123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- import pandas as pd
- import pymysql
- from sqlalchemy import create_engine
- import datetime
- #建立引擎
- engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s/%s") % ('root', 'pengmin', 'localhost', 'qixiangdb'))
- conn_qx = pymysql.connect(
- host='rm-bp10j10qy42bzy0q77o.mysql.rds.aliyuncs.com',
- user='qx_cas',
- password='Qx@123456',#Qx@123456
- database='qx_cas',
- charset='utf8'
- )
- conn_local = pymysql.connect(
- host='localhost',
- user='root',
- password='pengmin',
- database='qixiangdb',
- charset='utf8'
- )
- def getNextSoc(start_soc):
- '''输入当前的soc,寻找目标soc函数'''
- if start_soc>80:
- next_soc=80
- elif start_soc>60:
- next_soc=60
- elif start_soc>40:
- next_soc=40
- elif start_soc>20:
- next_soc=20
- else:
- next_soc=1
- return next_soc
- def updtSnFct(sn_factor_df,end_soc,delta_range,range_soc):
- '''输入当前的soc区间段,里程变量量,soc变化量,输出新的df
- sn_factor_df为dataframe,delta_range单位为km,range_soc单位为km/persoc'''
- if end_soc==80:
- updtFctByCol(sn_factor_df,'a0',delta_range,range_soc)
- elif end_soc==60:
- updtFctByCol(sn_factor_df,'a1',delta_range,range_soc)
- elif end_soc==40:
- updtFctByCol(sn_factor_df,'a2',delta_range,range_soc)
- elif end_soc==20:
- updtFctByCol(sn_factor_df,'a3',delta_range,range_soc)
- elif end_soc<20:
- updtFctByCol(sn_factor_df,'a4',delta_range,range_soc)
- return sn_factor_df
- def updtFctByCol(sn_factor_df,colmun_name,delta_range,range_soc):
- '''更新制定列的factor,sn_factor_df为dataframe,新的系数更新到第一行。delta_range单位为km,
- range_soc单位为km/persoc,默认按照100km更新续驶里程权重'''
- range_soc_old=sn_factor_df.loc[0,colmun_name]#读取第0行的老factor
- debounce_range=200#更新权重
- new_factor=range_soc*((delta_range)/debounce_range)+range_soc_old*(1-(delta_range)/debounce_range)
- #在第1行,存储新的factor
- sn_factor_df.loc[1,colmun_name]=new_factor
- return sn_factor_df
- def updtTodayFct(factor_input,sn_day_df):
- '''更新今日的Factor***'''
- sn_factor_df_last=factor_input
- start_soc=sn_day_df.loc[0,'soc']
- next_soc=getNextSoc(start_soc)
- start_range=sn_day_df.loc[0,'vehodo']
- sn=sn_day_df.loc[0,'name']
- for index in range(len(sn_day_df)-1):
- #寻找分割点,
- index_soc=sn_day_df.loc[index,'soc']#当前行soc
- next_index_soc=sn_day_df.loc[index+1,'soc']#下一行soc
- if (index_soc>=next_soc)&(next_index_soc<next_soc):#当前行高,下一行低
- delta_soc_tonext=start_soc-next_soc#两个距离点的soc差,单位为%
- delta_range_tonext=sn_day_df.loc[index,'vehodo']-start_range#两个时间点的距离差,单位为m
- delta_range_tonext_km=delta_range_tonext/1000#两个时间点的距离差,单位为km
- range_soc_tonext=(delta_range_tonext/1000)/delta_soc_tonext#单位soc可行驶的公里数
- print(sn+'start_soc: '+str(start_soc),'next_soc: '+str(next_soc),'delta_vehodo; '+str(round(delta_range_tonext_km,3))
- +'km'+' range_soc:'+str(round(range_soc_tonext,3)))
- if (delta_range_tonext_km)>1:
- sn_factor_df_last=updtSnFct(sn_factor_df_last,next_soc,delta_range_tonext_km,range_soc_tonext)
-
- start_soc=next_index_soc#变更开始soc
