123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- __author__ = 'lmstack'
- #coding=utf-8
- import os
- import datetime
- import pandas as pd
- from LIB.BACKEND import DBManager, Log
- from sqlalchemy import create_engine
- from sqlalchemy.orm import sessionmaker
- import time, datetime
- import dateutil.relativedelta
- import traceback
- from LIB.MIDDLE.CellStateEstimation.Common import log
- from pandas.core.frame import DataFrame
- from LIB.MIDDLE.SaftyCenter.Common import QX_BatteryParam
- from LIB.MIDDLE.SaftyCenter.diagfault.SC_SamplingSafty import SamplingSafty
- from LIB.MIDDLE.CellStateEstimation.Common.V1_0_1 import DBDownload
- from urllib import parse
- import pymysql
- import pdb
- from apscheduler.schedulers.blocking import BlockingScheduler
- import datacompy
- from LIB.MIDDLE.SaftyCenter.Common import FeiShuData
- from LIB.MIDDLE.SaftyCenter.Common import QX_BatteryParam
- from LIB.MIDDLE.SaftyCenter.diagfault import CBMSBatDiag
- from LIB.MIDDLE.SaftyCenter.diagfault.SC_SamplingSafty import SamplingSafty
- def fun():
- global df_sn
- global db_res_engine
- global logger
- global df_Diag_Ram
- # 读取结果数据库
- host2='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port2=3306
- db2='safety_platform'
- user2='qx_read'
- password2='Qx@123456'
- start=time.time()
- end_time=datetime.datetime.now()
- start_time=end_time-datetime.timedelta(seconds=120)
- start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
- end_time=end_time.strftime('%Y-%m-%d %H:%M:%S')
- logger.info("cycle start !!!!!!!!!!!!!!!!!!!!")
-
- start=time.time()
- end_time=datetime.datetime.now()
- start_time=end_time-datetime.timedelta(seconds=130)
- start_time=start_time.strftime('%Y-%m-%d %H:%M:%S')
- end_time=end_time.strftime('%Y-%m-%d %H:%M:%S')
- df_read_Yunw = FeiShuData.getFeiShuDATA()#运维表格数据
- df_read_Yunw.rename(columns={'电池编码':'product_id'},inplace=True)
- df_read_Yunw.rename(columns={'内容描述':'info'},inplace=True)
- df_read_Yunw.rename(columns={'发生时间':'start_time'},inplace=True)
- df_read_Yunw.rename(columns={'维修信息':'advice'},inplace=True)
- for i in range(0, len(df_sn)):
- try:
- if df_sn.loc[i, 'imei'][5:9] == 'N640':
- celltype=1 #6040三元电芯
- elif df_sn.loc[i, 'imei'][5:9] == 'N440':
- celltype=2 #4840三元电芯
- elif df_sn.loc[i, 'imei'][5:9] == 'L660':
- celltype=99 # 6060锂电芯
- elif df_sn.loc[i, 'imei'][3:5] == 'LX' and df_sn.loc[i, 'imei'][5:9] == 'N750':
- celltype=3 #力信 50ah三元电芯
- elif df_sn.loc[i, 'imei'][3:5] == 'CL' and df_sn.loc[i, 'imei'][5:9] == 'N750':
- celltype=4 #CATL 50ah三元电芯
- else:
- logger.info("pid-{} celltype-{} SN: {} SKIP!".format(os.getpid(), "未知", sn))
- continue
- sn = df_sn.loc[i, 'sn']
-
- logger.info("pid-{} celltype-{} SN: {} START!".format(os.getpid(), celltype, sn))
-
-
- param=QX_BatteryParam.BatteryInfo(celltype)
- #读取原始数据库数据........................................................................................................................................................
- dbManager = DBManager.DBManager()
- df_data = dbManager.get_data(sn=sn, start_time=start_time, end_time=end_time, data_groups=['bms'])
- df_bms = df_data['bms']
- #读取结果数据库数据........................................................................................................................................................
