_now1 #更新soc差
  337. dict_bal1={}
  338. else:
  339. pass
  340. else:
  341. pass
  342. else:
  343. pass
  344. else:
  345. df_ram_last=pd.DataFrame(columns=['sn','time','deltsoc','cellsoc']) #电流>0,清空上次静置的SOC差
  346. dict_bal={}
  347. firsttime=1
  348. standingtime=0
  349. standingtime1=0
  350. pass
  351. #更新RAM的standingtime
  352. df_ram_last3.loc[0]=[self.sn,self.bmstime[len(self.bmstime)-1],standingtime,standingtime1,standingtime2]
  353. #返回计算结果
  354. if df_res.empty:
  355. return pd.DataFrame(), df_ram_last, df_ram_last1, df_ram_last3
  356. else:
  357. return df_res, df_ram_last, df_ram_last1, df_ram_last3
  358. #磷酸铁锂电池内短路计算程序.............................................................................................................................
  359. def _lfp_intershort(self):
  360. column_name=['time_st', 'time_sp', 'sn', 'method','short_current','baltime']
  361. df_res=pd.DataFrame(columns=column_name)
  362. df_ram_last=self.df_last
  363. df_ram_last1=self.df_last1
  364. df_ram_last2=self.df_last2
  365. df_ram_last3=self.df_last3
  366. df_ram_lfp=pd.DataFrame(columns=self.df_bms.columns.tolist())
  367. #容量初始化
  368. if self.df_soh.empty:
  369. batsoh=self.df_bms.loc[0,'PackSOH']
  370. capacity=self.param.Capacity*batsoh/100
  371. else:
  372. batsoh=self.df_soh.loc[len(self.df_soh)-1,'soh']
  373. capacity=self.param.Capacity*batsoh/100
  374. #参数初始化
  375. if df_ram_last.empty:
  376. firsttime=1
  377. dict_bal={}
  378. else:
  379. deltsoc_last=df_ram_last.loc[0,'deltsoc']
  380. cellsoc_last=df_ram_last.loc[0,'cellsoc']
  381. time_last=df_ram_last.loc[0,'time']
  382. firsttime=0
  383. dict_bal={}
  384. if df_ram_last1.empty:
  385. firsttime1=1
  386. dict_bal1={}
  387. else:
  388. deltsoc_last1=df_ram_last1.loc[0,'deltsoc1']
  389. time_last1=df_ram_last1.loc[0,'time1']
  390. firsttime1=0
  391. dict_bal1={}
  392. if df_ram_last2.empty:
  393. firsttime2=1
  394. charging=0
  395. dict_bal2={}
  396. else:
  397. deltAs_last2=df_ram_last2.loc[0,'deltAs2']
  398. time_last2=df_ram_last2.loc[0,'time2']
  399. firsttime2=0
  400. charging=0
  401. dict_bal2={}
  402. if df_ram_last3.empty:
  403. standingtime=0
  404. standingtime1=0
  405. standingtime2=0
  406. else:
  407. standingtime=df_ram_last3.loc[0,'standingtime']
  408. standingtime1=df_ram_last3.loc[0,'standingtime1']
  409. standingtime2=df_ram_last3.loc[0,'standingtime2']
  410. dict_bal1={}
  411. if abs(self.packcrnt[0])<0.01 and standingtime>1 and standingtime1>1:
  412. standingtime=standingtime+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
  413. standingtime1=standingtime1+(self.bmstime[0]-df_ram_last3.loc[0,'time3']).total_seconds()
  414. else:
  415. pass
  416. for i in range(1,len(self.df_bms)-1):
  417. #静置法计算内短路..........................................................................................................................
  418. if firsttime1==0: #满电静置算法--计算均衡状态对应的均衡时间
  419. try:
  420. balstat=int(self.df_bms.loc[i,'单体均衡状态'])
  421. if balstat>0.5:
  422. bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
  423. bal_step=int(bal_step)
  424. if str(balstat) in dict_bal1.keys():
  425. dict_bal1[str(balstat)]=dict_bal1[str(balstat)]+bal_step
  426. else:
  427. dict_bal1[str(balstat)]=bal_step
  428. else:
  429. pass
  430. except:
  431. dict_bal1={}
  432. else:
  433. pass
  434. if abs(self.packcrnt[i]) < 0.1 and abs(self.packcrnt[i-1]) < 0.1 and abs(self.packcrnt[i+1]) < 0.1:
  435. delttime=(self.bmstime[i]-self.bmstime[i-1]).total_seconds()
  436. standingtime=standingtime+delttime
  437. standingtime1=standingtime1+delttime
  438. self._celltemp_weight(i)
  439. #长时间静置法计算内短路-开始.....................................................................................................................................
