123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- from re import X
- import pandas as pd
- import numpy as np
- from pandas.core.frame import DataFrame
- import BatParam
- import pandas as pd
- # 计算充电过程
- def preprocess(df):
- # 滤除前后电压存在一增一减的情况(采样异常)
- pass
- # 计算SOC变化率
- def cal_volt_change(dfin, volt_column):
- df = dfin.copy()
- df_volt_rolling = df[volt_column]
- df_volt_rolling_sum=df_volt_rolling.sum(1)-df_volt_rolling.max(1)
- df_volt_rolling_sum=df_volt_rolling_sum-df_volt_rolling.min(1)
- mean1 = df_volt_rolling_sum/(len(volt_column)-2)
- df_volt_rolling_norm = df_volt_rolling.sub(mean1, axis=0)#.div(std,axis=0)
- df_volt_rolling_norm = df_volt_rolling_norm.reset_index(drop=True)#和均值的距离
- return df_volt_rolling_norm
- # 计算电压离群
- def cal_volt_sigma(dfin, volt_column):
- df = dfin.copy()
- df_volt_rolling = df[volt_column]
- mean1=df_volt_rolling.mean(axis=1)
- std = df_volt_rolling.std(axis=1)
- std = std.replace(0,0.000001)
- df_volt_rolling = df_volt_rolling.sub(mean1, axis=0).div(std,axis=0)
- df_volt_rolling = df_volt_rolling.reset_index(drop=True)#分布
- return df_volt_rolling
- # # 计算电压变化量的偏离度
- # def cal_voltdiff_uniform(dfin, volt_column, window=10, step=5, window2=10, step2=5,threshold=3):
- # df = dfin.copy()
- # time_list = dfin['time'].tolist()
- # # 电压滤波
- # df_volt = df[volt_column]
- # df_volt_rolling = df_volt.rolling(window).mean()[window-1::step] # 滑动平均值
- # time_list = time_list[window-1::step]
- # # 计算电压变化量的绝对值(# 计算前后的差值的绝对值, 时间列-1)
- # df_volt_diff = abs(df_volt_rolling.diff()[1:])
- # df_volt_diff = df_volt_diff.reset_index(drop=True)
- # time_list = time_list[1:]
- # # 压差归一化(偏离度)
- # # mean = df_volt_diff.mean(axis=1)
- # # std = df_volt_diff.std(axis=1)
- # # df_voltdiff_norm = df_volt_diff.sub(mean, axis=0).div(std,axis=0)
- # df_voltdiff_norm = df_volt_diff.copy()
- # # 压差偏离度滑动平均滤波
- # df_voltdiff_rolling = df_voltdiff_norm.rolling(window2).mean()[window2-1::step2] # 滑动平均值
- # time_list = time_list[window2-1::step2]
- # df_voltdiff_rolling_sum=df_voltdiff_rolling.sum(1)-df_voltdiff_rolling.max(1)
- # df_voltdiff_rolling_sum=df_voltdiff_rolling_sum-df_voltdiff_rolling.min(1)
- # mean = df_voltdiff_rolling_sum/(len(volt_column)-2)
- # std = df_voltdiff_rolling.std(axis=1)
- # # mean = [np.array(sorted(x)[1:-1]).mean() for x in df_voltdiff_rolling.values]
- # # std = [np.array(sorted(x)[1:-1]).std() for x in df_voltdiff_rolling.values]
- # df_voltdiff_rolling_norm = df_voltdiff_rolling.sub(mean, axis=0)#.div(std,axis=0)
- # df_voltdiff_rolling_norm = df_voltdiff_rolling_norm.reset_index(drop=True)
- # return df_voltdiff_rolling_norm, time_list
- def main(sn,df_bms,celltype):
- param=BatParam.BatParam(celltype)
- df_bms['PackCrnt']=df_bms['PackCrnt']*param.PackCrntDec
- df_bms['time']=pd.to_datetime(df_bms['time'], format='%Y-%m-%d %H:%M:%S')
- volt_column = ['CellVolt'+str(i) for i in range(1,param.CellVoltNums+1)]
- columns=['time']+volt_column
- df_bms=df_bms[(df_bms['PackSOC']>10)]
- # df_bms=df_bms[(df_bms['PackCrnt']<1)]
- # df_chrg=df_bms[(df_bms['PackCrnt']<-1)]
- #电压/SOC变化率计算
- if celltype<50:
- df_ori = df_bms[columns]
- df = df_ori.drop_duplicates(subset=['time']) # 删除时间相同的数据
- df= df.set_index('time')
- df=df[(df[volt_column]>2) & (df[volt_column]<4.5)]
- df[volt_column]=pd.DataFrame(df[volt_column],dtype=np.float)
- df=df.resample('H').mean() #取一个小时的平均值
- df=df.dropna(how='any')
- time_list1=df.index.tolist()
- fun=lambda x: np.interp(x, param.LookTab_OCV, param.LookTab_SOC)
- df_soc=df.applymap(fun)
- VolChng = cal_volt_change(df_soc,volt_column)
- else:
- # df_bms=df_bms[(df_bms['PackCrnt']>-0.1) & (df_bms['PackCrnt']<0.1)]
- df_ori = df_bms[columns]
- df = df_ori.drop_duplicates(subset=['time']) # 删除时间相同的数据
- df= df.set_index('time')
- df=df[(df[volt_column]>3.2) & (df[volt_column]<3.4)]
- df[volt_column]=pd.DataFrame(df[volt_column],dtype=np.float)
- df=df.resample('H').mean() #取一个小时的平均值
- df=df.dropna(how='any')
- time_list1=df.index.tolist()
- VolChng = cal_volt_change(df,volt_column)
- VolSigma = cal_volt_sigma(df,volt_column)
- OutLineVol=DataFrame(columns=['time','sn','VolOl_Uni','VolChng_Uni'])
- #静置电压变化率和离群度计算
- if len(VolChng)>5 and len(VolSigma)>5:
- VolChng['time'] = time_list1
- VolChng= VolChng.set_index('time')
- VolChng_Uni_result=VolChng.values.tolist()#改
- VolSigma['time'] = time_list1
- VolSigma= VolSigma.set_index('time')
- VolOl_Uni_result=VolSigma.values.tolist()#改
- for i in range(0,len(VolChng)):
- OutLineVol.loc[i,'VolOl_Uni']=str(list(np.around(VolOl_Uni_result[i],decimals=2)))
- OutLineVol.loc[i,'VolChng_Uni']=str(list(np.around(VolChng_Uni_result[i],decimals=2)))
- OutLineVol=OutLineVol[~OutLineVol['VolOl_Uni'].str.contains('nan')]
- OutLineVol=OutLineVol[~OutLineVol['VolChng_Uni'].str.contains('nan')]
- OutLineVol=OutLineVol.applymap((lambda x:''.join(x.split()) if type(x) is str else x))
- OutLineVol=OutLineVol.reset_index(drop=True)
- OutLineVol['time']= VolSigma.index
- OutLineVol['sn']=sn
- return(OutLineVol)
|