- host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port=3306
- db='qx_cas'
- user='qx_read'
- password='Qx@123456'
- mode=1
- tablename1='cellstateestimation_soh'
- tablename2='cellstateestimation_uniform_socvoltdiff'
- #电池诊断................................................................................................................................................................
- DBRead=DBDownload.DBDownload(host, port, db, user, password,mode)
- with DBRead as DBRead:
- df_soh=DBRead.getdata('time_st,sn,soh,cellsoh', tablename=tablename1, sn=sn, timename='time_sp', st=start_time, sp=end_time)
- df_uniform=DBRead.getdata('time,sn,cellsoc_diff,cellmin_num,cellmax_num', tablename=tablename2, sn=sn, timename='time', st=start_time, sp=end_time)
- #电池诊断................................................................................................................................................................
- CellFltInfo=DataFrame(columns=['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice'])
- df_Diag_Ram = df_Diag_Ram.drop_duplicates(subset=['product_id','code','start_time','Batpos','info'],keep='first')#sn之外的故障
- df_Diag_Ram_sn = df_Diag_Ram.loc[df_Diag_Ram['product_id']==sn]#历史故障
- df_Diag_Ram_sn_else = pd.concat([df_Diag_Ram,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['product_id','code','start_time','Batpos','info'],keep=False)#sn之外的故障
- CellFltInfo = df_Diag_Ram_sn.drop('Batpos',axis=1)
- df_Diag_Ram_add = pd.DataFrame()
- df_Diag_Ram_Update_change = pd.DataFrame()
- if not df_bms.empty:
- df_Diag_Batdiag_update_xq=SamplingSafty.main(sn,param,df_bms,CellFltInfo)#学琦计算故障
- BatDiag=CBMSBatDiag.BatDiag(sn,celltype,df_bms, df_soh, df_uniform, CellFltInfo)#鹏飞计算
- df_Diag_Batdiag_update=BatDiag.diag()
- df_Diag_Cal_Update_add = pd.concat([df_Diag_Batdiag_update_xq,df_Diag_Batdiag_update])#重新计算的该SN下的故障
- df_Diag_Cal_Update_temp = df_Diag_Cal_Update_add.drop_duplicates(subset=['product_id','start_time','end_time','code','info'], keep='first', inplace=False, ignore_index=False)#去除相同故障
- df_Diag_cal_early_unfix = pd.DataFrame()
- df_Diag_Cal_finish = pd.DataFrame()
- df_Diag_cal_early_fix = pd.DataFrame()
- if not df_Diag_Cal_Update_temp.empty:
- #------------------------------合并两者故障,并将同一sn号下的车辆故障放一起----------------------------------------------
- df_Diag_Cal_Update = df_Diag_Cal_Update_temp#替换上一行
- df_Diag_Cal_finish = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] != '0000-00-00 00:00:00']
- df_Diag_Cal_new = df_Diag_Cal_Update.loc[df_Diag_Cal_Update['end_time'] == '0000-00-00 00:00:00']
- df_Diag_Cal_finish['Batpos'] = 1
- df_Diag_Cal_new['Batpos'] = 0
- df_feishu_sta = df_read_Yunw.loc[(df_read_Yunw['product_id'] == sn)]#飞书中该sn车辆状态
- if df_feishu_sta.empty:#飞书中没有该sn记录故障的新增
- df_Diag_cal_early_unfix = df_Diag_Cal_new#如果为新出故障,则直接记录在df_diag_frame中
- else:
- df_Diag_cal_later = df_Diag_Cal_new.loc[pd.to_datetime(df_Diag_Cal_new['start_time']) > max(pd.to_datetime(df_feishu_sta['start_time']))]#故障表中故障时间晚于飞书记录时间的新增
- df_Diag_cal_early = pd.concat([df_Diag_Cal_new,df_Diag_cal_later,df_Diag_cal_later]).drop_duplicates(subset=['product_id','code','start_time'],keep=False)#故障表中故障时间早于飞书记录时间
- df_feishu_sta_latest = df_feishu_sta.loc[pd.to_datetime(df_feishu_sta['start_time']) == max(pd.to_datetime(df_feishu_sta['start_time']))]#飞书中该SN下的最新故障