  440. if firsttime==1:
  441. if standingtime>self.StandardStandingTime: #静置时间满足要求
  442. standingtime=0
  443. cellvolt_now=self._avgvolt_get(i)
  444. if not cellvolt_now.empty:
  445. cellvolt_min=min(cellvolt_now)
  446. cellvolt_max=max(cellvolt_now)
  447. # cellvolt_last=self._avgvolt_get(i-1)
  448. # deltvolt=max(abs(cellvolt_now-cellvolt_last))
  449. cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC)
  450. cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC)
  451. if cellsoc_max<self.param.SocInflexion1-2 and 12<cellsoc_min:
  452. dict_baltime={} #获取每个电芯的均衡时间
  453. deltsoc_last, cellsoc_last=self._celldeltsoc_get(cellvolt_now,dict_baltime,capacity)
  454. time_last=self.bmstime[i]
  455. firsttime=0
  456. df_ram_last.loc[0]=[self.sn,time_last,deltsoc_last,cellsoc_last] #更新RAM信息
  457. else:
  458. pass
  459. else:
  460. pass
  461. elif standingtime>3600*12:
  462. standingtime=0
  463. cellvolt_now=np.array(self._avgvolt_get(i))
  464. if not cellvolt_now.empty:
  465. cellvolt_min=min(cellvolt_now)
  466. cellvolt_max=max(cellvolt_now)
  467. # cellvolt_last=np.array(self._avgvolt_get(i-1))
  468. # deltvolt=max(abs(cellvolt_now-cellvolt_last))
  469. cellsoc_max=np.interp(cellvolt_max,self.param.LookTab_OCV,self.param.LookTab_SOC)
  470. cellsoc_min=np.interp(cellvolt_min,self.param.LookTab_OCV,self.param.LookTab_SOC)
  471. if cellsoc_max<self.param.SocInflexion1-2 and 12<cellsoc_min:
  472. dict_baltime=self._bal_time(dict_bal) #获取每个电芯的均衡时间
  473. deltsoc_now, cellsoc_now=self._celldeltsoc_get(cellvolt_now, dict_baltime,capacity) #获取每个电芯的SOC差
  474. time_now=self.bmstime[i]
  475. if -5<max(cellsoc_now-cellsoc_last)<5:
  476. df_ram_last.loc[0]=[self.sn,time_now,deltsoc_now,cellsoc_now] #更新RAM信息
  477. list_sub=deltsoc_now-deltsoc_last
  478. list_pud=(0.01*capacity*3600*1000)/(time_now-time_last).total_seconds()
  479. leak_current=list_sub*list_pud
  480. # leak_current=np.array(leak_current)
  481. leak_current=np.round(leak_current,3)
  482. leak_current=list(leak_current)
  483. df_res.loc[len(df_res)]=[time_last,time_now,self.sn,1,str(leak_current),str(dict_baltime)] #计算结果存入Dataframe
  484. time_last=time_now #更新时间
  485. deltsoc_last=deltsoc_now #更新soc差
  486. dict_bal={}
  487. else:
  488. firsttime=1
  489. else:
  490. pass
  491. else:
  492. try:
  493. balstat=int(self.df_bms.loc[i,'单体均衡状态'])
  494. if balstat>0.5:
  495. bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
  496. bal_step=int(bal_step)
  497. if str(balstat) in dict_bal.keys():
  498. dict_bal[str(balstat)]=dict_bal[str(balstat)]+bal_step
  499. else:
  500. dict_bal[str(balstat)]=bal_step
  501. else:
  502. pass
  503. except:
  504. dict_bal={}
  505. #非平台区间静置法计算内短路-开始.....................................................................................................................................................
  506. if standingtime1>self.StandardStandingTime:
  507. standingtime1=0
  508. cellvolt_now1=self._avgvolt_get(i)
  509. if not cellvolt_now1.empty:
  510. cellvolt_max1=max(cellvolt_now1)
  511. cellvolt_min1=min(cellvolt_now1)
  512. # cellvolt_last1=self._avgvolt_get(i-1)
  513. # deltvolt1=max(abs(cellvolt_now1-cellvolt_last1))
  514. cellsoc_max1=np.interp(cellvolt_max1,self.param.LookTab_OCV,self.param.LookTab_SOC)
  515. cellsoc_min1=np.interp(cellvolt_min1,self.param.LookTab_OCV,self.param.LookTab_SOC)
  516. if cellsoc_max1<self.param.SocInflexion1-2 and 12<cellsoc_min1:
  517. if firsttime1==1:
  518. dict_baltime1=self._bal_time(dict_bal1) #获取每个电芯的均衡时间
  519. deltsoc_last1, cellsoc_last1=self._celldeltsoc_get(cellvolt_now1,dict_baltime1,capacity)
  520. time_last1=self.bmstime[i]
  521. firsttime1=0
  522. df_ram_last1.loc[0]=[self.sn,time_last1,deltsoc_last1] #更新RAM信息
  523. else:
  524. dict_baltime1=self._bal_time(dict_bal1) #获取每个电芯的均衡时间
  525. deltsoc_now1, cellsoc_now1=self._celldeltsoc_get(cellvolt_now1,dict_baltime1,capacity)
  526. time_now1=self.bmstime[i]
  527. df_ram_last1.loc[0]=[self.sn,time_now1,deltsoc_now1] #更新RAM信息
  528. if (time_now1-time_last1).total_seconds()>3600*24:
  529. list_sub1=deltsoc_now1-deltsoc_last1
  530. list_pud1=(0.01*capacity*3600*1000)/(time_now1-time_last1).total_seconds()
  531. leak_current1=list_sub1*list_pud1
  532. # leak_current1=np.array(leak_current1)
  533. leak_current1=np.round(leak_current1,3)
  534. leak_current1=list(leak_current1)
  535. df_res.loc[len(df_res)]=[time_last1,time_now1,self.sn,2,str(leak_current1),str(dict_baltime1)] #计算结果存入Dataframe
  536. time_last1=time_now1 #更新时间
  537. deltsoc_last1=deltsoc_now1 #更新soc差
  538. dict_bal1={}
  539. else:
  540. pass
  541. else:
  542. pass
  543. else:
  544. pass
  545. else:
  546. df_ram_last=pd.DataFrame(columns=['sn','time','deltsoc','cellsoc']) #电流>0,清空上次静置的SOC差
  547. dict_bal={}
  548. firsttime=1
  549. standingtime=0
  550. standingtime1=0
  551. pass
  552. #获取充电数据——开始..............................................................................................................