- next_soc=getNextSoc(start_soc)#变更结束soc
- start_range=sn_day_df.loc[index+1,'vehodo']#变更开始里程
- return sn_factor_df_last
- def snDayDfPreProcess(sn_day_df):
- '''预处理,判断是否在dirvemode,获取drivemode条件下的累计行驶距离。
- 增加delta_soc列,drive_flg列,vehodo列'''
- sn_day_df=sn_day_df.reset_index(drop=True)#重置index
- #增加列,计算delta_soc
- for index in range(len(sn_day_df)):
- if index==0:
- sn_day_df.loc[index,'delta_soc']=0
- else:
- sn_day_df.loc[index,'delta_soc']=sn_day_df.loc[index,'soc']-sn_day_df.loc[index-1,'soc']
- #增加列,判断是否在drive状态
- drive_flg=False
- accum_distance=0
- for index in range(len(sn_day_df)):
- if index==0:
- sn_day_df.loc[index,'drive_status']=drive_flg
- sn_day_df.loc[index,'vehodo']=0
- else:
- if (sn_day_df.loc[index,'delta_soc']<-0.1)|\
- ((sn_day_df.loc[index,'delta_soc']<=0)&(sn_day_df.loc[index,'distance']>500)):#soc处于下降状态,说明在drive
- drive_flg=True#置true
- elif sn_day_df.loc[index,'delta_soc']>0.1:#soc处于上升状态,说明不在drive
- drive_flg=False#置false
- accum_distance=0#清零
- sn_day_df.loc[index,'drive_flg']=drive_flg
- accum_distance+=sn_day_df.loc[index,'distance']#对行驶里程进行累加
- sn_day_df.loc[index,'vehodo']=accum_distance
- #筛选所有的drive信息行
- sn_day_drive_df=sn_day_df.loc[sn_day_df['drive_flg']==True,:]
- sn_day_drive_df=sn_day_drive_df.reset_index(drop=True)#重置index
-
- return sn_day_drive_df
- def updtAllSnFct(start_date,end_date):
- '''计算开始时间到结束时间的,所有sn的factor'''
- start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')#开始时间
- end_date_datetime=datetime.datetime.strptime(end_date,'%Y-%m-%d')#开始时间
- delta_day=(end_date_datetime-start_date_datetime).days#间隔天数
- i=1
- while i<=delta_day:
- end_date=(start_date_datetime+datetime.timedelta(days=i)).strftime("%Y-%m-%d")
- updtAllSnTodayFct(start_date,end_date)#调用函数
- print('update all sn factor from '+start_date+" to "+end_date)
- start_date=end_date
- i+=1#自加
- def updtAllSnTodayFct(start_date,end_date):
- ''''更新今天所有sn的factorx信息,start_date和end_date相隔一天。此处还可优化'''
- start_date_str="'"+start_date+"'"
- end_date_str="'"+end_date+"'"
- sql_cmd="select * from drive_info where time between "+start_date_str+" and "+end_date_str+" and distance!=0;"
- range_soc_df = pd.read_sql(sql_cmd, conn_qx)#使用read_sql方法查询qx数据库
- #筛选出所有当日数据之后,筛选当日有更新的sn
- today_sn_list=range_soc_df['name'].unique().tolist()#[:100]#先一次更新5个
- #建立空的dataframe,用于承接所有更新的factor信息
- today_sn_fct_df=pd.DataFrame([],columns=['sn','date','a0','a1','a2','a3','a4'])
- for sn in today_sn_list:
- #寻找factor_df,里面是否有sn号,如果没有sn对应信息,则新增信息。
- sn_str="'"+sn+"'"
- sql_cmd2="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date<"+start_date_str+" and sn="+sn_str
- #此处可以限定每次查询的数量,例如不高于5行
- factor_df=pd.read_sql(sql_cmd2, conn_local)#使用read_sql方法查询local数据库
- #按照sn号和日期进行去重,避免运行时重复产生factor数据,保留第一次出现的行。
- factor_df=factor_df.drop_duplicates(subset=['sn','date'],keep='first')
- if len(factor_df)==0:
- #如果没有搜索到factor历史数据,则声明一个新的进行初始化
- start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')