- df_feishu_diag_unfix = (df_feishu_sta_latest['advice'] == '需正常返仓') | (df_feishu_sta_latest['advice'] == '需紧急返仓')
- if any(df_feishu_diag_unfix):
- df_Diag_cal_early_unfix = df_Diag_Cal_new
- else:
- df_Diag_cal_early_fix = df_Diag_cal_early
- df_Diag_cal_early_unfix = df_Diag_cal_later
- if not df_Diag_cal_early_fix.empty:
- df_Diag_cal_early_fix['Batpos'] = 1
- df_Diag_Ram_Update = pd.concat([df_Diag_cal_early_unfix,df_Diag_cal_early_fix,df_Diag_Cal_finish])
- df_Diag_Ram_Update['start_time'] = pd.to_datetime(df_Diag_Ram_Update['start_time'])
- df_Diag_Ram_Update.sort_values(by = ['start_time'], axis = 0, ascending=True,inplace=True)#该sn下当次诊断的故障状态
- df_Diag_Ram_add = pd.concat([df_Diag_Ram_Update,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['start_time','code'],keep=False)#此次判断中新增故障
- df_Diag_Ram_Update_old = pd.concat([df_Diag_Ram_Update,df_Diag_Ram_add,df_Diag_Ram_add]).drop_duplicates(subset=['start_time','code'],keep=False)#此次判断中新增故障
- df_Diag_Ram_Update_change = pd.concat([df_Diag_Ram_Update_old,df_Diag_Ram_sn,df_Diag_Ram_sn]).drop_duplicates(subset=['start_time','code','Batpos'],keep=False)#此次判断中新增故障
- df_Diag_Ram_sav = df_Diag_Ram_Update.loc[df_Diag_Ram_Update['Batpos'] == 0]
- df_Diag_Ram = pd.concat([df_Diag_Ram_sn_else,df_Diag_Ram_sav])
- # if (len(df_Diag_Ram_add) > 0) | (len(df_Diag_Ram_Update_change) > 0):#历史及现有故障
- # df_Diag_Ram.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result.csv',index=False,encoding='GB18030')
- if len(df_Diag_Ram_add) > 0:#新增故障
-
- df_Diag_Ram_add.columns = ['start_time', 'end_time', 'product_id', 'code', 'level', 'info','advice', 'Batpos']
- df_Diag_Ram_add['factory'] = '骑享'
- df_Diag_Ram_add.to_sql("all_fault_info",con=db_res_engine, if_exists="append",index=False)
- # df_Diag_Ram_add.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problem\result_add.csv',index=False,encoding='GB18030')
- if len(df_Diag_Ram_Update_change) > 0:#更改故障
- df_Diag_Ram_Update_change = df_Diag_Ram_Update_change.reset_index(drop=True)
- try:
- conn = pymysql.connect(host=host2, port=port2, user=user2, password=password2, database=db2)
- cursor = conn.cursor()
- logger.info(df_Diag_Ram_Update_change)
- for i in range(0,len(df_Diag_Ram_Update_change)):
- sql = '''
- update all_fault_info set end_time='{}', Batpos={} where product_id='{}' and code={} and start_time='{}'
- '''.format(df_Diag_Ram_Update_change.loc[i,'end_time'], df_Diag_Ram_Update_change.loc[i, 'Batpos'],
- df_Diag_Ram_Update_change.loc[i,'product_id'], df_Diag_Ram_Update_change.loc[i,'code'],
- df_Diag_Ram_Update_change.loc[i,'start_time'])
- logger.info(sql)
- cursor.execute(sql)
- conn.commit()
- conn.close();
- except:
- logger.error(traceback.format_exc)
- logger.error(u"{} :{},{} 任务运行错误\n".format(sn,start_time,end_time), exc_info=True)
- conn.close();
- # df_Diag_Ram_Update_change.to_csv(r'D:\Work\Code_write\data_analyze_platform\USER\01Screen_Problemm\result_change.csv',index=False,encoding='GB18030')
- end=time.time()
- logger.info("pid-{} celltype-{} SN: {} DONE!".format(os.getpid(), celltype, sn))
- except:
- logger.error(traceback.format_exc)
- logger.error(u"{} :{},{} 任务运行错误\n".format(sn,start_time,end_time), exc_info=True)
- logger.info("cycle DONE !!!!!!!!!!!!!!!!!!!!")