  553. try:
  554. balstat=int(self.df_bms.loc[i,'单体均衡状态']) #统计均衡状态
  555. if balstat>0.5:
  556. bal_step=(self.bmstime[i+1]-self.bmstime[i]).total_seconds() #均衡步长
  557. bal_step=int(bal_step)
  558. if str(balstat) in dict_bal2.keys():
  559. dict_bal2[str(balstat)]=dict_bal2[str(balstat)]+bal_step
  560. else:
  561. dict_bal2[str(balstat)]=bal_step
  562. else:
  563. pass
  564. except:
  565. dict_bal2={}
  566. #判断充电状态
  567. if self.packcrnt[i]<=-1 and self.packcrnt[i+1]<=-1 and self.packcrnt[i-1]<=-1:
  568. if charging==0:
  569. if self.bms_soc[i]<40:
  570. cellvolt_now=self._cellvolt_get(i)
  571. if min(cellvolt_now)<self.param.CellFullChrgVolt-0.15:
  572. charging=1
  573. chrg_start=i
  574. else:
  575. pass
  576. else:
  577. pass
  578. else: #充电中
  579. cellvolt_now=self._cellvolt_get(i)
  580. if (self.bmstime[i+1]-self.bmstime[i]).total_seconds()>180 or (self.packcrnt[i]>self.param.Capacity/3 and self.packcrnt[i+1]>self.param.Capacity/3): #如果充电过程中时间间隔>180s,则舍弃该次充电
  581. charging=0
  582. continue
  583. elif min(cellvolt_now)>self.param.CellFullChrgVolt-0.13: #电压>满充电压-0.13V,即3.37V
  584. self._celltemp_weight(i)
  585. if i-chrg_start>10 and self.celltemp>20:
  586. chrg_end=i+1
  587. charging=0
  588. #计算漏电流值...................................................................
  589. if firsttime2==1:
  590. dict_baltime={}
  591. deltAs_last2=self._cellDeltAs_get(chrg_start,chrg_end,dict_baltime)
  592. time_last2=self.bmstime[chrg_end]
  593. df_ram_last2.loc[0]=[self.sn,time_last2,deltAs_last2] #更新RAM信息
  594. else:
  595. dict_baltime=self._bal_time(dict_bal2) #获取每个电芯的均衡时间
  596. deltAs_now2=self._cellDeltAs_get(chrg_start,chrg_end,dict_baltime) #获取每个电芯的As差
  597. time_now2=self.bmstime[chrg_end]
  598. df_ram_last2.loc[0]=[self.sn,time_now2,deltAs_now2] #更新RAM信息
  599. list_sub2=deltAs_now2-deltAs_last2
  600. list_pud2=-1000/(time_now2-time_last2).total_seconds()
  601. leak_current2=list_sub2*list_pud2
  602. # leak_current=np.array(leak_current)
  603. leak_current2=np.round(leak_current2,3)
  604. leak_current2=list(leak_current2)
  605. df_res.loc[len(df_res)]=[time_last2,time_now2,self.sn,3,str(leak_current2),str(dict_baltime)] #计算结果存入Dataframe
  606. deltAs_last2=deltAs_now2
  607. time_last2=time_now2
  608. dict_bal2={}
  609. else:
  610. charging=0
  611. continue
  612. elif i==len(self.df_bms)-2: #数据中断后仍在充电,将前段充电数据写入RAM
  613. df_ram_lfp=self.df_bms.iloc[chrg_start:]
  614. df_ram_lfp['sn']=self.sn
  615. else:
  616. pass
  617. else:
  618. pass
  619. #更新RAM
  620. df_ram_last3.loc[0]=[self.sn,self.bmstime[len(self.bmstime)-1],standingtime,standingtime1,standingtime2]
  621. #返回结果
  622. if df_res.empty:
  623. return pd.DataFrame(), df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3,df_ram_lfp
  624. else:
  625. return df_res, df_ram_last, df_ram_last1, df_ram_last2, df_ram_last3, df_ram_lfp