- yesterday=(start_date_datetime+datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
- #为sn申请一个新的factor,初始值为1
- factor_df=pd.DataFrame({'sn':sn,'date':yesterday,'a0':[1],'a1':[1],'a2':[1],'a3':[1],'a4':[1]})
- sn_factor_df=factor_df.loc[factor_df['sn']==sn,:]#筛选sn对应的factor
- sn_factor_df=sn_factor_df.sort_values(by='date',ascending='True')#按照日期排序
- sn_factor_df_last=sn_factor_df.tail(1).copy()#寻找最后一行,代表最近日期
- sn_factor_df_last=sn_factor_df_last.append(sn_factor_df_last)#新增加一行,用于存储新的factor
- sn_factor_df_last=sn_factor_df_last.reset_index(drop=True)#重置index
- sn_factor_df_last.loc[1,'date']=start_date#更改后一行的date为当前日期
- #筛选对应车辆的信息
- condition_sn=(range_soc_df['name']==sn)
- sn_day_df=range_soc_df.loc[condition_sn,:].copy()
- sn_day_df=sn_day_df.reset_index(drop=True)
- #使用updtTodayFct函数更新今天的factor
- if len(sn_day_df)>=2:
- #使用process函数,进行预处理
- sn_day_df=snDayDfPreProcess(sn_day_df)#预处理函数
- if len(sn_day_df)>=2:
- sn_factor_df_new=updtTodayFct(sn_factor_df_last,sn_day_df)#
- today_sn_fct_df=today_sn_fct_df.append(sn_factor_df_new.loc[1,:])#筛选第一行,进行拼接,最后写入到数据库中
-
- #将today_sn_fct_df写入到数据库中,今天所有factor更新的系数,一次写入。
- if len(today_sn_fct_df)>=1:
- today_sn_fct_df.to_sql('tb_sn_factor',con=engine,chunksize=10000,if_exists='append',index=False)
- def updtOneSnFct(sn,start_date,end_date):
- '''计算开始时间到结束时间的,一个sn的所有factor'''
- start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')#开始时间
- end_date_datetime=datetime.datetime.strptime(end_date,'%Y-%m-%d')#开始时间
- delta_day=(end_date_datetime-start_date_datetime).days#间隔天数
- i=1
- while i<=delta_day:
- end_date=(start_date_datetime+datetime.timedelta(days=i)).strftime("%Y-%m-%d")
- updtOneSnTodayFct(sn,start_date,end_date)#调用函数
- print('update one sn factor from '+start_date+" to "+end_date)
- start_date=end_date
- i+=1#自加
- def updtOneSnTodayFct(sn,start_date,end_date):
- start_date_str="'"+start_date+"'"
- end_date_str="'"+end_date+"'"
- sn_str="'"+sn+"'"
- sql_cmd="select * from drive_info where time between "+start_date_str+" and "+end_date_str+\
- " and distance!=0 and name="+sn_str
- range_soc_df = pd.read_sql(sql_cmd, conn_qx)#使用read_sql方法查询qx数据库
- if len(range_soc_df)>0:
- #筛选出所有当日数据之后,筛选当日有更新的sn
- today_sn_list=range_soc_df['name'].unique().tolist()
- #建立空的dataframe,用于承接所有更新的factor信息
- today_sn_fct_df=pd.DataFrame([],columns=['sn','date','a0','a1','a2','a3','a4'])
- for sn in today_sn_list:
- #寻找factor_df,里面是否有sn号,如果没有sn对应信息,则新增信息。
- sn_str="'"+sn+"'"
- sql_cmd2="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date<"+start_date_str+" and sn="+sn_str
- factor_df=pd.read_sql(sql_cmd2, conn_local)#使用read_sql方法查询local数据库
- #按照sn号和日期进行去重,避免运行时重复产生factor数据,保留第一次出现的行。
- factor_df=factor_df.drop_duplicates(subset=['sn','date'],keep='first')
- if len(factor_df)==0:
- #如果没有搜索到factor历史数据,则声明一个新的进行初始化
- start_date_datetime=datetime.datetime.strptime(start_date,'%Y-%m-%d')