- if __name__ == "__main__":
-
- # 时间设置
- # now_time = datetime.datetime.now()
- # pre_time = now_time + dateutil.relativedelta.relativedelta(days=-1)# 前一日
- # end_time=datetime.datetime.strftime(now_time,"%Y-%m-%d 00:00:00")
- # start_time=datetime.datetime.strftime(pre_time,"%Y-%m-%d 00:00:00")
-
- history_run_flag = False # 历史数据运行标志
-
- # 更新sn列表
- host='rm-bp10j10qy42bzy0q7.mysql.rds.aliyuncs.com'
- port=3306
- db='qixiang_oss'
- user='qixiang_oss'
- password='Qixiang2021'
- conn = pymysql.connect(host=host, port=port, user=user, password=password, database=db)
- cursor = conn.cursor()
- cursor.execute("select sn, imei, add_time from app_device")
- res = cursor.fetchall()
- df_sn = pd.DataFrame(res, columns=['sn', 'imei', 'add_time'])
- df_sn = df_sn.reset_index(drop=True)
- conn.close();
-
- # 数据库配置
- host = 'rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port = 3306
- user = 'qx_cas'
- password = parse.quote_plus('Qx@123456')
- database = 'qx_cas'
- db_engine = create_engine(
- "mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
- user, password, host, port, database
- ))
- DbSession = sessionmaker(bind=db_engine)
-
- # 运行历史数据配置
-
- df_first_data_time = pd.read_sql("select * from bat_first_data_time", db_engine)
-
- # 日志配置
- now_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()).replace(":","_")
- log_path = 'log/' + now_str
- if not os.path.exists(log_path):
- os.makedirs(log_path)
- log = Log.Mylog(log_name='saftyCenter_diagfault', log_level = 'info')
- log.set_file_hl(file_name='{}/info.log'.format(log_path), log_level='info', size=1024* 1024 * 100)
- log.set_file_hl(file_name='{}/error.log'.format(log_path), log_level='error', size=1024* 1024 * 100)
- logger = log.get_logger()
- logger.info("pid is {}".format(os.getpid()))
-
- # 算法参数
- host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com'
- port=3306
- db='safety_platform'
- user='qx_read'
- password=parse.quote_plus('Qx@123456')
- tablename='all_fault_info'
- db_res_engine = create_engine(
- "mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8".format(
- user, password, host, port, db
- ))
-
- #............................模块运行前,先读取数据库中所有结束时间为0的数据,需要从数据库中读取................``
- # print("select start_time, end_time, product_id, code, level, info, advice, factory from {}".format(tablename))
- df_Diag_Ram=pd.read_sql("select start_time, end_time, product_id, code, level, info, advice, Batpos from all_fault_info where factory = '{}'".format('骑享'), db_res_engine)
- # result = result[['start_time', 'end_time', 'product_id', 'code', 'level', 'info', 'advice']]
- # df_Diag_Ram=result[result['end_time']=='0000-00-00 00:00:00']
- #定时任务.......................................................................................................................................................................
- fun()
- scheduler = BlockingScheduler()
- scheduler.add_job(fun, 'interval', seconds=600, id='diag_job')
- try:
- scheduler.start()
- except Exception as e:
- scheduler.shutdown()
- logger.error(str(e))
-
|