- yesterday=(start_date_datetime+datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
- factor_df=pd.DataFrame({'sn':sn,'date':yesterday,'a0':[1],'a1':[1],'a2':[1],'a3':[1],'a4':[1]})
- today_sn_fct_df=today_sn_fct_df.append(factor_df.loc[0,:])#将初始化的行记录到数据库
- sn_factor_df=factor_df.loc[factor_df['sn']==sn,:]#筛选sn对应的factor
-
- sn_factor_df=sn_factor_df.sort_values(by='date',ascending='True')#按照日期排序
- sn_factor_df_last=sn_factor_df.tail(1).copy()#寻找最后一行,代表最近日期
- sn_factor_df_last=sn_factor_df_last.append(sn_factor_df_last)#新增加一行,用于存储新的factor
- sn_factor_df_last=sn_factor_df_last.reset_index(drop=True)#重置index
- sn_factor_df_last.loc[1,'date']=start_date#更改后一行的date为当前日期
- #筛选对应车辆的信息
- condition_sn=(range_soc_df['name']==sn)
- sn_day_df=range_soc_df.loc[condition_sn,:].copy()
- sn_day_df=sn_day_df.reset_index(drop=True)
- #使用updtTodayFct函数更新今天的factor
- if len(sn_day_df)>=2:
- #使用process函数,进行预处理
- sn_day_df=snDayDfPreProcess(sn_day_df)#!!!!!!!!!!!增加
- if len(sn_day_df)>=2:
- sn_factor_df_new=updtTodayFct(sn_factor_df_last,sn_day_df)#
- today_sn_fct_df=today_sn_fct_df.append(sn_factor_df_new.loc[1,:])#筛选第一行,进行拼接,最后写入到数据库中
-
- # #将today_sn_fct_df写入到数据库中
- if len(today_sn_fct_df)>=1:
- today_sn_fct_df.to_sql('tb_sn_factor',con=engine,chunksize=10000,if_exists='append',index=False)
- # print(sn+' factor will be update in table tb_sn_factor!')
- return today_sn_fct_df
- # def updtASnTodayFct(start_date,end_date,today_sn_list):
- # sql_cmd="select * from qixiang_test where time>='"+start_date+"' and time<='"+end_date+"'"
- # range_soc_df = pd.read_sql(sql_cmd, conn)#使用read_sql方法查询数据库
- # sql_cmd2="select sn,date,a0,a1,a2,a3,a4 from tb_sn_factor where date<'"+start_date+"'"
- # factor_df=pd.read_sql(sql_cmd2, conn)#使用read_sql方法查询数据库
- # #筛选出所有当日数据之后,筛选当日有更新的sn
- # # today_sn_list=range_soc_df['sn'].unique().tolist()
- # # today_sn_list=today_sn_list[:10]#更新若干个
- # #建立空的dataframe,用于承接所有更新的factor信息
- # today_sn_fct_df=pd.DataFrame([],columns=['sn','date','a0','a1','a2','a3','a4'])
- # for sn in today_sn_list:
- # sn_factor_df=factor_df.loc[factor_df['sn']==sn,:]#筛选sn对应的factor
- # sn_factor_df=sn_factor_df.sort_values(by='date',ascending='True')#按照日期排序
- # sn_factor_df_last=sn_factor_df.tail(1).copy()#寻找最后一行,代表最近日期
- # sn_factor_df_last=sn_factor_df_last.append(sn_factor_df_last)#新增加一行,用于存储新的factor
- # sn_factor_df_last=sn_factor_df_last.reset_index(drop=True)#重置index
- # sn_factor_df_last.loc[1,'date']=start_date#更改后一行的date为当前日期
- # #筛选对应车辆的信息
- # condition_sn=(range_soc_df['sn']==sn)
- # sn_day_df=range_soc_df.loc[condition_sn,:].copy()
- # sn_day_df=sn_day_df.reset_index(drop=True)
- # #使用updtTodayFct函数更新今天的factor
- # sn_factor_df_new=updtTodayFct(sn_factor_df_last,sn_day_df)
- # today_sn_fct_df=today_sn_fct_df.append(sn_factor_df_new.loc[1,:])#筛选第一行,进行拼接,最后写入到数据库中
-
- # #将today_sn_fct_df写入到数据库中
- # today_sn_fct_df.to_sql('tb_sn_factor',con=engine,chunksize=10000,if_exists='append',index=False)
|